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Clonal hematopoiesis in metastatic
urothelial and renal cell carcinoma
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Clonal hematopoiesis (CH) is an age-related expansion of white blood cell (WBC) progenitors linked to
risk of hematological malignancy. Patients with cancer have increased CH prevalence compared to
healthy populations, but the characteristics and relevance of CH in advanced urological cancers are
unknown. We interrogated CH and circulating tumor DNA (ctDNA) in 299 patients with metastatic
urothelial or renal cell carcinoma using error-corrected targeted sequencing of matched WBC DNA
and plasma cell-free DNA (cfDNA). 73% of patients carried CH variants at ≥0.25% allele frequency,
with 13% exhibiting large CH populations marked by variants ≥10%. CH presence, clone size, and
genotype did not impact patient survival. However, CH variants frequently affected solid cancer driver
genes andwere not individually discriminable from ctDNA variants based on cfDNA features including
fragment length. In contrast, matched WBC DNA sequencing to ≥25% of cfDNA depth sufficiently
resolved CH from ctDNA variants. Serial profiling revealed ctDNA and CH temporal dynamics
including treatment-related expansion of PPM1D-mutated CH clones following platinum
chemotherapy. Our data reveal the molecular landscape of CH in urological cancers and suggest that
CH interferes in clinical ctDNA genotyping. We urge test providers to comprehensively filter CH from
ctDNA results using matched WBC sequencing and propose a cost-effective framework for its
integration into existing plasma-only assays.

Genomic mosaicism is a hallmark of aging cells. As tissues age, cells can
acquire mutations that are propagated through subsequent divisions,
forming distinct somatic clones1–3. Although most mosaicism is associated
with propagation of functionally inert mutations through neutral genetic
drift, a subset of mutations can confer a fitness advantage and enable rapid
expansion4. Clonal hematopoiesis (CH) refers to expanded somatic
mosaicism in the hematopoietic system without overt hematological
malignancy, and ismost commonly associatedwithmutations in epigenetic
regulators DNMT3A and TET2. Over the age of 60, at least one (albeit
typically small) clonally-expanded hematopoietic population is nearly
universal in otherwise healthy individuals5. CH is an emerging risk factor for
aging-associated pathologies including cardiovascular and neurodegen-
erative diseases6,7.

In patients with cancer, the prevalence of CH is higher than age-
matched cancer-free individuals, partly due to cancer treatment
exposures8–11. Inpatients receiving anticancer drugs,CHhas beenassociated
with an elevated riskof treatment-induced adverse events includingmyeloid
neoplasms12, cytokine release syndrome13 and cardiovascular toxicity14, and
in rare scenarios can progress to secondary hematologic malignancy (e.g.
treatment-related acute myeloid leukemia [t-AML]) under the selective
pressure of chemo- or radio-therapy15,16. However, prior studies investi-
gating CH in solid tumors focused on heterogeneous pan-cancer and pan-
stage populations using low-resolution techniques not designed to char-
acterize CH8,11,17. The diversity of treatments applied across these cancer
typesmay differentiallymodify the CH landscape, while correlative insights
derived fromcohorts enriched for primarymalignanciesmay not generalize
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to metastatic disease. Consequently, the characteristics and clinical rele-
vance of CH in specific malignancies with distinct age distributions and
molecular etiologies remain unclear. Previous work in various mostly
localized solid tumor types are conflicting regarding the precise features and
prognostic relevance of CH14,18–22.

Plasma circulating tumor DNA (ctDNA) profiling is increasingly
incorporated into routine clinical management for advanced malignancies.
However, most commercial ctDNA genotyping platforms do not sequence
synchronous white blood cell (WBC) DNA, meaning that CH is liable to
contaminate tumor variant reporting since the majority of cell-free DNA
(cfDNA) originates from hematopoietic populations23,24. Resolving CH
mutations from true ctDNA variants poses a potential challenge for preci-
sion oncology.While more than half of CHmutations fall inDNMT3A and
TET2 andcould be automatically excludedduring ctDNAmutation analysis
based on gene identity, CH mutations in oncology genes with predictive
and/or prognostic utility including BRCA1/2, TP53, ATM, and CHEK2 are
ostensibly less easily resolved andmayconfound tumorgenotyping.There is
concern whether liquid biopsy platforms that sequence cfDNA without
patient-matched WBC DNA are able to distinguish CH mutations from
tumor-derived variants, although the extent of this potential problem has
not been characterized8,25,26.

Here, we investigated synchronous CH and ctDNA features in two
aggressive immune active urologic malignancies with distinct treatment
landscapes: metastatic renal cell carcinoma (mRCC) and metastatic uro-
thelial carcinoma (mUC). In both cancers, ctDNAprofiling is emerging as a
key tool for translational research and patientmanagement, particularly for
minimal residual disease detection in the perioperative setting27 but also for
identification of genomic alterations associated with response to approved
systemic therapies (e.g. FGFR3 alterations and FGFR inhibitors in
mUC)27,28. Despite this emerging role for plasma testing, the frequency and
characteristics of CH in mRCC and mUC are understudied. We demon-
strate that CHwith variant allele frequency (VAF) ≥ 0.25% is present in the
majority of patients with mRCC or mUC, and the precise spectrum of
affected genes depends on prior treatment exposures and is subject to
evolution. In these metastatic tumor types with short life expectancy, CH
had no impact on survival, although CH-related mutations in pan-cancer
relevant genes showed high potential to confound ctDNA-based cancer
genotyping. Our data provide a new blueprint for assessingCH features and
suggest that matched WBC DNA sequencing is a practical and compre-
hensive approach to accurately resolve CH from ctDNA.

Results
Cohort composition and sequencing strategy
Weanalyzedblood from299patientswithmetastatic urologic cancer froma
research biobank: 184mRCC and 115mUC (Fig. 1a). All patients provided
a blood sample at enrollment (termed as “baseline” sample), predominantly
prior to commencing a line of systemic therapy for metastatic disease.
Follow-up sample(s) were available from a subset of patients (Supplemen-
tary Fig. 1).

Among patientswithmRCC, 80% (148/184) had baseline blood drawn
before systemic treatment for metastatic disease (Table 1). For patients
whose first blood sample was collected during/after ≥1 line of therapy
(n = 36), prior treatment included immunotherapy (IO) and/or receptor
tyrosine kinase inhibitors (TKIs). Baseline characteristics of the patient
population were reflective of real world cohorts. 71.3% of patients with
mUC (82/115) provided blood prior to first- or second-line therapy for
metastatic disease (mainly constituting platinum chemotherapy and IO,
respectively) (Table 1). Prior to first blood collection, 50% (58/115) ofmUC
patients had received systemic platinum chemotherapy (for metastatic
disease or as (neo)adjuvant therapy), and 21% (24/115) received single-
agent IO.Median age at baseline blood draw in themUC cohort was higher
than that of mRCC (71 vs 65, Mann-Whitney U [MWU] P = 0.00047).

We interrogated both plasma cell-freeDNA (cfDNA) and patient- and
time-matched white blood cell (WBC) DNA to accurately discriminate CH
fromgermline single nucleotide polymorphisms (SNPs) and tumor-derived

variants (Fig. 1a). Deep targeted cfDNA and WBC DNA sequencing was
performed using a custom panel where CH variants were required to be
present in both analytes with a WBC VAF ≥ 0.25% (Methods). Median
deduplicated read-family depth of 2290× in cfDNA and 2060× in WBC
DNAwas achieved (Supplementary Data 2). Aligning with prior landmark
studies28,29, WBC VAF is used to quantify CH clonal prevalence unless
otherwise stated.

CH is pervasive in mRCC and mUC
Incorporating all patients with mRCC or mUC, we detected 604 CH
mutations across 45 genes in 73% (219/299) of baseline samples (Sup-
plementaryData 3). 71% (131/184) and 76% (88/115) ofmRCCandmUC
were CH positive (CH+), respectively at 0.25% VAF detection threshold
(Fig. 1b), without difference in prevalence by cancer type (Fisher’s exact
P = 0.75) or biological sex (Supplementary Fig. 2). Overall population
prevalence was 34% (103/299) and 13% (38/299) for CH+ clones above
2%and10%VAF, respectively (Fig. 1b; SupplementaryFig. 3a)—accepted
thresholds for clonal hematopoiesis of indeterminate potential (CHIP)
and for larger CH clones8,30. 14 patients had exceptionally high CHVAFs
(above 30%), potentially interfering with germline mutation calling. For
example, one patient with mRCC (and no overt hematological malig-
nancy) exhibited four CH mutations with VAFs between 38% and 41%.
Median plasma cfDNA and WBC VAF of CH mutations was 0.88% and
0.90%, respectively (Supplementary Data 3) (cfDNA interquartile range
[IQR]: 0.45–2.07%; WBC IQR: 0.47–1.94%), and expectedly, cfDNA and
WBC VAF were closely correlated (Spearman’s correlation = 0.82,
P = 4.86 × 10−148) (Fig. 1c).

Frequentlymutated genes were consistent with the known landscape
of CH in unselected populations28,31,32, and included DTA genes
(DNMT3A, TET2, ASXL1), splicing factors (e.g. U2AF1, SF3B1, SRSF2),
and genes involved in DNA damage response (DDR; e.g. ATM, CHEK2,
TP53) (Fig. 1d). PPM1D, ATM and CHEK2 were more commonly
mutated in mUC than mRCC among CH+ patients (corrected Z-test
P < 0.05). Truncating CHmutations inPPM1D are known to be positively
selected during platinum chemotherapy (received by 50% (58/115) of
patients with mUC in our study) and are enriched in patients with
therapy-related myeloid neoplasms16,17,33,34. Accordingly, in our study
prior platinum chemotherapy exposure was associated with PPM1D CH
in patients withmUC (OR = 3.41,P = 0.041) (SupplementaryData 5). CH
mutations in ATM, ASXL1, and CHEK2 have also been observed in post-
platinum settings17,35. At 0.25% VAF threshold, PPM1D mutations were
mostly exon 6 truncation events associated with PPM1D gain-of-function
and downstream TP53 suppression36,37 (Supplementary Fig. 4). There
were no per-gene differences in median mutation VAF between mRCC
and mUC (adjusted for multiple testing). 30% (67/219) of CH+ patients
carried a single CHmutationwithVAF ≥ 0.25% (Fig. 1e); conversely, 70%
of patients harbored multiple CH mutations (range: 2–17) at the same
detection threshold, with no apparent relationship between mutation
multiplicity and VAF (ANOVA P = 0.436). The highest number of CH
mutations detected in a single patient (88 years old, mUC, no prior sys-
temic therapy) was 17 across 9 genes including multiple ASXL1, TET2,
and TP53 mutations all with a VAF below 3%.

In addition to SNVs and indels, larger structural variation such as
chromosomal aneuploidy may contribute to CH and increase risk of
hematological malignancy38,39. Using our targeted sequencing data, we
identified one patient with a putative germline duplication involving the
JAK2 locus but did not identify any examples of CH-derived CNVs (Sup-
plementary Fig. 5). Therefore, we re-analyzed WBC DNA from the entire
mUC cohort (n = 115) plus 17 select patients with mRCC exhibiting CH
mutations above 10% VAF (representing scenarios where >20% of WBCs
originate from a single precursor population) using a genome-wide probe
grid designed to identify large CNVs in liquid biopsy40. Leveraging this data,
we identified a patient with putative trisomy 8 mosaicism (Warkany Syn-
drome 2) and one presumptively CH-derived ~7.6Mb deletion of chro-
mosome 5 (Supplementary Fig. 5).
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Expectedly, CH+ (VAF ≥ 0.25%) patients were older than those
without detected CH mutations (70 vs 60, MWU P = 5.5 × 10−12) (Fig.
1f)31,41. Risk of carrying a CH mutation with VAF > 10% increased by 1.6-
fold (P = 0.0073) per additional decade across both cohorts (Fig. 1g). Pre-
viouswork in anon-cancerpopulation indicated thatCHmutations inRNA

spliceosome genes are acquired late in life but undergo rapid exponential
growth, in contrast toDNMT3ACHmutations which can be acquired early
but expand slowly42. Consistentwith this study,we found that carriers ofCH
mutations in spliceosome-associated genes were older than those carrying
mutations in DNMT3A without concurrent CH mutations in spliceosome
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Fig. 1 | Detection of CH inmetastatic urologic cancers. a Study design. b Bar chart
showing CH prevalence in mUC and mRCC at different detection thresholds.
Patient numbers are indicated above bars. cComparison ofmatchedwhite blood cell
(WBC) DNA and cell-free DNA (cfDNA) variant allele frequencies (VAFs). Inset
plot shows VAF < 2%. d [Left] Bar chart showing the percentage of CH+ patients
with mutations in the 15 most commonly mutated genes. Differences in per gene
frequency between cancer types is indicated with unadjusted and Benjamini-
Hochberg corrected p-values (denoted by asterisks). Patient numbers are provided
to the left of each bar. [Right]Dot plot showing theWBCDNAVAFs for each gene in
log10 scale. e Bar chart showing the distribution of the number of CH mutations

detected in each patient (patient numbers are provided at the top of the chart). The
superimposed dotplot shows the WBC DNA VAFs in log10 scale. f Box plot com-
paring the age at baseline blood draw for patients withCHdetected at differentWBC
VAF thresholds. gDot plot showing the CH prevalence across different age groups.
The human figure in Fig. 1a was obtained andmodified fromWikimedia Commons
(author: Cancer Research UK) available under the Creative Commons Attribution-
Share Alike 4.0 International license: https://commons.wikimedia.org/wiki/File:
Diagram_showing_where_in_the_body_cancer_tends_to_spread_to_CRUK_
381.svg.
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genes (74 vs 70,MWUP = 0.0065). Overall, age and number of CHvariants
were positively correlated (Spearman’s ρ = 0.36, P = 4.29 × 10−8).

CH confounds accurate cfDNA-only tumor testing
To explore differences or overlap in the somatic landscapes of ctDNA and
CH in the two urologicmalignancies, we next analyzedmutations exclusive
to plasma cfDNA and not independently detected in the WBC compart-
ment, representing tumor-originatingmutations. 58%ofpatients at baseline
had cfDNA-only mutations indicative of ctDNA (mRCC: n = 89/184, 48%;
mUC: n = 85/115, 75%) (Supplementary Fig. 6a). Median ctDNAmutation
VAF in patients withmRCCwas 1.56% and significantly higher at 4.49% in
mUC (MWU P = 4.31 × 10−12) (Supplementary Fig. 6a)—consistent with
the established ctDNA abundance of both cancer types43,44. For both,
median ctDNA VAF exceeded the median CH plasma VAF (mUC: 4.49%
vs 0.74%, MWU P = 1.55 × 10−39, mRCC: 1.57% vs 1.01%, MWU
P = 8.78 × 10−8) indicating a higher burden of ctDNA versus CH popula-
tions represented in blood. Thedistributionof ctDNA-mutated genes in our
cohort aligned with the established (and distinct) mRCC and mUC muta-
tional landscapes: the most commonly mutated genes in ctDNA+ patients
with mRCC were VHL (37%), ARID1A (27%), PBRM1 (21%), and SETD2
(19%), while ctDNA+ patients with mUC most commonly carried muta-
tions in TP53 (47%), TERT promoter (42%), ARID1A (28%), and KMT2D
(28%) (Fig. 2b, Supplementary Fig. 6)45–47. Overall, we did not find an
associationbetweenCHpresence and ctDNApresence (Supplementary Fig.
7a), consistent with their distinct somatic origins. However, we observed
that the correlationbetween cfDNA-derivedVAFs andWBC-derivedVAFs
for CH mutations was less strongly correlated in patients carrying ctDNA
mutations with VAF ≥ 10% compared to those carrying ctDNAmutations
with VAF < 10% (Supplementary Fig. 7b) In samples with large ctDNA
populations, proportionally there are fewer reads originating from a CH
compartment, resulting in a skewed VAF relative to the WBC population.
Similarly there was a positive correlation between the highest ctDNA VAF
and the mean cfDNA-WBC VAF deviation among CH mutations per
sample (Supplementary Fig. 7c).

CH is thought to confound commercial tumor cfDNAbiomarker tests
that do not profile synchronous WBC DNA, potentially leading to inac-
curate clinical test results48,49. However the extent of this problem in specific
cancers and the likelihood of CH-ctDNAmisattribution on a per-gene level
is not known. When evaluating genes linked with blood cancers (e.g.
MYD88, U2AF1, DNMT3A, TET2), over 90% of the somatic mutations
detected in cfDNA had a CH origin (i.e. were also detected inWBCDNA).
Conversely, 100%of cfDNAsomaticmutations identified in the solid cancer
driver genesVHL, FGFR3,RB1 andPTEN had presumed ctDNAorigin due
to lack of detection in WBC DNA (Fig. 2a)—highlighting these genes as
relatively specific markers of plasma ctDNA presence. However, multiple
genes with established biological and/or clinical relevance in urologic
malignancies harbored CH and ctDNA mutations at a similar prevalence.
For example, 91%, 70%, and 27% of all detected cfDNA mutations in
CHEK2, ATM, and BRCA2 respectively originated from CH—genes asso-
ciated with PARP inhibitor candidacy in solid cancers50—as well as 33% of
mutations in ERBB2 (n = 5), a candidate biomarker for anti-HER2 anti-
body-drug conjugate therapy inmUC51. 32%ofplasmacfDNAmutations in
TP53 were CH. Similar per-gene overlap in CH and ctDNA mutation
prevalence persisted when only considering CHmutations with VAF ≥ 1%,
above the approximate SNV limit of detection utilized by commercial
cfDNA tumor tests (Supplementary Fig. 8a)48,49. 18 patients carried bothCH
and ctDNA mutations in the same gene, including genes such as TP53,
CHEK2, and ATM (Supplementary Fig. 8b, Supplementary Data 3-4)—
complicating the distinction between mutations that arise through CH and
those of tumor origin when not profiling matched WBC DNA. Although
rare, we observed 20 ctDNA-originating mutations in 20 patients across
DNMT3A, TET2, andASXL1with a cfDNAVAF above 0.50% and without
independentWBCdetection (WBCread support≤2 reads) (Supplementary
Data 4, Supplementary Fig. 9). Importantly, 22% (25/115) of the mUC
cohort and37%(68/184) of themRCCcohortwasCH+buthadnodetected

Table 1 | Baseline clinical characteristics of the cohort

mUC mRCC

Number of patients 115 Number of patients 184

Biological sex, n (%) Biological sex, n (%)

Male 96 (83.5) Male 143 (77.7)

Female 19 (16.5) Female 41 (22.3)

Stage at initial diagnosis,
n (%)

Stage at initial
diagnosis, n (%)

Localized NMIUC 42 (36.5) Localized RCC 94 (51.1)

Localized MIUC 41 (35.7) Metastatic RCC 90 (48.9)

Metastatic 32 (27.8)

Histology of the
pathology specimen,
n (%)

Histology of the
pathology specimen,
n (%)

Pure urothelial 99 (86.1) Clear cell 149 (81.0)

Mixed urothelial and
variant

14 (12.2) Papillary 17 (9.2)

Pure variant 1 (0.9) Chromophobe 8 (4.3)

Unknown 1 (0.9) Undifferentiated 2 (1.1)

Mixed 1 (0.5)

Unknown 7 (3.8)

Age at initial diagnosis,
median (range)

68.0
(23–86)

Age at initial diagnosis,
median (range)

62.0 (23–89)

Age at metastatic
diagnosis, median (range)

71.0
(23–88)

Age at metastatic
diagnosis, median (range)

65.0 (26–89)

Treatment history prior
to baseline blood
collection, n (%)

Treatment history prior
to baseline blood
collection, n (%)

Cystectomy 57 (49.6) Nephrectomy 129 (70.1)

Bacillus Calmette-
Guérin (BCG)

31 (26.9) ICI doublet 13 (7.1)

Platinum chemotherapy 58 (50.4) TKI monotherapy 14 (7.6)

Immunotherapy 24 (20.9) Combination ICI-TKI 8 (4.3)

Non-platinum
chemotherapy (systemic)

2 (1.7) Other 1 (0.5)

Targeted therapy 1 (0.9) No systemic treatment or
palliative

148 (80.4)

Antibody-drug conjugate 1 (0.9) Metastases n (%)

No systemic treatment or
palliative

29 (25.2) Bone 63 (34.2)

Treatment line at time of
baseline blood
collection, n (%)

Lymph node 102 (55.4)

First line 64 (55.7) Lung 127 (69.0)

Second line 18 (15.7) Liver 30 (16.3)

Third line 4 (3.5) Unknown 7 (3.8)

Maintenance 4 (3.5) Grade 3-4 irAEs n (%)

Palliative 14 (12.2) Present 112 (69.6)

Other 12 (10.4) Absent 49 (30.4)

Smoking history, n (%)

Never smoker 47 (40.9)

Previous smoker 58 (50.4)

Current smoker 10 (8.7)

Follow up samples, (n)

1 additional sample 33

2 additional samples 7

3 additional samples 1
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Fig. 2 | Intersection of CH- and ctDNA-derived somatic mutations in the blood.
aBar chart [top] showing the percentage of all somaticmutations detected in cfDNA
that are CH-derived, on a per gene basis. Bar chart [bottom] indicates the total
number mutations detected in each gene across all patients. Genes with notable
relevance in solid tumors are indicated in bold typeface. b Oncoprint showing the
breakdownof somaticmutations among patients withCHand/or ctDNAmutations.
For each gene, the upper tracks in lighter gray background indicate CH mutations

and the darker gray track indicates ctDNA mutations. The top three bar charts
indicate the highest per patient variant allele frequency (VAF) for a ctDNA muta-
tion, the highest VAF for a CH mutation, and the total mutation count per patient,
respectively. The bar chart to the right of the oncoprint shows the number of
mutations detected per gene with the mutation VAFs shown in the superimposed
dot plot.
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ctDNA mutations (Supplementary Fig. 7a). In these patients, the CH
affected genes had a wide distribution of cfDNA VAFs and included solid
cancer driver genes such asTP53,CHEK2, and STAG2 (Supplementary Fig.
7d) which, failing WBC comparison, could be misattributed as tumor-
derived.

Synchronous WBC sequencing accurately discerns cfDNA var-
iant etiology
Given thatCHand tumormutations arenot completelydiscriminable based
on gene identity, we sought to clarify whether other somatic features can
delineateCHand ctDNA in the absence of synchronousWBCprofiling.We
first dichotomized samples into two groups based on whether their max-
imum ctDNA mutation VAF (as a surrogate for overall ctDNA fraction)
was≥10%or<10%, representing scenarioswithhighand low tumorburden,
respectively. In both cases, we observed substantial overlap in the dis-
tribution of ctDNA VAFs and cfDNA-derived CH VAFs, indicating that
distinguishing mutation origin based solely on cfDNA VAF is not reliable
(Fig. 3a), especially for low ctDNA-shedding cancers like mRCC44,52 or in
clinical scenarios where ctDNA abundance is suppressed by effective
therapy. A similar degree of overlap remained even after excluding themost
commonly CH-mutated genes DNMT3A and TET2 (Supplementary
Fig. 8c).

Building on previous studies suggesting wild-type and tumor-derived
cfDNAmay be distinguished based on their fragmentomic profiles26,53,54, we
next compared the fragment size distribution of somatically mutated and
wild-type fragments. All cfDNA fragments followed a bimodal size dis-
tribution with characteristic mono- and di-nucleosomal peaks at ~167 bp
and ~320 bp, respectively (Fig. 3b)26,54. cfDNA fragments originating from
cancer were shorter than those originating from CH (average difference of
10 bp)-driven primarily by an enrichment for subnucleosomal (<167 bp)
ctDNA fragments (Kruskal-Wallis P = 0.0003). Conversely, the size dis-
tribution of CH-mutated and wildtype cfDNA fragments was not sig-
nificantly different (Kruskal-Wallis P = 0.218), consistent with a shared
hematopoietic origin. In examining individual mutated loci, we found that
only 29% (129/442) of ctDNA mutations had a median fragment length
(across allmutant-supporting fragments) significantly different from that of
reference allele fragments, although this was in contrast to only 4% (16/391)
of CH mutations (Fig. 3c).

While WBC DNA sequencing can aid in distinguishing CH from
ctDNA, there is no established consensus on the minimum technical stan-
dards (e.g. sequencing depth/coverage) needed to accurately differentiate
most CH and ctDNA variants. To address this, we performed random in
silico downsampling of WBC sample coverage at fixed increments while
keeping the depth of cfDNA samples constant, and iteratively reperformed
CH mutation calling using the same methodology. Encouragingly, sequen-
cingWBCsamples to~25% the depth ofmatched cfDNA(i.e.median 2290×
cfDNA and 600× WBC) enabled detection of 90% of CH mutations with
VAF > 1%, with the remaining 10% liable to be miscalled as cancer-derived
ctDNA variants. Although sequencing WBC at a higher depth recovered
progressively larger proportions of our ground-truth denominator of all CH
variants, we observed diminishing returns for downsampled WBC depth
above ~600× (1:4 ratio of WBC/cfDNA depth). Requiring fewer minimum
mutant-supporting reads for CH detection boosted recovery of CH variants
across the range of surveyed WBC depths. Collectively, this in silico
experiment proposes a minimum recommended WBC DNA sequencing
depth for cost-effective discrimination of CH from ctDNA variants (versus
the more expensive sequencing of both compartments to equivalent depths)
while minimally compromising specificity (Fig. 3d).

Finally, we empirically tested the accuracy of several common rules-
based heuristics aimed at removing CH interference that are utilized by
plasma-only ctDNA genotyping platforms48,49. We tested three strategies
and their impact on sensitivity and specificity for ctDNA-variant detection,
including i) discarding all mutations in DTA genes, ii) excludingmutations
with VAF < 1%, and iii) excluding putatively subclonal mutations (defined
as amutationwithVAF less than 25% the sample’smaximum somaticVAF

[applied only to samples with >1 mutation]). Leveraging our curated set of
1166 somatic cfDNAmutations (562 ctDNAand 604CH),we applied these
filtering strategies individually and calculated the sensitivity (i.e. proportion
of true ctDNA variants recovered) and specificity (i.e. proportion of all
recovered variants that are genuinely from ctDNA) of each approach to be
between 75–96% (sensitivity) and 56–66% (specificity) (Fig. 3e). However,
the filtered set of mutations from each approach included 34–44% of CH
variants as false positives. Applying these criteria in series led to a sensitivity/
specificity of 62%/30% and a final set of mutations that still contained 100
CH mutations with a median VAF of 2.91% (Fig. 3e). Importantly, this
approach erroneously discarded genuine ctDNA mutations in clinically-
relevant genes such as FGFR3 (erdafitinib eligibility for mUC55; 3/11 dis-
carded), TP53 (16/63 discarded) and VHL (key gene for clear cell RCC
pathogenesis56; 10/34 discarded).

CH does not strongly influence survival in mUC or mRCC
Detection of ctDNA in baseline blood was associated with poor overall
survival (OS) in multivariable models adjusting for known cancer-specific
clinical prognostic factors for mUC (HR = 2.35 [95% CI: 1.29–4.29],
P = 0.0052) and mRCC (HR = 2.33 [95% CI: 3.43–1.58], P = 2 × 10-4) (Fig.
4a, b), consistent with the established prognostic effect of ctDNA in solid
cancers43,44,57,58. In the subgroup of patients starting first-line treatment for
metastatic disease, ctDNAdetectionwas similarly prognostic for inferiorOS
inmRCC(HR = 2.96 [95%CI: 1.65–5.33],P = 2.89 × 10−4) but didnot reach
significance in mUC (HR= 1.7 [95% CI: 0.71–4.06], P = 0.235) (Supple-
mentary Fig. 10a, b). In contrast, CH detection had no impact on OS in
either cohort (mUC: HR = 1.1 [95% CI: 0.64-1.87], P = 0.735; mRCC:
HR = 0.89 [95% CI: 0.59–1.34], P = 0.579) (Fig. 4c, d), even when dichot-
omizing patients by presence of larger CH events exceeding 2% VAF
(Supplementary Fig. 11a, b), restricting analysis to patients starting first-line
treatment for their metastatic disease (Supplementary Fig. 11c–f), or in any
subgroup analysis across various gene groupings (Fig. 4e). CH status did not
stratify OS among ctDNA+ patients (Supplementary Fig. 10c, d).

We hypothesized that hematopoietic dysregulation via CH may
modulate frequency of immune-related adverse events (irAEs) in patients
receiving treatment59. Therefore, we evaluated the prevalence of grade 3–4
irAEs that occurred during systemic therapy administration and its rela-
tionship to baseline CH detection among 161 patients with mRCC (Sup-
plementary Data 6). 30% (49/161) experienced any grade 3–4 irAEs. The
two most common grade 3–4 irAEs were adrenal insufficiency and colitis,
occurring in 7% (12/161) and 9% (14/161) of patients, with two experien-
cing both. There was no association between CH detection and occurrence
of any grade 3–4 irAEs (i.e. as a single binary variable) (Fig. 4f). Interestingly,
grade 3–4 adrenal insufficiency was less prevalent in patients with CH ≥
0.25%orCH ≥ 2% (Fig. 4f);median age did not differ betweenpatientswith
and without adrenal insufficiency (63.5 vs 64.5, MWU P = 0.65). No asso-
ciation was observed between CH and colitis. No patient developed
treatment-related hematologic malignancy.

Evolutionary dynamics of CH during therapy
36% (n = 41) of patients with mUC had serial cfDNA (median collection
interval: 17 weeks, IQR: 13-25 weeks), enabling us to track the evolutionary
dynamics of CH mutations in DTA, DDR and splicing genes during sys-
temic therapy. Mutations previously undetected in baseline samples due to
insufficient read support (which may represent treatment-emergent
mutations) were predominantly identified in PPM1D and DNMT3A (six
and four, respectively) (Fig. 5a, Supplementary Data 7), although overall
therewerenoper-genedifferences inCHdetection rate between thebaseline
timepoint and next subsequent blood collection among patients providing
>1 sample (two proportion Z-test). CHmutation VAF was generally stable
over time (median absoluteVAF change: 0.37%), althoughCHmutations in
TP53, PPM1D, andCHEK2 had amodestly higher absolute VAF difference
between timepoints compared to DTA genes (ΔVAF 0.47% vs 0.20%,
MWU P = 0.0075), and more commonly increased in VAF over time
compared to DTA genes where VAF flux was less directional (Fig. 5b,
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Supplementary Fig. 12). Overall DDR mutations had significantly higher
growth rates thanDTAmutations, and platinum chemotherapy as first-line
treatment formetastatic diseasewas also associatedwith significantly higher
growthrates inDDRmutations (Fig. 5c, d). Interestingly, the largest changes
inVAFall occurred inpatients (n = 3)withPPM1Dmutationswho received
interveningplatinum-containing chemotherapybetween their serial cfDNA

collections (Fig. 5e). Expectedly, ctDNA and CH mutations showed diver-
gent VAF dynamics during systemic treatment, indicating their distinct
origin. Interestingly, in patient P123, one PPM1D frameshift mutation
increased to 46%VAFwhile a second PPM1D stopgainmutation remained
stable at less than 1%VAF, suggesting that differentPPM1Dmutationsmay
have varying fitness under systemic therapy.
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Discussion
CH is critically understudied in advanced solid cancers.We provide thefirst
characterization of synchronous CH and ctDNA in patients with mUC or
mRCC. Our results establish the prevalence and precise landscape of genes
harboring CH variants in these malignancies, including distinct differences
between cancers likely due to divergent prior treatment. Methodologically,
our study is unique through independent error-corrected detection of low
VAF somatic variants in both WBC DNA and cfDNA compartments, and
this approach revealed notable overlap between genes that are mutated in
CH and ctDNA. We posit that CH is highly clinically relevant due to the
potential for CH-related variants to interfere with emerging liquid biopsy-
guided patient management paradigms.

Thehigh frequencyofCHinour study (especially above the established
2% definition of CHIP) is consistent with elderly noncancer populations
and pan-cancer studies that predominantly surveyed patients with localized
malignancy. There were no previous reliable estimates of CH prevalence in
mUC and mRCC, although two mRCC ctDNA studies had identified
incidental CH in a small number of patients44,60. In a published pan-cancer
pan-stage dataset including RCC (n = 183, stage unspecified), less than 25%
of RCCpatients had CH, but it is difficult to compare directly to the current
work since this prior study applied much lower sequencing coverage than
our evaluation (419× versus 2290×)8. Another pan-cancer pan-stage CH
study including UC and RCC (stage unspecified) demonstrated an asso-
ciationbetweencytotoxic therapy andCH, but providedno insight intoUC-
or RCC-specific CH topology17. Ultimately our data suggest that increas-
ingly sensitive clinical liquid biopsy approacheswill render all patientsCH+
at some level, crucially necessitating a shift from binary CH detection
(current conceptual paradigm) to a more nuanced assessment of clone size,
diversity, and genotype.

cfDNA-only tumor biomarker testing (i.e. not incorporating matched
WBCs) represents the current liquid biopsy paradigm among widely-
available companion diagnostic assays. Our data reaffirm that cfDNA-only
sequencing harbors significant risk of misattribution of CH as tumor-
derived variants, corroborating a prior suggestion that 8% of reported
ctDNA mutations in CH-associated genes identified by a commercial
ctDNA test had hematopoietic origin61. Similarly, early reports of the
genomic landscapes in RCC and other malignancies using cfDNA-only
assays were also likely contaminated by CH62–65. Discerning the etiology of
mutations detected in blood is important for all tumor types where liquid
biopsymay have clinical utility, especially in tumors where CH and ctDNA
mutational landscapes have a high degree of overlap. For example, treat-
ment regimens for lung and gynecological cancers often involve platinum-
chemotherapy with known risk of t-AML. Frequent occurrence of TP53
mutations in gynecologic malignancies66 and RNA splicing alterations in
lung adenocarcinoma67 underscores the potential added value of WBC
sequencing in liquid biopsyworkflows beyondurologicalmalignancies.Our
data suggest that heuristics for discriminating ctDNAandCHpredicated on
fragmentomic features, gene identity, and/or mutation VAF do not suffi-
ciently rectify otherwise suboptimal sensitivity/specificity for clinical tumor
genotyping. Similar individual molecular features between CH and ctDNA
further imply that machine learning models for discriminating the two are

unlikely to substantially improve classification—evidenced in the perfor-
mance of prior multi-feature models being predominantly driven by cate-
gorical DTA gene identity and (low) VAF, with negligible additional
discriminatory power afforded by other input features (e.g. mutation
signatures)68. Reliance on low VAF to distinguish ctDNA and CH risk
failure especially in low ctDNA shedding cancers like RCC, and/or in other
malignancies during therapy response which is often accompanied by
decreased ctDNA abundance.

Ultimately, failure to accurately resolve ctDNA- and CH-derived
variants in cfDNA-only assays is liable to interfere with precision oncology
workflows in five ways:
1. False-positive CH variants in treatment-predictive genes likeBRCA1/2

in prostate and breast cancers50,69 may lead to inappropriate targeted
treatment allocation.

2. Imprecise computational strategies for classifying tumor- versus CH-
derived variants (in the absence of matched WBC sequencing) may
erroneously discard genuine ctDNA mutations relevant for clinical
management and precision oncology trial eligibility (e.g. in ERBB2,
FGFR3), leading to false negative detection and withholding of
potentially effective targeted therapy.

3. False-positive CH mutations without any other detected tumor-
derived variants may falsely imply nonzero sample ctDNA fraction,
leading to the erroneous interpretation of negative tumor mutation
status for all other reported genes—potentially precluding follow-up
tissue genotyping and access to genome-aware targeted therapies70.

4. False-positive CH variants may inflate higher-order metrics including
tumor mutation burden which is relevant for immunotherapy
allocation in solid tumors.

5. In patients with large ctDNA populations and CH clones, the VAF of
mutations in either compartment canbe skeweddue to competition for
sequencing reads, resulting in less reliable estimates of overall popu-
lation size (and consequently, inferences around variant clonality).

CH can also interfere with unpaired tumor tissue genotyping due to
inadvertent capture of vasculature (containing WBCs) and/or tumor infil-
tration of CH-expanded leukocytes71,72, but is less confounding versus liquid
biopsy where hematological admixture is guaranteed. Consequently,
tumor-tissue informed ctDNAassays for detectingminimal residual disease
are unlikely to be affected by CH, especially following appropriate selection
of mutations in solid cancer-specific genes and/or clonal mutations (as is
typically performed)73.

Our data corroborate prior suggestions that sequencing matched
WBCs is a reliable strategy to remove CH interference in cfDNA testing,
while additionally proposing a new minimum depth requirement for
achieving cost-efficiency. Moreover, parallel WBC sequencing enables
improved suppression of sequencing artefacts while simultaneously per-
mitting interrogation of clinically relevant germline alterations (even at a
lower depth). Currently, equivocal germline findings from commercial
plasma-only ctDNA tests necessitate a subsequent blood draw for follow-
up dedicated germline testing—which is ultimately both more resource-
intensive and inefficient versus parallel WBC and cfDNA profiling. We

Fig. 3 | Resolving CH from ctDNA variants. a Box plot showing that the variant
allele frequency (VAF) distribution of ctDNA and CH variants exhibits notable
overlap in context of both high and low ctDNA levels (indicated by max ctDNA
VAFs above and below 10% respectively). Number of patients represented in each
box plot is indicated at the top. P values are derived from the Mann-WhitneyU test.
b cfDNA fragment length distribution for wildtype (WT) reads and variant-carrying
reads across genomic positions in the context of CH or ctDNA variants. c The left
schematic provides a summary of the computational approach used to differentiate
the fragment length distribution of variant versus WT fragments. The median
fragment lengths for mutated and wildtype fragments were compared at each
genomic position with a somatic mutation using the Mann-Whitney U test. CH
mutations [middle scatter plot] and ctDNA mutations [right] with significantly

different median fragment lengths compared to WT fragments are highlighted in
light blue. Pie charts show the percentage of mutations with significant differences.
In (b) and (c) only variants with >15 supporting reads are shown. dRandom in silico
downsampling of theWBC DNA sequencing data illustrating the sequencing depth
needed to detect all CH variants [left] and CH variants with VAF > 1% [right] by
different numbers of supporting reads. e [Left] Application of common heuristic
filters (aimed at removing CH-derived variants from plasma-only sequencing data)
to all detected somatic mutations, showing the number of CH and ctDNA variants
that would be excluded after applying each criterion (in a theoretical scenario where
matched WBC DNA was not profiled). Pie charts indicate the sensitivity and spe-
cificity of each filtering approach. [Right] Fraction of discarded and retained somatic
mutations in select genes after applying the filtering criteria.

https://doi.org/10.1038/s41698-025-00965-y Article

npj Precision Oncology |           (2025) 9:177 8

www.nature.com/npjprecisiononcology


anticipate that our findings are generalizable to other cancers with similar
age distributions (e.g. advanced prostate cancer) where commercial
ctDNA profiling is widely performed and CH interference has been
reported14,25.

In contrast with prior studies in noncancer and heterogenous pan-
cancer populations, CH detection in our cohort was not associated with
survival in either mRCC or mUC8,17,28. Furthermore, CH did not correlate
with grade 3–4 irAEs during systemic mRCC therapy, excepting a minor
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Fig. 4 | Survival outcomes according to CH or ctDNA detection. a, b Overall
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association between CH > 0.25% and a lower prevalence of grade 3–4
adrenal insufficiency (notwithstanding a lack of formal mechanistic
explanation). We speculate that CHmay have reduced clinical relevance in
lethal metastatic cancers includingmRCC andmUC, owing to the short life
expectancy of late-stage disease curtailing cumulative risk of CH-associated
comorbidities that could otherwise threaten survival (and/or erode quality
of life); this alignswith a prior report showing that the 18-month cumulative

incidence of developing t-AML in CH-positive patients with solid tumors is
only 1%8. Consequently, monitoring for CHmay be more beneficial in less
aggressive and/or earlier settings—likely especially true in patients being
managed with long-term continuous therapy (e.g. androgen deprivation
therapy in castration-sensitive prostate cancer), given findings from our
study and others that specific anticancer agents can strongly positively select
for CH. In general, as systemic therapies are shifted earlier in the disease
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course, we anticipate that the precise oncologic impact of CH prevalence
and genotype will become increasingly salient and may inform whether
incidental CH findings should be incorporated into clinical decision-
making. Future longitudinal studies exploring temporal clonal dynamics of
low VAF CH (<2%) are especially warranted, since preexisting small clones
that expand over timewere found to be associatedwith adverse outcomes in
other settings61,74.

Our study has the following limitations. First, our results are centered
on coding SNVs and small indels, given our application of a 0.248Mb exon-
focused targeted sequencing panel that could not resolve intronic variants,
or chromosomal copy-number changes and structural variants emblematic
of rare large-scale mosaicism75. The small panel size may also have resulted
in underestimation of sample ctDNA fraction (and/or frequency of ctDNA-
positivity). Secondly, owing to the real-world aspect of our hypothesis-
generating retrospective study, the patient cohortwas not standardizedwith
respect to timing of the baseline blood collection, prior treatment exposures
and availability of clinical data (including grade 1–2 irAEs or any AEs in
muC). It is plausible that our study may be underpowered to detect
potentiallymodest associationsbetweenCHand survival, sinceprior studies
reporting an association betweenCHand survival in cancer and non-cancer
patients examined substantially larger cohorts (e.g. 5000 to 10,000+
patients)28. Evaluating CH in large prospective studies involving patients
from various lines of therapy are needed to clarify the impact of CH on
cancer outcomes and treatment-related adverse events, as well as to resolve
the longitudinal clonal dynamics of CH during treatment.

Methods
We queried our British Columbia-based genitourinary cancer research
biobank for patients with mUC or mRCC with ≥1 blood samples col-
lected between 01/2017 and 05/2023. All histological subtypes were eli-
gible. Clinical data were retrospectively collected for all 299 patients with
mUC or mRCC, including baseline clinical characteristics and prior
therapy exposure. Disease volume and sites of metastases were exclu-
sively available for the mRCC cohort. Treatment information post first-
line was unavailable in the mRCC cohort. Each patient contributed a
baseline blood sample collected before initiating a new line of systemic
anti-cancer therapy. 41 patients with mUC provided additional follow-
up sample(s) (n = 50) at ~4-months post-treatment initiation and/or at
disease progression. Overall survival was defined as the interval from the
date of baseline blood collection to date of death from any cause, or date
of last follow-up. Biological sex data were collected for all patients and
incorporated into correlative analyses as appropriate; gender identity was
not collected. All samples were de-identified at time of collection, and
researchers were blind to patient gender identity and gender presenta-
tion. For all patients in the mRCC cohort that received systemic treat-
ment, information regarding the most commonly observed grade 3 or 4
irAEs was collected. For the adverse event to be attributable to treatment,
it was required to have occurred while the patient was receiving treat-
ment. The correlative research study on banked blood samples was
conducted in compliance with the Declaration of Helsinki, with ethics
approval obtained from the University of British Columbia Clinical
Research Ethics Board (certificate number H23-01547). All participants
provided written informed consent before enrolling to our biobank and
providing blood samples. The biobank was approved by the BC Cancer
Clinical Research Ethics Board (certificate number H23-01402). Parti-
cipation in the biobank was voluntary and patients were not financially
compensated for their involvement.

cfDNA and WBC DNA was extracted from plasma and buffy coat
using the QIAamp Circulating Nucleic Acid Kit (catalog number: 55114)
and Promega Maxwell RSC Blood DNA Kit (catalog number: AS1400),
respectively. Library pools forWBCDNAwere generated from25 to 250 ng
of DNA using the KAPA HyperPlus Kit (catalog number: KK8512-
07962401001), following the protocol in the technical manual (version
KR1145 - v9.23),with an initial enzymatic fragmentation step to~200 bp. In
contrast, cfDNA libraries employed 10–50 ng inputs using the KAPA

HyperPrep Kit (catalog number: KK8502-07962347001) following the
procedures outlined in the technical manual (version KR0961 - v7.19).
Subsequent steps included end-repair and A-tailing, followed by adaptor
ligation that incorporated IDT 3-bp xGen CS UniqueMolecular Identifiers
(UMIs), with PCR amplification performed using IDT Unique Dual Index
(UDI) primers to yield 1 µg libraries. Each resulting library was quantified
using a NanoDrop spectrophotometer and underwent quality control on a
1.3%SYBR-Safe agarose gel. Librarieswere thenmultiplexed to create single
pools and hybridized to a custom KAPA HyperChoice target enrichment
panel. This probe set captures the coding sequences of 14 genes commonly
altered in genitourinary malignancies including FGFR3, ARID1A, BAP1,
and VHL, as well as 42 genes associated with CH mutations or linked to
hematologic malignancies such as DNMT3A, ASXL1, TET2, and TP53
(SupplementaryData 1). Additionally, probes targeting theTERT promoter
region were included. Final libraries were purified according to the KAPA
HyperCap Workflow and sequenced on the Illumina NovaSeq6000. Sam-
ples that did not achieve deduplicated 1000X sequencing coverage or
exhibited signs of oxidative damage (e.g. excessive G>T mutations) were
excluded from the study.

All mUCWBC DNA libraries were re-sequenced on another custom
KAPA HyperChoice target enrichment panel containing regularly tiled
probes across the whole genome, capturing ~9000 SNPs at high hetero-
zygous frequency in the human population. Select mRCC WBC DNA
libraries with mutational evidence of large CH clones (VAF greater than
10%) were re-sequenced using this panel. These sequencing data were used
for genome-wide copy number modeling to search for copy number var-
iations with somatic origin in the WBC populations.

FASTQfiles fromdeep targeted sequencingwere processedwith fastp
(0.23.2)76 to remove adapter sequences and trim lowquality read tails using
a 4 bp sliding window and a minimum base quality score of 20. Processed
FASTQs were used to generate unmapped BAM files using the fgbio
FastqToBam (2.0.2) tool. Unmapped BAMs were aligned to the hg38
reference genome using BWA mem (0.7.17)77. Aligned BAM files were
subject to paired cfDNA-WBC DNA indel realignment using ABRA2
(2.24)78 with the additional “--no-edge-ci –mad 20000” arguments.
Mate-pair information was verified and fixed using picard FixMa-
teInformation (2.27.4). The resulting BAMfiles had their base quality
scores recalibrated using gatk BaseRecalibrator and gatk
ApplyBQSR (4.2.0.0). To enable sensitive resolution of true somatic
variants from sequencing artifacts, dual UMI barcoded reads were col-
lapsed into single-strand consensus families where each family was
required to contain ≥2 unique reads. Aligned and recalibrated reads were
then grouped by 5′ mapping position and UMI sequence using fgbio
GroupReadsByUmi (2.0.2). One mismatch was permitted in each
UMI and only reads with mapping quality greater than 20 were
considered for grouping. The resulting groups were collapsed into
single-strand consensus sequences (SSCS) using fgbio Call-
MolecularConsensusReads (2.0.2). The parameter --min-
input-base-quality was set to 20. The resulting SSCS were first
filteredusingsambambaview-F“proper_pair” (0.6.8)79 to exclude
improperly paired reads. Subsequently fgbio FilterConsensus-
Reads (2.0.2) toolwas used to correct the orientation of base-specific tags,
--min_base_quality and --max_no_call_fraction para-
meters were set to 30 and 0.15, respectively. Resulting alignments were
coordinate sorted and indexed using samtools sort and samtools
indexmodules (1.13).

Freebayes (1.3.6)80, Mutect2 (4.2.0.0)81, and VarDictJava (1.8.3)82 were
used for calling SNVs and indels in the cfDNA and WBC DNA, indepen-
dently. We constructed a per-base error rate profile (“background error
rate”) usingDNAfromtenhealthy individuals underage30byperforminga
pileup of base and InDel counts across all genomic positions using
pysamstats (1.12) and computing the overall error rate at each locus. All
variant calls were normalized using bcftools norm (1.17)83 followed by
vt decompose_blocksub to decompose biallelic block substitutions
(2015.11.10)84. Variants were annotated with ANNOVAR85 using the
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refGene, gnomad211_exome, cosmic97_coding, avsnp150, and clin-
var_20221231 databases.

The resulting variants from each variant caller were filtered using the
following criteria applied to both the cfDNA andWBCDNA libraries from
each patient blood collection:
• ≥200× coverage at position
• ≥5 variant supporting reads (unique SSCS)
• Identified by 2 out of 3 variant callers
• VAF ≥10× higher than the background error rate at that position
• VAF ≥ 0.25%
• GNOMAD database frequency <0.05%
• Protein-coding changes or splice site variants only
• TERT promoter mutations were also retained

We also performed testing for strand bias in each of the called variants
using the Fisher’s Exact Test from scipy (1.10.0)86. Variants with p-value <
0.05 andodds ratio >4 or <0.25 in both the cfDNAandWBCDNAsamples
were discarded. Variants with zero variant read support in a given direction
from both the cfDNA and WBC DNA were also discarded.

Filtered calls from each of the three variant callers were intersected and
merged using bcftools (1.15) to produce a callset containing only variants
detectedby at least twoout of three callers. Thefinal call setwas producedby
merging theWBCDNA calls with the cfDNA calls and retaining only those
present in both (for each sample). All variants were further manually
curated by visualization in the Integrated Genomics Viewer (IGV; 2.11.9)87

to eliminate any remaining false positives.
To distinguish high VAF CH-related variants from genuine germline

events, we performed the Tukey’s Fences test for statistical outliers on all
mutations with WBC DNA VAF between 40% and 60%. Coding variants
falling between the fences were extracted and filtered by removing duplicate
variants and variants with a population allelic frequency >0.05% as reported
in gnomAD (4.0). The resulting variant list wasmanually reviewed to assess
the likelihood of CH origin by evaluating the gene, protein change, and
sequence context in IGV. Finally the VAF of variants in the X chromosome
was halved in male patients.

The GRCh38 reference build contains an incorrect duplication of the
U2AF1 locus in thep-armof chromosome21which results inpoormapping
quality and failure to detect somatic variants, as described by ref. 88. To
recovermutations inU2AF1weusedbedtoolsmaskfasta tomask the
duplicated region using a bed file of the offending regions provided by the
Genome Research Consortium.

To identify tumor-originating mutations, we ran Mutect2 and Var-
dictJava in tumor-normalpairedmodewithdefault parameters.VardictJava
outputs were filtered using the testsomatic.R script providedwith the
softwaredistribution.Resulting variantswerenormalizedusingbcftools
norm and biallelic block substitutions were decomposed using vt
decompose_blocksub. ctDNA mutation background error rate file
was generated using the entire set of WBC samples in the study. The fol-
lowing criteria were applied to each candidate ctDNA mutation:
• ≥200× cfDNA coverage at position
• ≥25×WBC coverage at position
• ≥5 variant-supporting reads in the cfDNA sample
• ≤2 variant-supporting reads in the WBC sample
• ctDNA VAF ≥ 0.5%
• Identified by two out of two variant callers
• The cfDNA VAF must be more than five times higher than the

WBC VAF
• Protein-coding changes or splice site variants only
• TERT promoter mutations were also retained

Copy number variants (CNVs) were detected using CNVkit (0.9.10)89

where biases stemming from GC content and regional coverage were nor-
malized using thecnvkit.pyfixmodule. Since cfDNAsamples are likely
to harbor somatic CNVs derived from ctDNA, only WBC DNA samples
were assessed for potential CH-related CNVs. Pooled reference normals for

each of the two target enrichment panels were constructed from the WBC
DNA samples of all patients that did not harbor any detectable CH muta-
tions. Samples were otherwise processed according to default settings and
copy number plots were produced using CNVkit’s cnvlib.do_scat-
ter() or seaborn (0.12.2)90 in Python (3.10.0).

Fragmentomics analyses were performed on a subset of CH and
ctDNAvariants with at least 15 supporting reads.fetch() command from
Pysam (0.22.1)91 was used to iterate through reads and determine those
carrying alterations based on CIGAR strings. Then the template_-
length() commandwas used to calculate the fragment length associated
with the read. Figure 3bwas generated using thekdeplot() function from
seaborn using fragment length as inputs. The bw_adjust parameter was
set to 0.05. In Fig. 3c for each individual CH and ctDNA mutation, the
median fragment lengthofWTandmutated fragmentswas comparedusing
the MannWhitney U test. The P values were corrected for multiple testing
using the Benjamini-Hochberg procedure.

For each mutation we detected in the subset of the cohort with addi-
tional on treatment blood samples, we calculated the growth rate using the
following formula:

Growth rate ¼ log VAFOnTreatment=VAFBaseline
� �

= TOnTreatment � TBaseline

� �

where VAFOnTreatment and VAFBaseline represent the WBC VAF of the
mutation detected at the two time points, and TOnTreatment−TBaseline
represent the time difference between baseline and on treatment blood
draws in weeks. For VAFs at each time point we also calculated confidence
intervals using the binomial test. The MWU test was used to test for sig-
nificant differences in growth rates betweenDTAandDDRgenemutations.
Within each gene group, we further compared growth rates between
patients treatedwith first-line platinum-based chemotherapy formetastatic
disease and those who received other systemic treatments.

Statistical tests anddata analysiswasperformed inPython3.9.12 (using
pandas v.1.4.2, numpy v.1.23.5, scipy v.1.10.1, statsmodels v.0.13.5).
Visualizations were generated usingmatplotlib v.3.7.1 and seaborn v.0.13.0.
The following bioinformatics/genomic analysis software was used: BWA
mem (0.7.17), bcftools (1.15), ABRA2 (2.24), fastp (0.23.2), fgbio Fas-
tqToBam (2.0.2), gatk ApplyBQSR (4.2.0.0), picard (2.27.4), sambamba
(0.6.8), Mutect2 (4.2.0.0), VardictJava (1.8.3), Freebayes (1.3.6), GRIPSS
(2.3.2), bedtools v.2.26, samtools v.1.8 (htslib v.1.8), and ANNOVAR
(v.20191024). All box-plots are centered at the median unless otherwise
specified and show IQR. Whiskers extend 1.5 × IQR past the quartiles. All
raw data are shown where possible. Survival curves for time-to-event (OS)
outcomeswere estimated using the Kaplan-Meier method. Univariable and
multivariable Cox proportional hazards models were used to calculate
hazard ratios and 95% confidence intervals. All hypothesis tests were two-
tailed and used a 5% significance threshold. Benjamini-Hochberg method
was used for multiple testing corrections. The following cohort-specific
covariates were included in multivariable Cox models: mRCC, age at blood
draw, biological sex, IMDC risk stratification, pathological subtype, pre-
sence of visceral metastases; mUC, Age at blood draw, biological sex,
smoking status. The retrospective and hypothesis-generating nature of this
correlative study meant that sample size and a statistical analysis plan
(including power calculations) were not formally prespecified. Statistical
analyses are reported without correction for multiple testing unless other-
wise stated. Rationale for patient/sample exclusion from specific sub-
analyses is clearly indicated in themanuscript text and/or figure legend.We
did not perform any analyses requiring randomization.

Data availability
Sequencing data generated in this study have been submitted to the Eur-
opean Genome Archive under the accession code EGAD50000001267.
Sequencing data are available indefinitely for research use only under
standard EGA controlled access: data access inquiries should be directed to
A.W.W. (alexander.wyatt@ubc.ca). Timeframe for data access will be sub-
ject to EGA policy and process. All other supporting data are available

https://doi.org/10.1038/s41698-025-00965-y Article

npj Precision Oncology |           (2025) 9:177 12

www.nature.com/npjprecisiononcology


within the supplementary data files. Custom code for carrying out con-
sensus BAM generation and variant calling are available in https://github.
com/amunzur/CH_in_metastatic_urologic_malignancies.
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