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Ensemble transfer learning 
for the prediction of anti‑cancer 
drug response
Yitan Zhu1*, Thomas Brettin1, Yvonne A. Evrard2, Alexander Partin1, Fangfang Xia1, 
Maulik Shukla1, Hyunseung Yoo1, James H. Doroshow3 & Rick L. Stevens1,4

Transfer learning, which transfers patterns learned on a source dataset to a related target dataset 
for constructing prediction models, has been shown effective in many applications. In this paper, we 
investigate whether transfer learning can be used to improve the performance of anti‑cancer drug 
response prediction models. Previous transfer learning studies for drug response prediction focused on 
building models to predict the response of tumor cells to a specific drug treatment. We target the more 
challenging task of building general prediction models that can make predictions for both new tumor 
cells and new drugs. Uniquely, we investigate the power of transfer learning for three drug response 
prediction applications including drug repurposing, precision oncology, and new drug development, 
through different data partition schemes in cross‑validation. We extend the classic transfer learning 
framework through ensemble and demonstrate its general utility with three representative prediction 
algorithms including a gradient boosting model and two deep neural networks. The ensemble transfer 
learning framework is tested on benchmark in vitro drug screening datasets. The results demonstrate 
that our framework broadly improves the prediction performance in all three drug response prediction 
applications with all three prediction algorithms.

Cancer is a complex, dynamic, and heterogenous disease. Patients with the same cancer histology can respond 
differently to the same anti-cancer  therapy1. Multiple in vitro drug screening studies have been conducted gen-
erating data about drug efficacy on cancer cell lines (CCLs)2–6. Due to the heterogeneity of cancer, an accurate 
prediction of the response of cancer cells to a drug treatment is of paramount importance for therapeutics 
development and patient care. There are three major applications for drug response prediction including drug 
repurposing, precision oncology, and new drug development. The goal of drug repurposing is to examine whether 
an existing drug used to treat a specific cancer indication can be used to treat another cancer indication. In drug 
repurposing, both the drug and cancer are not new but their combination has not been previously tested. For 
precision oncology, the goal is to identify an existing drug to treat a new cancer case that has not been investigated 
or treated before. The development of new drugs requires predicting the response of known cancer cases under 
the treatment of a new drug that has not been tested before.

Various methods and analysis schemes have been developed and used to predict anti-cancer drug response, 
which can be categorized in different ways. Conventional machine learning methods, such as ridge and elastic net 
 regressions7, random  forests8, modified rotation  forest9, and support vector  machine10, have been used in drug 
response prediction. Recently, deep learning methods have started to play an increasingly important  role11–15. 
Some studies predicted dose-dependent cell growth  inhibition11, and many others predicted dose-independent 
drug response measurements, such as the area under the dose response curve (AUC) and the half maximal 
inhibitory concentration  (IC50)10,13,16,17. Some analyses have constructed a prediction model for an individual 
cancer type and/or  drug13,18,19, and others have built general prediction models covering multiple cancer types 
and/or  drugs11,12,14,16,17. While transcriptomic data and other omics data, such as genomic and proteomic data, 
have been used for the prediction of drug response, transcriptomic data have been shown to be the most pre-
dictive among all omic  modalities7,8. Most works have targeted the prediction of single drug  response13,16,17,20, 
though some predicted the response of drug  combinations11,21–23. While many prediction models take tumor 
and drug molecular features as inputs to predict drug response, methods like Bayesian efficient multiple kernel 
 learning8,24, neighbor-based collaborative  filtering25,26, weighted graph regularized matrix  factorization27, and 
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kernelized similarity based regularized matrix  factorization28 have been developed to predict drug response 
based on similarity measures between tumors and drugs. Ensemble and multi-task learning frameworks have 
also been developed for drug response  prediction8,9,24,29.

In this paper, rather than developing a new algorithm for drug response prediction, we propose a transfer 
learning framework that can improve the prediction performance of existing algorithms by incorporating predic-
tion patterns learned from other related data. The general goal of transfer learning is to build a high-performance 
learner for a target domain where data availability is limited using prediction patterns learned from a related 
source domain with abundant  data30,31. Transfer learning has been successfully used in many areas, such as text 
 classification32,33 and image  classification32,34. An example of source and target domains in transfer learning can 
be given using image classification, in which classifiers can be first trained based on the abundant natural images 
and then be refined based on relatively limited medical images for disease  diagnosis35. Deep transfer learning 
implements transfer learning with deep neural network (DNN)  models36–38. One popular deep transfer learn-
ing technique is to transfer the front layers of a DNN model trained in the source domain to the target domain 
and use it as a feature  extractor37,38. Based on the target domain data, either the parameters of the back layers 
are refined or the back layers are removed and new layers are added behind the front layers and trained from 
scratch. The idea behind this approach is that the DNN model forms an iterative and continuous abstraction 
process and the front layers may generate features informative in both  domains36. The model refinement on the 
target domain data updates parameters in the back layers of DNN models, so that the more abstracted features 
can be adapted to the target prediction task.

In the context of drug response prediction, the target and source domains of transfer learning can be different 
drug screening studies/datasets39. Differences in experimental protocols, assays, or biological models and drugs 
used in the studies generate variations between these datasets. It has been reported that the same treatment 
experiments (i.e. pairs of drugs and CCLs) might have quite different response values in different  studies39. Sup-
plementary Fig. S1 also shows the distribution of drug response varies between drug screening datasets. Thus, 
different drug screening datasets and their associated drug response prediction tasks can be taken as related 
but different domains for the application of transfer learning. There exist several works that applied transfer 
learning related strategies to drug response prediction. Dhruba et al. utilized one drug screening dataset to help 
the prediction on another drug screening dataset through transfer learning, which either transforms the two 
datasets into a unified latent space or transforms one dataset to the space of the other dataset through regres-
sion  mappings39. Turki et al. developed approaches to combine an in vitro drug screening dataset with auxiliary 
data for predicting patient treatment  response40,41. Borisov et al. predicted the response of a patient to a drug 
treatment by building a prediction model for the patient using cell lines similar to the patient evaluated by gene 
expressions of selected drug-related  pathways42.

We propose an ensemble transfer learning (ETL) framework for anti-cancer drug response prediction. The 
ETL framework applies the classic transfer learning scheme that trains a prediction model on the source dataset 
and then refines it on the target dataset, but extends the scheme through ensemble prediction by training and 
refining multiple models. Compared with the above existing works, our work makes unique contributions. First, 
while existing works on transfer learning for drug response prediction focus on building prediction models 
for a specific  drug39–42, we target the more challenging task of building general prediction models that are not 
specific to a drug. Different from drug-specific prediction models, general drug response prediction models are 
trained on data of multiple drugs. Features of both cancer cells and drugs are used as inputs for general predic-
tion models, while drug-specific models usually use only cancer cell features for prediction. Importantly, general 
drug response prediction models can make predictions for not only new cancer cases but also new drugs. Due to 
these differences, existing transfer learning methods for building drug-specific prediction models are not directly 
applicable for building general drug response prediction models. Our study is the first one to propose a transfer 
learning framework for building general drug response prediction models and to investigate whether transfer 
learning can improve the prediction performance in such a setting. Second, we test the power of transfer learn-
ing for three different drug response prediction applications including drug repurposing, precision oncology, 
and new drug development, via different data partition and selection schemes in cross-validation, which to our 
knowledge has not been investigated before.

There are many choices of prediction algorithms for implementing the proposed ETL framework. We select 
three representative and generic prediction models including  LightGBM43 (an efficient gradient boosting deci-
sion tree algorithm) and two DNN models of different architectures to implement the analysis pipeline. We 
apply ETL on multiple in vitro drug screening datasets simulating the three different drug response prediction 
applications. Baseline analysis schemes using the same prediction models but without ETL are also applied for 
comparison purpose. Based on the analysis results, we compare the prediction performances obtained with and 
without transfer learning and also compare between transfer learning using different prediction models for each 
of the drug response prediction applications.

Methods
Framework of analysis scenario. Our study involves four public in vitro drug screening datasets, includ-
ing the Cancer Therapeutics Response Portal v2 (CTRP)3, the Genomics of Drug Sensitivity in Cancer (GDSC)4, 
the Cancer Cell Line Encyclopedia (CCLE)5, and the Genentech Cell Line Screening Initiative (GCSI)6. Based 
on the drug response data, AUC values are calculated and taken as the drug response measurements to be pre-
dicted through regression analysis. RNA-seq data including expression values of 1927 selected genes are used to 
represent CCLs. Drugs are represented by 1623 molecular descriptors for modeling analysis. See Section 1 in the 
Supplementary Information for details about the data and how they have been preprocessed for analysis. Supple-
mentary Table S1 gives the numbers of CCLs, drugs, and treatments (pairs of drugs and CCLs) in each dataset. 
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For transfer learning, we use the two large datasets CTRP and GDSC as the source data and use the two small 
datasets CCLE and GCSI as the target data, which forms four transfer learning tasks denoted by CTRP → CCLE, 
CTRP → GCSI, GDSC → CCLE, and GDSC → GCSI.

A goal of our study is to investigate whether ensemble transfer learning can improve the prediction of drug 
response compared to not using transfer learning. For each transfer learning task, the ETL framework first trains 
prediction models on the source dataset and then refines them on a part of the target dataset. After refinement, 
the models are applied on the rest of the target dataset to make ensemble predictions. Details of the ETL analysis 
scheme will be introduced in the next subsection. The prediction performance of ETL is evaluated based on the 
ensemble predictions and compared to those of baseline schemes that build prediction models based on only 
the target data without transfer learning. Two baseline schemes are applied, standard cross-validation (SCV) 
and ensemble cross-validation (ECV). SCV is the conventional cross-validation scheme, with the prediction 
performance evaluated in each cross-validation trial. ECV modifies the scheme of SCV via embedding ensemble 
learning. Specifically, in each cross-validation trial, ECV resamples the training set 10 times to train 10 prediction 
models. All these models are then applied on the testing set to generate ensemble predictions, based on which the 
prediction performance is evaluated. The analysis schemes of SCV and ECV are explained in details in Section 2 
of the Supplementary Information. Supplementary Fig. S2 shows their analysis flowcharts.

The prediction performances of the three analysis schemes are compared with each other to investigate 
whether ETL can improve the prediction performance. See Fig. 1 for the framework of the whole analysis sce-
nario. In Fig. 1, 8-1-1 cross-validation means dividing the data into 10 data folds and using 8, 1, and 1 data fold 
for model training, validation, and testing, respectively. 8-1-1 cross-validation is used at the first step of transfer 
learning to train models on the source dataset. 1-1-8 cross-validation means dividing the data into 10 data 
folds and using 1, 1, and 8 data folds for model training/refinement, validation, and testing, respectively. 1-1-8 
cross-validation is used for all analyses on the target data, including SCV, ECV, and the second step of transfer 
learning, to simulate a situation where the training data at the target domain are quite limited. The validation 
set is used for hyperparameter tuning and early stopping of model training/refinement. For a fair comparison, 
the data partition on the target dataset used for model training, validation, and testing in the baseline schemes 
are exactly the same as the data partition used for model refinement, validation, and testing of transfer learning 
in corresponding cross-validation trials, respectively.

Ensemble transfer learning scheme. Figure 2 shows the flowchart of ensemble transfer learning (ETL), 
which retrieves the 10 models trained on the source dataset and refines these models on the training set of the 
target data. The refined models are then used to predict the testing samples of the target data, where their pre-
diction outcomes are averaged to generate ensemble predictions. We apply the ETL analysis for each of the four 
transfer learning tasks.

Figure 1.  Analysis scenario framework. The analysis scheme on the left is ensemble transfer learning (ETL). 
The middle and right analysis schemes are standard cross-validation (SCV) and ensemble cross-validation 
(ECV), respectively, which do not apply transfer learning but instead analyze only the target dataset.
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Three data partition and selection schemes representing different drug response prediction 
applications. We investigate the power of transfer learning for three different drug response prediction 
applications including drug repurposing, precision oncology, and new drug development. We design three data 
partition and selection schemes to simulate the three different applications for transfer learning tasks. For the 
purpose of evaluating generalization prediction performance, there should be no treatment (combination of 
CCL and drug) shared by the source and target datasets in analysis. Thus, for each transfer learning task, we 
removed the overlapping treatments from the source dataset, so that they are included only in the target dataset. 
For drug repurposing, no additional data removal or selection was performed. For the application of precision 
oncology, we further removed from the source dataset treatments of CCLs that are also included in the target 
dataset, because the general goal of precision oncology is to select a drug for treating a tumor that has not been 
seen before. Also, when performing cross-validations on both the target and source datasets, the data folds were 
generated to have random but different CCLs, which guaranteed that different CCLs were used for model train-
ing/refinement, validation, and testing, strictly simulating the precision oncology setup. For the application of 
new drug development, we removed from the source dataset treatments of drugs that are also included in the 
target dataset, because the goal is to discover new drugs that can treat existing cancer cases. When performing 
cross-validations on both the target and source datasets, the data folds were randomly generated to have different 
drugs, which guaranteed different drugs were used for model training/refinement, validation, and testing. See 
Supplementary Table S2 for the numbers of CCLs, drugs, and treatments in the source datasets after data selec-
tion for different drug response prediction applications in each transfer learning task.

DNN and LightGBM prediction models. We take drug response prediction as a regression problem to 
predict the AUC value and use the mean squared error (MSE) as the loss function to train prediction models. 
Two different kinds of prediction models, DNN and LightGBM, are used to implement the ETL, SCV, and ECV 
analyses. LightGBM is an efficient implementation of the Gradient Boosting Decision Tree (GBDT) that has 
been successfully used in many  applications43–45. In each boosting step, LightGBM generates a decision tree to 
fit the negative gradient of loss function with respect to the current prediction, which is a weighted summa-

Figure 2.  Flowchart of ensemble transfer learning (ETL).
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tion of predictions from all previous decision trees. In the case of MSE loss function, the negative gradient is 
proportional to the prediction residual. After the decision tree is fitted, its prediction outcome is weighted and 
added to the current prediction to generate a new prediction in the boosting procedure. The learning step size 
is controlled by a learning rate that can be dynamically changed during the learning process. To prevent overfit-
ting, early stopping of the learning process and regularization on parameters can be applied. Compared to other 
GBDT algorithms, LightGBM has the advantage of being computationally light for fast model training thanks to 
the techniques of gradient-based one-side sampling and exclusive feature bundling to speed up model  training43. 
To train the LightGBM model, gene expressions and drug descriptors are concatenated to form the input vec-
tors. In transfer learning, the refinement of a LightGBM model was realized by adding additional boosting steps 
(decision trees) to fit the training set of the target data. See Section 4 of the Supplementary Information for more 
details of training LightGBM prediction models.

Two DNN models with different architectures were implemented for analysis (see Fig. 3). The first DNN 
model is composed of seven hidden fully connected (dense) layers with the number of nodes consecutively 
halved from the first hidden layer to the last hidden layer (Fig. 3a). Gene expressions and drug descriptors are 
concatenated to form the input. The second DNN model contains two subnetworks of three hidden dense layers, 
one for the input of gene expressions and the other for the input of drug descriptors (Fig. 3b). The outputs of 
the two subnetworks are concatenated and then passed to the other four hidden dense layers before output. The 
number of nodes is also consecutively halved from the first hidden layer to the last hidden layer. For convenience, 
we use sDNN (single-network DNN) and tDNN (two-subnetwork DNN) to denote the first and second DNN 
models, respectively. Both sDNN and tDNN have seven hidden layers. Notice that although the total number 
of nodes in a hidden layer of tDNN is always larger than the number of nodes in the corresponding hidden 
layer of sDNN, the total number of trainable parameters in tDNN is significantly smaller than that of sDNN 
due to the subnetwork structure. In both networks, each hidden layer has a dropout layer following it except the 
last hidden layer. When refining a trained DNN model on the target dataset for transfer learning, we kept the 
parameters of the bottom two hidden layers unchanged and continued training the parameters associated with 
the top five hidden layers on the target dataset. See Section 4 of the Supplementary Information for details of 
training DNN prediction models.

Results
For each of the three drug response prediction applications, we performed the analyses of ensemble trans-
fer learning (ETL), standard cross-validation (SCV), and ensemble cross-validation (ECV) with three predic-
tion models including LightGBM, sDNN (single-network DNN), and tDNN (two-subnetwork DNN). ETL 
was conducted for four transfer learning tasks including CTRP → CCLE, CTRP → GCSI, GDSC → CCLE, and 
GDSC → GCSI. Thus, a total number of 3 × 3 × 4 = 36 transfer learning analyses were conducted. SCV and ECV 
were conducted on the two target datasets, CCLE and GCSI. The total numbers of SCV and ECV analyses are 
both 3 × 3 × 2 = 18. We used two measures to evaluate the testing prediction performance. The first measure is 
the root of mean squared error (RMSE), which is the square root of the loss function optimized by the prediction 
models. The second measure is the Pearson correlation coefficient between prediction values and true values. 

Figure 3.  Architectures of two DNN models used in the analysis. (a) Single-network DNN (sDNN) model. 
Gene expressions and drug descriptors are concatenated to form the input. (b) Two-subnetwork DNN (tDNN) 
model. The subnetworks take gene expressions and drug descriptors as separate inputs.
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The prediction performance was evaluated 10 times in the 10 cross-validation trials for each of ETL, SCV, and 
ECV. To rigorously evaluate whether ETL can improve the prediction performance, we always compared the 
prediction performance of ETL to that of SCV/ECV on the same target dataset and with the same prediction 
model. The statistical significance of the difference between the prediction performances of ETL and SCV/ECV 
was evaluated using the pair-wise two-tail t  test46, based on the 10 performance measurements obtained in cross-
validations for each analysis scheme.

Prediction performance for drug repurposing application. Table 1 shows the obtained prediction 
performance and comparison for the drug repurposing application. Each row in Table 1 is for the comparison 
of ETL to SCV and ECV on one target dataset and with one prediction model. Every three adjacent rows are for 
one transfer learning task with the same pair of source and target datasets, but with different prediction models 
used for analysis. RMSE related results are in columns 4–8 and results related to Pearson correlation coefficient 
(denoted by Cor in Table 1) are in columns 9–13. In all of the 12 comparisons (rows in Table 1), ETL always 
outperforms SCV and ECV, indicated by both smaller average RMSE and larger average correlation coefficients. 
T-tests also show that the performance improvement of ETL is always statistically significant (p-values ≤ 0.05). 
This demonstrates the benefit of using ensemble transfer learning for drug response prediction in drug repur-
posing application. In Table 1, the best prediction performance achieved for each transfer learning task is indi-
cated in bold. Compared across the three different prediction models, ETL with tDNN outperforms ETL with 
the other two prediction models in all four transfer learning tasks, also indicated by both smaller average RMSE 
and larger average correlation coefficients. When applied on the same target dataset with the same prediction 
model, ECV always gives an improved average RMSE and correlation coefficient compared to SCV, which is 
consistent with the expectation that ensemble learning is often beneficial.

Prediction performance for precision oncology application. Table 2 shows the prediction perfor-
mance and comparison for the precision oncology application, with cross-validations based on hard partitioning 
of CCLs. The arrangement of results and comparisons in Table 2 follows the style of Table 1. Each row in Table 2 
is for the comparison of ETL to SCV and ECV on one target dataset and with one prediction model, and every 
three adjacent rows are for one transfer learning task with different prediction models. In all four transfer learn-
ing tasks and with all three prediction models, ETL almost always statistically significantly (p-values ≤ 0.05) out-

Table 1.  Comparison on the prediction performance of standard cross-validation (SCV), ensemble cross-
validation (ECV), and ensemble transfer learning (ETL) for drug repurposing application. RMSE indicates 
the square root of mean square error. Cor indicates the Pearson correlation coefficient. In the RMSE and 
Cor columns, the number before a parenthesis is the average prediction performance and the number in a 
parenthesis is the standard deviation, calculated across 10 cross-validation trials. The p-values are generated by 
t-tests and indicate how significantly the prediction performance of ETL differs from those of SCV and ECV. 
SCV vs. ETL indicates comparison of SCV and ETL. ECV vs. ETL indicates comparison of ECV and ETL. The 
best average prediction performance for each transfer learning task is indicated with bold.

Target Source Model
RMSE 
(SCV)

RMSE 
(ECV)

RMSE 
(ETL)

P-value 
(RMSE, 
SCV vs. 
ETL)

P-value 
(RMSE, 
ECV vs. 
ETL) Cor (SCV) Cor (ECV) Cor (ETL)

P-value 
(Cor, SCV 
vs. ETL)

P-value 
(Cor, ECV 
vs. ETL)

CCLE CTRP

LightGBM 0.0895 
(0.0007)

0.0872 
(0.0009)

0.0827 
(0.0007) 2.30E−11 1.36E−08 0.8313 

(0.0029)
0.8403 
(0.0037)

0.8581 
(0.0023) 4.30E−11 1.82E−08

sDNN 0.0895 
(0.0013)

0.0863 
(0.0010)

0.0812 
(0.0007) 3.13E−08 4.17E−07 0.8341 

(0.0050)
0.8466 
(0.0045)

0.8672 
(0.0030) 1.97E−08 4.72E−07

tDNN 0.0918 
(0.0009)

0.0867 
(0.0009)

0.0756 
(0.0005) 4.96E−12 7.66E−11 0.8236 

(0.0033)
0.8435 
(0.0030)

0.8841 
(0.0025) 2.85E−12 3.81E−11

CCLE GDSC

LightGBM 0.0895 
(0.0007)

0.0872 
(0.0009)

0.0839 
(0.0009) 5.06E−09 2.52E−07 0.8313 

(0.0029)
0.8403 
(0.0037)

0.8535 
(0.0035) 8.89E−10 3.13E−08

sDNN 0.0895 
(0.0013)

0.0863 
(0.0010)

0.0838 
(0.0008) 3.71E−07 2.43E−06 0.8341 

(0.0050)
0.8466 
(0.0045)

0.8562 
(0.0037) 6.10E−07 1.42E−05

tDNN 0.0918 
(0.0009)

0.0867 
(0.0009)

0.0811 
(0.0007) 2.85E−10 9.30E−08 0.8236 

(0.0033)
0.8435 
(0.0030)

0.8654 
(0.0022) 1.25E−10 1.55E−08

GCSI CTRP

LightGBM 0.1168 
(0.0005)

0.1142 
(0.0007)

0.1063 
(0.0015) 2.08E−09 3.89E−08 0.7889 

(0.0018)
0.7992 
(0.0017)

0.8293 
(0.0048) 2.11E−10 3.85E−09

sDNN 0.1167 
(0.0025)

0.1119 
(0.0017)

0.1051 
(0.0014) 7.05E−07 1.57E−06 0.7956 

(0.0111)
0.8118 
(0.0057)

0.8384 
(0.0047) 2.13E−06 1.26E−06

tDNN 0.1177 
(0.0032)

0.1109 
(0.0014)

0.0962 
(0.0018) 7.93E−09 4.92E−09 0.7923 

(0.0105)
0.8133 
(0.0050)

0.8633 
(0.0055) 1.72E−08 4.97E−09

GCSI GDSC

LightGBM 0.1168 
(0.0005)

0.1142 
(0.0007)

0.1059 
(0.0015) 1.99E−09 4.93E−08 0.7889 

(0.0018)
0.7992 
(0.0017)

0.8321 
(0.0056) 7.83E−10 7.97E−09

sDNN 0.1167 
(0.0025)

0.1119 
(0.0017)

0.1047 
(0.0021) 4.92E−06 1.57E−05 0.7956 

(0.0111)
0.8118 
(0.0057)

0.8419 
(0.0048) 2.43E−06 9.13E−07

tDNN 0.1177 
(0.0032)

0.1109 
(0.0014)

0.0995 
(0.0017) 1.76E−09 1.12E−09 0.7923 

(0.0105)
0.8133 
(0.0050)

0.854 
(0.0052) 1.54E−09 9.77E−11
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performs SCV and ECV with improved average RMSE and correlation coefficients, which indicates the benefit of 
using ensemble transfer learning for drug response prediction in precision oncology. The only exception occurs 
when sDNN model is used for the GDSC → CCLE transfer learning task. Compared between different predic-
tion models, ETL with tDNN always outperforms ETL with the other two prediction models, LightGBM and 
sDNN, except only in the CTRP → CCLE transfer learning task when the prediction performance is evaluated by 
the correlation coefficient. Again, when applied on the same target dataset with the same prediction model, ECV 
always gives a better prediction performance than SCV does, demonstrating the benefit of ensemble learning.

Prediction performance for new drug development application. Table  3 shows the prediction 
performance and comparison for the new drug development application with cross-validations based on hard 
partitioning of drugs. The arrangement of results and comparisons in Table 3 follows the style of Tables 1 and 
2. Predicting the efficacy of new drugs not included in the training set is generally a more challenging task than 
predicting the response of new CCLs. Also, because there are not many drugs tested in the CCLE and GCSI stud-
ies (see Supplementary Table S1), the number of drugs used for training or refining a prediction model on these 
two target datasets is no larger than three, which forms a very difficult prediction problem. It is not surprising to 
see that the prediction performance of ETL is worse for new drug development than for precision oncology and 
drug repurposing. But ETL’s improvement on the prediction performance over ECV/SCV, which is evaluated by 
the difference between the prediction performances of ETL and ECV/SCV, is also higher for new drug develop-
ment than for the other two applications.

In all four transfer learning tasks and with all three prediction models, ETL always outperforms SCV and 
ECV, demonstrated by smaller average RMSE and higher average correlation coefficients. ETL’s improvement 
on prediction performance is always statistically significant (p-values ≤ 0.05), except only in the comparison of 
ETL and SCV on the GCSI dataset when sDNN is the prediction model used for analysis and the prediction 
performance is evaluated by the correlation coefficient. This result indicates the benefit of using ensemble transfer 
learning for new drug development. Compared among the three prediction models, ETL with tDNN performs 
best in the transfer learning task of CTRP → CCLE, while ETL with LightGBM performs best in the other three 
transfer learning tasks. This is different from the cases of drug repurposing and precision oncology, where ETL 
with tDNN almost always outperforms ETL with LightGBM or sDNN. A possible reason is that LightGBM has 
a model complexity lower than those of DNN models, measured by the number of trainable parameters. Thus, 

Table 2.  Comparison on the prediction performance of standard cross-validation (SCV), ensemble cross-
validation (ECV), and ensemble transfer learning (ETL) for precision oncology application. RMSE indicates 
the square root of mean square error. Cor indicates the Pearson correlation coefficient. In the RMSE and 
Cor columns, the number before a parenthesis is the average prediction performance and the number in a 
parenthesis is the standard deviation, calculated across 10 cross-validation trials. The p-values are generated by 
t-tests and indicate how significantly the prediction performance of ETL differs from those of SCV and ECV. 
SCV vs. ETL indicates comparison of SCV and ETL. ECV vs. ETL indicates comparison of ECV and ETL. The 
best average prediction performance for each transfer learning task is indicated with bold.

Target Source Model
RMSE 
(SCV)

RMSE 
(ECV)

RMSE 
(ETL)

P-value 
(RMSE, 
SCV vs. 
ETL)

P-value 
(RMSE, 
ECV vs. 
ETL) Cor (SCV) Cor (ECV) Cor (ETL)

P-value 
(Cor, SCV 
vs. ETL)

 P-value 
(Cor, ECV 
vs. ETL)

CCLE CTRP

LightGBM 0.0913 
(0.0015)

0.0894 
(0.0015)

0.087 
(0.0016) 6.43E−06 1.08E−04 0.8245 

(0.0045)
0.8325 
(0.0047)

0.8419 
(0.0056) 3.75E−06 8.75E−05

sDNN 0.0915 
(0.0014)

0.0886 
(0.0009)

0.0858 
(0.0014) 5.99E−06 5.27E−07 0.8275 

(0.0052)
0.8385 
(0.0041)

0.8479 
(0.0049) 3.67E−06 2.90E−05

tDNN 0.0909 
(0.0013)

0.0882 
(0.0009)

0.0856 
(0.0014) 2.39E−06 3.89E−05 0.8293 

(0.0040)
0.8386 
(0.0038)

0.8476 
(0.0037) 2.69E−06 1.46E−04

CCLE GDSC

LightGBM 0.0913 
(0.0015)

0.0894 
(0.0015)

0.0877 
(0.0014) 5.37E−07 1.58E−04 0.8245 

(0.0045)
0.8325 
(0.0047)

0.8389 
(0.0045) 6.01E−07 1.80E−04

sDNN 0.0915 
(0.0014)

0.0886 
(0.0009)

0.0888 
(0.0013) 3.27E−04 3.28E−01 0.8275 

(0.0052)
0.8385 
(0.0041)

0.8366 
(0.0038) 1.26E−05 4.86E−03

tDNN 0.0909 
(0.0013)

0.0882 
(0.0009)

0.0869 
(0.0012) 2.55E−05 3.87E−03 0.8293 

(0.0040)
0.8386 
(0.0038)

0.8428 
(0.0040) 1.22E−04 1.07E−02

GCSI CTRP

LightGBM 0.1186 
(0.0023)

0.116 
(0.0026)

0.1118 
(0.0029) 7.89E−05 1.75E−03 0.783 

(0.0090)
0.7929 
(0.0094)

0.8087 
(0.0109) 9.27E−05 1.69E−03

sDNN 0.123 
(0.0043)

0.1218 
(0.0033)

0.1118 
(0.0016) 1.25E−05 9.55E−06 0.7798 

(0.0160)
0.7938 
(0.0082)

0.8119 
(0.0049) 1.14E−04 5.43E−05

tDNN 0.1237 
(0.0043)

0.118 
(0.0029)

0.1085 
(0.0012) 3.36E−06 5.19E−06 0.7804 

(0.0084)
0.7989 
(0.0083)

0.8228 
(0.0042) 2.83E−07 2.44E−05

GCSI GDSC

LightGBM 0.1186 
(0.0023)

0.116 
(0.0026)

0.1099 
(0.0020) 8.89E−08 6.55E−06 0.783 

(0.0090)
0.7929 
(0.0094)

0.8162 
(0.0072) 1.59E−07 7.10E−06

sDNN 0.123 
(0.0043)

0.1218 
(0.0033)

0.1106 
(0.0016) 6.42E−06 3.48E−06 0.7798 

(0.0160)
0.7938 
(0.0082)

0.8156 
(0.0063) 3.76E−05 6.37E−07

tDNN 0.1237 
(0.0043)

0.118 
(0.0029)

0.1076 
(0.0015) 2.34E−06 6.80E−07 0.7804 

(0.0084)
0.7989 
(0.0083)

0.8258 
(0.0046) 4.06E−08 2.86E−07
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it is more generalizable for predicting the efficacy of new drugs, especially when the training data include very 
few drugs.

Prediction performance of transfer learning using individual model without ensemble. Since 
we have performed ensemble transfer learning, it is straightforward to calculate the prediction performance 
of transfer learning using an individual model without ensemble prediction, which is called standard transfer 
learning (STL). Detail results of STL cannot be presented due to the large number of models trained in the 
analysis, but we can summarize here the major observation based on the results. In the drug repurposing and 
precision oncology applications, STL sometimes does not produce a prediction performance better than those of 
SCV and ECV. On the contrary, as we have presented in the previous subsections, ETL dominantly outperforms 
SCV and ECV for these two applications, which indicates the importance of using transfer learning and ensem-
ble prediction simultaneously for drug response prediction. For the more challenging application of new drug 
development, we find STL almost always outperforms SCV and ECV, while ETL further improves the prediction 
performance compared to STL. ETL, STL, SCV, and ECV are always compared based on the same target dataset 
and the same prediction model for fairness.

Discussion
We developed the first ensemble transfer learning framework for building general prediction models of anti-
cancer drug response. The transfer learning pipeline was implemented with three different prediction mod-
els including LightGBM, sDNN (single-network DNN), and tDNN (two-subnetwork DNN). We designed a 
comprehensive evaluation scenario to investigate the performance of the transfer learning pipeline for three 
different drug response prediction applications, including drug repurposing, precision oncology, and new drug 
development, based on in vitro drug screening datasets. Our analysis results demonstrate the benefit of applying 
ensemble transfer learning in all of the three applications. For the comparison between transfer learning imple-
mented with different prediction models, ETL with tDNN performs best in the drug repurposing and precision 
oncology applications, while ETL with LightGBM outperforms the other two models in three out of the four 
transfer learning tasks for new drug development.

Compared with existing works, our study is the first research attempt of its kind with unique contributions, 
which can be summarized from three aspects. First, while existing transfer learning studies for drug response 

Table 3.  Comparison on the prediction performance of standard cross-validation (SCV), ensemble cross-
validation (ECV), and ensemble transfer learning (ETL) for the application of new drug development. RMSE 
indicates the square root of mean square error. Cor indicates the Pearson correlation coefficient. In the RMSE 
and Cor columns, the number before a parenthesis is the average prediction performance and the number in a 
parenthesis is the standard deviation, calculated across 10 cross-validation trials. The p-values are generated by 
t-tests and indicate how significantly the prediction performance of ETL differs from those of SCV and ECV. 
SCV vs. ETL indicates comparison of SCV and ETL. ECV vs. ETL indicates comparison of ECV and ETL. The 
best average prediction performance for each transfer learning task is indicated with bold.

Target Source Model
RMSE 
(SCV)

RMSE 
(ECV)

RMSE  
(ETL)

P-value 
(RMSE, 
SCV vs. 
ETL)

P-value 
(RMSE, 
ECV vs. 
ETL) Cor (SCV) Cor (ECV) Cor (ETL)

P-value 
(Cor, SCV 
vs. ETL)

P-value 
(Cor, ECV 
vs. ETL)

CCLE CTRP

LightGBM 0.1828 
(0.0249)

0.1826 
(0.0249)

0.1589 
(0.0125) 2.32E−02 2.42E−02 0.0739 

(0.0781)
0.0778 
(0.0815)

0.3742 
(0.1490) 1.52E−04 1.45E−04

sDNN 0.2132 
(0.0608)

0.1964 
(0.0460)

0.158 
(0.0152) 3.20E−02 4.52E−02 0.0762 

(0.0803)
0.0685 
(0.1638)

0.4455 
(0.0965) 3.77E−05 8.99E−04

tDNN 0.206 
(0.0637)

0.205 
(0.0602)

0.1553 
(0.0176) 4.98E−02 4.46E−02 0.0917 

(0.1589)
0.0937 
(0.1446)

0.4667 
(0.1172) 1.20E−04 6.99E−05

CCLE GDSC

LightGBM 0.1828 
(0.0249)

0.1826 
(0.0249)

0.1283 
(0.0053) 9.11E−05 9.57E−05 0.0739 

(0.0781)
0.0778 
(0.0815)

0.6301 
(0.0525) 2.52E−09 2.80E−09

sDNN 0.2132 
(0.0608)

0.1964 
(0.0460)

0.146 
(0.0201) 1.04E−02 8.23E−03 0.0762 

(0.0803)
0.0685 
(0.1638)

0.5717 
(0.0539) 5.76E−08 8.65E−06

tDNN 0.206 
(0.0637)

0.205 
(0.0602)

0.1412 
(0.0214) 2.28E−02 1.92E−02 0.0917 

(0.1589)
0.0937 
(0.1446)

0.6124 
(0.0638) 1.09E−05 6.65E−06

GCSI CTRP

LightGBM 0.2491 
(0.0402)

0.249 
(0.0401)

0.1975 
(0.0197) 3.03E−03 3.02E−03 0.163 

(0.0643)
0.1707 
(0.0599)

0.396 
(0.0366) 1.41E−05 1.54E−05

sDNN 0.2804 
(0.0584)

0.3042 
(0.0693)

0.2243 
(0.0346) 1.54E−02 1.57E−02 0.0172 

(0.2006)
− 0.2031 
(0.1689)

0.2231 
(0.1606) 8.78E−02 1.27E−03

tDNN 0.3043 
(0.0931)

0.2988 
(0.0670)

0.215 
(0.0348) 1.97E−02 6.88E−03 − 0.1835 

(0.1726)
− 0.1463 
(0.2150)

0.3707 
(0.0751) 8.90E−06 1.17E−04

GCSI GDSC

LightGBM 0.2491 
(0.0402)

0.249 
(0.0401)

0.2075 
(0.0268) 8.21E−03 8.23E−03 0.163 

(0.0643)
0.1707 
(0.0599)

0.3878 
(0.0513) 3.11E−05 3.63E−05

sDNN 0.2804 
(0.0584)

0.3042 
(0.0693)

0.2255 
(0.0239) 2.42E−02 8.93E−03 0.0172 

(0.2006)
− 0.2031 
(0.1689)

0.1092 
(0.2477) 4.89E−01 2.36E−03

tDNN 0.3043 
(0.0931)

0.2988 
(0.0670)

0.2148 
(0.0295) 2.13E−02 7.11E−03 − 0.1835 

(0.1726)
− 0.1463 
(0.2150)

0.3147 
(0.0983) 5.37E−06 2.87E−04
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prediction all focus on building drug-specific prediction models, we target the more challenging task of build-
ing general drug response prediction models that are not specific to a drug. Our study is the first one to show 
transfer learning can improve the performance of general drug response prediction models. This result indicates 
the potential of improving existing drug response prediction methods by designing and applying appropriate 
transfer learning procedures. Second, we study the power of transfer learning and show its advantage in three 
different drug response prediction applications including drug repurposing, precision oncology, and new drug 
development, which to our knowledge has not been investigated before. Our analysis design gives an example for 
future studies that need to evaluate the performance of drug response prediction in different application setups. 
Third, unlike previous transfer learning studies that emphasize building transformations of features and drug 
response values between  datasets39, our proposed ETL framework applies the classic transfer learning scheme 
and extends it through ensemble, which trains multiple prediction models on the source data and then refine 
them on the target data for ensemble prediction. Although there usually exist considerable variations between 
different drug screening studies/datasets39, ETL with model refinement and ensemble prediction on the target 
dataset seems to overcome this gap and extract useful information from the source dataset to construct predic-
tion models on the target dataset.

Our main goal is to develop a general transfer learning framework that is insensitive to the underlying 
machine learning methods for building general drug response prediction models. For this reason, we pick 
three representative prediction models to implement the proposed ETL framework and demonstrate its ability 
of improving the performance of all three models. We choose LightGBM, an efficient GBDT method, to rep-
resent the conventional machine learning algorithms, as GBDT models have been successfully used in many 
 applications43–45. Compared to other GBDT algorithms, LightGBM also has the advantage of being computation-
ally light for fast model  training43. For deep learning models, because whether the two input data modalities (gene 
expressions and drug descriptors) are concatenated to form the input vector or separately input into subnetworks 
makes a significant difference on the number of trainable parameters (i.e. model complexity), we choose to test 
both sDNN and tDNN. To keep the hidden layers in the network models representative and generic, we use the 
fully connected dense layers. In transfer learning with the DNN models, we also tried freezing the parameters of 
the bottom four hidden layers and adjusting the parameters associated with the top three hidden layers and the 
dropout rate in the model refinement stage. The obtained prediction performance was worse than what we got 
when freezing only the bottom two hidden layers, indicating the importance of having sufficient layers trainable 
for model refinement in transfer learning.

For the transfer learning tasks, we use the CTRP and GDSC datasets separately as two source datasets rather 
than combine them to form one source dataset. The reason is two-fold. First, datasets generated in different drug 
screening studies are usually  heterogenous39, which makes it challenging to combine them without introducing 
additional bias. Differences in experimental protocols, assays, or biological models and drugs used in the stud-
ies generate variations between these datasets. Specifically, CTRP used the CellTiterGlo assay to measure cell 
viability, while GDSC used the Resazurin and Syto60 assays. Second, using CTRP and GDSC datasets separately 
gives us four transfer learning tasks rather than two, providing us more opportunities to test and evaluate the 
proposed ETL framework.

Although our current work successfully demonstrates the benefit of applying ETL for building general drug 
response prediction models, there are three potential limitations indicating important research directions in 
future work. First, our study focuses on predicting the efficacy of single-drug treatments, while it is also an 
important task to predict the efficacy of drug  combinations11,21–23. Although methods have been proposed for 
predicting the efficacy of drug  combinations11, 21–23, transfer learning has not been explored for improving the 
prediction performance in this task. We plan to investigate transfer learning for building prediction models 
of drug combinations. Prediction patterns learned on a single-drug screening dataset or a drug combination 
screening dataset can be transferred to another drug combination screening study for building prediction models. 
Second, while our current study implements the proposed ETL framework with three prediction models/algo-
rithms, it has the potential to be implemented with many other prediction algorithms. Successful applications 
of ETL require updating the prediction models based on the target domain data, which adapts the models to 
the target prediction tasks. In the future, proper model refinement procedures need to be researched for various 
kinds of prediction algorithms to apply transfer learning. Third, our current transfer learning study between 
in vitro drug screening datasets is only a pilot effort to guide future application of transfer learning to improve 
drug response prediction performance on patients or patient derived models, such as xenografts (PDXs)47 and 
organoids (PDOs)48. The ultimate goal of predicting drug response is to either recommend an existing drug or 
design a new drug for treating a cancer patient. Biological models, such as CCLs, PDXs, and PDOs, are different 
from each other and also different from the real patient tumors, leading to the variations of their drug responses. 
Transfer learning provides a promising way to utilize drug response information of one biological model to help 
predict the drug response of another biological model. For example, transfer learning utilizing the relatively 
abundant in vitro drug screening data to help predict drug response in PDXs, PDOs, and eventually in patients 
with limited data will be important in future research.
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