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Abstract
Background: Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is 
a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability 
of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, 
noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical 
paw incision.

Results: The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in 
lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated 
rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 
5-HT1/2B/2C (methysergide), 5-HT2A (ketanserin) or 5-HT1/2A/2C/5/6/7 (methiothepin) receptors antagonists, in the ipsilateral 
lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the 
lamina X by LY 278,584, ketanserin or methiothepin.

Conclusions: We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal 
neurons inputs from the contralateral paw; (2) 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of 
descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-
HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral 
paw; (4) 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; 
(5) α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

Background
Bulbospinal pathways descend to the spinal cord to either
inhibit (antinociceptive) or facilitate (pronociceptive) the
transmission of nociceptive inputs (for review see [1,2]).
The contribution of supraspinal areas in the control of
descending pronociceptive pathways was confirmed by
several studies. As examples, the lesion or neural block of
rostral ventromedial medulla (RVM) or periaqueductal gray
(PAG) reduces the hyperalgesia induced by spinal nerve lig-
ature [3,4], or intraplantar injection of formalin [5,6] or

mustard oil [7]. Furthermore, low intensity electrical stimu-
lation of, or low dose of glutamate into the RVM facilitates
the response of spinal nociceptive neurons to noxious
inputs, whereas high intensity electrical stimulation or high
dose of glutamate produces the opposite effect [8].

Descending pronociceptive pathways may be implicated
in states of persistent pain [9,10] and elucidation of their
spinal mediation may be useful for discovery of new anti-
hyperalgesic drugs. Spinal serotonin produces antinocicep-
tion but may be pronociceptive as well (for review see
[11]). Also, spinal activation of α2-adrenergic receptors is
antinociceptive whereas activation of α1-adrenergic recep-
tors is pronociceptive [12,13]. A spinal muscarinic cholin-
ergic mechanism activated by descending noradrenergic
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inputs has also been proposed and it seems to be linked only
with antinociception (for review see [14]).

Surgical incision of a rat paw causes primary and second-
ary punctate hyperalgesia [15] and increases the number of
c-Fos positive neurons in the spinal cord [16], an immuno-
histochemical method that allows the identification of neu-
rons activated by peripheral noxious stimulation [17].
Although being a poorly understood problem, very little
effort has been dedicated toward research on the spinal
mediation of descending mechanisms of post-incision pain,
a model that may allow us to understand mechanisms of
sensitization caused by surgery and investigate new thera-
pies for postoperative pain.

The present study was therefore undertaken to examine
the changes in the number of c-Fos positive neurons in the
spinal cord of rats treated intrathecally with antagonists of
serotonin, noradrenaline or acetylcholine, to evaluate
whether they contribute in the spinal mediation of descend-
ing pronociceptive pathways activated by a surgical inci-
sion. The laminae I/II, V and X were systematically
examined, since they are predominantly implicated in the
reception, processing and rostral transmission of nocicep-
tive information [11].

Results
Effects of intrathecal muscarinic cholinergic, α-adrenergic 
and serotonergic receptor antagonists on the number of 
Fos-immunoreactive neurons in the laminae I/II, and V of 
the rat spinal cord
The number of Fos-LI neurons was very low bilaterally in
laminae I/II (Figure 1) and V (Figure 2) of non-incised and
non-catheterized anesthetized rats (group A), and was
slightly and non-significantly increased in non-incised
anesthetized rats treated intrathecally with saline (group
AS). The number of positive neurons was greater bilaterally
in laminae I/II and V of incised rats treated intrathecally
with saline (group ASI), the effect being significant at the
ipsilateral laminae I/II and bilateral lamina V.

The incision-induced increase in the number of Fos-LI
neurons in the ipsilateral laminae I/II of rats from the group
ASI was significantly less intense following methysergide
(30 μg/5 μl), and was not changed significantly by atropine
(30 μg/5 μl) or phenoxybenzamine (20 μg/5 μl) (ANOVA:
F5,26 = 24.64; P < 0.0001) (Figure 1a). Similar results were
found in the contralateral laminae I/II, but the differences
were not significant (ANOVA: F5,26 = 1.74; P > 0.05) (Fig-
ure 1b).

The incision-induced increase in the number of Fos-LI
neurons in the ipsilateral lamina V of rats from the group
ASI was less intense after methysergide (30 μg/5 μl), and
was not changed by phenoxybenzamine (20 μg/5 μl) or
atropine (30 μg/5 μl) (ANOVA: F5,26 = 9.94; P < 0.0001)
(Figure 2a). Similar, but less intense effect occurred in the

contralateral lamina V of rats treated with methysergide (30
μg/5 μl) or phenoxybenzamine (20 μg/5 μl) as compared
with rats from the group ASI, but it was significantly more
intense in the contralateral lamina V of rats treated with
atropine (30 μg/5 μl) (ANOVA: F5,26 = 9.68; P < 0.0001)
(Figure 2b).

Representative photomicrographs taken from sections of
the spinal cords of control and test rats are given in Figure
3a and 3b for superficial and deep laminae, respectively.

Effects of intrathecal muscarinic cholinergic, α-adrenergic 
and serotonergic receptor antagonists on the number of 
Fos-immunoreactive neurons in the lamina X of the rat 
spinal cord
The number of Fos-LI neurons in lamina X was very small
in rats from group A and non-significantly higher in rats
from group AS (Figure 4). The hind paw incision also
induced a significant increase in the number of positive
cells in lamina X, as compared to rats from group AS
(ANOVA: F5,24 = 7.06; P < 0.0003). The hind paw incision-
induced increase in the number of Fos-LI neurons in lamina
X was slightly reduced by methysergide (30 μg/5 μl), and
slightly increased by atropine (30 μg/5 μl) or phenoxyben-
zamine (20 μg/5 μl), but all changes occurred in a non sig-
nificant manner. Representative photomicrographs taken
from sections of the spinal cords of control and test rats are
given in Figure 3c.

Effects of intrathecal antagonists of 5-HT receptor subtypes 
on the number of Fos-immunoreactive neurons in the 
laminae I, II, and V of the rat spinal cord
The number of Fos-LI neurons was very low in laminae I/II
(Figure 5) and V (Figure 6) of rats from group A, and was
slightly but non-significantly increased in rats from group
AS. The number of positive neurons was higher bilaterally
in laminae I/II and V of incised rats treated with saline
(group ASI), the effect being significant at the ipsilateral
laminae I/II and bilateral lamina V.

The incision-induced increase in the number of Fos-LI
neurons in the ipsilateral laminae I/II was significantly
reduced by methiothepin (1,5 μg/5 μl) or ketanserin (30 μg/
5 μl), but was not changed by LY 278,584 (100 μg/5 μl)
(ANOVA: F5,30 = 24.77; P < 0.0001) (Figure 5a). However,
no significant difference was demonstrated in the contralat-
eral laminae I and II among the experimental groups
(ANOVA: F5,30 = 2.02; P > 0.05) (Figure 5b).

The incision-induced increase in the number of Fos-LI
neurons in the ipsilateral lamina V was also reduced by
methiothepin (1,5 μg/5 μl), ketanserin (30 μg/5 μl) or LY
278,584 (100 μg/5 μl), but only the effect of methiothepin
was significant (ANOVA: F5,26 = 9.94; P < 0.0001) (Figure
6a). In contrast, ketanserin, LY 278,584 and mainly methio-
thepin all reduced significantly the incision-induced
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Figure 1 Effects of intrathecal atropine, phenoxybenzamine or methysergide in the incision-induced Fos-like immunoreactivity in lamina 
I/II. The experiments utilized 4-8 non-incised and non-catheterized anesthetized rats (A), non-incised and catheterized rats treated intrathecally with 
5 μl of saline (AS), incised and catheterized rats treated intrathecally with 5 μl of saline (ASI), 30 μg/5 μl of atropine (ATR), 20 μg/5 μl of phenoxyben-
zamine (PBZ), or 30 μg/5 μl methysergide (MET). Surgical incision of the right hind paw was performed 3 h after PBZ or 15 min after the remaining 
antagonists. The number of Fos-like immunoreactive (Fos-LI) cells/0.2 mm2 are shown for lamina I/II of ipsilateral (a) or contralateral (b) spinal dorsal 
horn. Bars are mean ± S.E.M. of the number of Fos-LI cells/0.2 mm2 found in three sections taken from each rat. P < 0.05 compared to ASI (*) or AS (#).

Figure 2 Effects of intrathecal atropine, phenoxybenzamine or methysergide in the incision-induced Fos-like immunoreactivity in lamina 
V. The experiments utilized 4-8 non-incised and non-catheterized anesthetized rats (A), non-incised and catheterized rats treated intrathecally with 5 
μl of saline (AS), incised and catheterized rats treated intrathecally with 5 μl of saline (ASI), 30 μg/5 μl of atropine (ATR), 20 μg/5 μl of phenoxyben-
zamine (PBZ), or 30 μg/5 μl methysergide (MET). Surgical incision of the right hind paw was performed 3 h after PBZ or 15 min after the remaining 
antagonists. The number of Fos-like immunoreactive (Fos-LI) cells/0.2 mm2 are shown for lamina V of ipsilateral (a) or contralateral (b) spinal dorsal 
horn. Bars are mean ± S.E.M. of the number of Fos-LI cells/0.2 mm2 found in three sections taken from each rat. P < 0.05 compared to A (+), ASI (*) or 
AS (#).
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Figure 3 Photomicrographs showing Fos-like immunoreactivity in rat spinal cord. Photomicrographs were taken from 40- μm thick sections 
and illustrate the expression of Fos-like immunoreactivity in laminae I-II (a), V (b), and X (c) of the spinal cord gray matter (L2/L3 level), 2 h after the 
plantar incision of the right hind paw. of non-catheterized anesthetized rats (A), non-incised and catheterized rats treated. intrathecally with saline 
(AS), and incised and catheterized rats treated intrathecally with saline (ASI), atropine (ATR = 30 μg/5 μl), phenoxybenzamine (PBZ = 20 μg/5. μl), meth-
ysergide (MET = 30 μg/5 μl), LY 278,584 (LY = 100 μg/5 μl), ketanserin. (KET = 30 μg/5 μl), or methiothepin (MEP = 1.5 μg/5 μl).
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increase in the number of positive cells in the contralateral
lamina V (ANOVA: F5,30 = 7.27; P = 0.0001) (Figure 6b).

Representative photomicrographs taken from sections of
the spinal cords of control and test rats are given in Figure
3a and 3b for superficial and deep laminae, respectively.

Effects of intrathecal antagonists of 5-HT receptor subtypes 
on the number of Fos-immunoreactive neurons in the 
lamina X of the rat spinal cord
The number of Fos-LI neurons in lamina X was very small
in rats from group A and was non-significantly superior in
rats from group AS (Figure 7). The hind paw incision also
induced a significant increase in the number of positive
cells in lamina X, as compared to rats from group AS, the
effect being significantly reduced by LY 278,584 (100 μg/5
μl), ketanserin (30 μg/5 μl) or methiothepin (1,5 μg/5 μl)
(ANOVA: F5,28 = 9.26; P < 0.0001). Representative photo-
micrographs taken from sections of the spinal cords of con-
trol and test rats are given in Figure 3c.

Discussion
Fos protein is a product of the proto-oncogene c-Fos, which
is expressed in the neuronal nuclei few hours after an
appropriate stimulus [18]. The increase in the expression of
Fos-LI neurons in spinal cord has been used as a marker of
the neuronal activity induced by noxious stimuli in various
pain models [17]; for review see [19,20]. Although being a
poorly understood problem, very little effort has been dedi-

Figure 4 Effects of intrathecal atropine, phenoxybenzamine or 
methysergide in the incision-induced Fos-like immunoreactivity 
in lamina X. The experiments utilized 4-8 non-incised and non-cathe-
terized anesthetized rats (A), non-incised and catheterized rats treated 
intrathecally with 5 μl of saline (AS), incised and catheterized rats treat-
ed intrathecally with 5 μl of saline (ASI), 30 μg/5 μl of atropine (ATR), 20 
μg/5 μl of phenoxybenzamine (PBZ), or 30 μg/5 μl methysergide (MET). 
Surgical incision of the right hind paw was performed 3 h after PBZ or 
15 min after the remaining antagonists. The number of Fos-like immu-
noreactive (Fos-LI) cells/0.2 mm2 are shown for lamina X. Bars are mean 
± S.E.M. of the number of Fos-LI cells/0.2 mm2 found in three sections 
taken from each rat. P < 0.05 compared to AS (#).

Figure 5 Effects of intrathecal LY278,584, ketanserin or methiothepin in the incision-induced Fos-like immunoreactivity in lamina I/II. The 
experiments utilized 4-8 non-incised and non-catheterized anesthetized rats (A), non-incised and catheterized rats treated intrathecally with 5 μl of 
saline (AS), incised and catheterized rats treated intrathecally with 5 μl of saline (ASI), 100 μg/5 μl of LY 278,584 (LY), 30 μg/5 μl of ketanserin (KET) or 
1,5 μg/5 μl of methiothepin (MEP). Surgical incision of the right hind paw was performed 15 min after each antagonist. The number of Fos-like immu-
noreactive (Fos-LI) cells/0.2 mm2 are shown for lamina I/II of ipsilateral (a) or contralateral (b) spinal dorsal horn. Bars are mean ± S.E.M. of the number 
of Fos-LI cells/0.2 mm2 found in three sections taken from each rat. P < 0.05 compared to ASI (*) or AS (#).
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cated toward research on the spinal mediation of descend-
ing mechanisms of post-incision pain, a model that may
allow us to understand mechanisms of sensitization caused
by surgery and investigate new therapies for postoperative
pain.

The present study confirmed that a surgical incision in a
rat hind paw increased significantly the number of Fos-LI
neurons in the spinal dorsal horn laminae I/II ipsilateral,
and lamina V bilateral to the incised paw as shown else-
where [16,21,22].

Also, a significant increase in the number of Fos-LI neu-
rons were also found in the lamina X of the spinal gray mat-
ter following the incision, as described elsewhere
subsequent to peripheral or visceral nociceptive inputs [23].

Incision of a hind paw increases both the response of spi-
nal wide dynamic range cells to mechanical stimulation
[15] and the spontaneous activity of nociceptive primary
afferents [24]. The model of incision pain differs from
inflammatory pain models [25,26], but the tissue reactions
to incision are likely to involve some inflammatory
responses to local injury [27].

Evidence that descending influences can affect spinal
phenomena induced by a paw incision includes the demon-
stration that incision pain is further increased in rats with
lesion of dorsolateral funiculus [28], that conveys descend-
ing pain inhibitory pathways [11], or electrolytic lesion of
the anterior pretectal nucleus [29], that participates in the
activation of descending mechanisms of pain control [30];

Figure 6 Effects of intrathecal LY278,584, ketanserin or methiothepin in the incision-induced Fos-like immunoreactivity in lamina V. The 
experiments utilized 4-8 non-incised and non-catheterized anesthetized rats (A), non-incised and catheterized rats treated intrathecally with 5 μl of 
saline (AS), incised and catheterized rats treated intrathecally with 5 μl of saline (ASI), 100 μg/5 μl of LY 278,584 (LY), 30 μg/5 μl of ketanserin (KET) or 
1,5 μg/5 μl of methiothepin (MEP). Surgical incision of the right hind paw was performed 15 min after each antagonist. The number of Fos-like immu-
noreactive (Fos-LI) cells/0.2 mm2 is shown for lamina V of ipsilateral (a) or contralateral (b) spinal dorsal horn. Bars are mean ± S.E.M. of the number of 
Fos-LI cells/0.2 mm2 found in three sections taken from each rat. P < 0.05 compared to ASI (*) or AS (#).

Figure 7 Effects of intrathecal LY278,584, ketanserin or methio-
thepin in the incision-induced Fos-like immunoreactivity in lami-
na X. The experiments utilized 4-8 non-incised and non-catheterized 
anesthetized rats (A), non-incised and catheterized rats treated intrath-
ecally with 5 μl of saline (AS), incised and catheterized rats treated in-
trathecally with 5 μl of saline (ASI), 100 μg/5 μl of LY 278,584 (LY), 30 μg/
5 μl of ketanserin (KET) or 1,5 μg/5 μl of methiothepin (MEP). The num-
ber of Fos-like immunoreactive (Fos-LI) cells/0.2 mm2 are shown for 
lamina X. Surgical incision of the right hind paw was performed 15 min 
after each antagonist. Bars are mean ± S.E.M. of the number of Fos-LI 
cells/0.2 mm2 found in three sections taken from each rat. P < 0.05 
compared to ASI (*) or AS (#).
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in the ipsilateral spinal cord, the incision-induced increase
in the number of Fos-LI neurons was significantly reduced
in the superficial lamina and significantly increased in the
deep lamina of animals previously treated with bupivacaine
in the contralateral anterior pretectal nucleus [16]; finally,
descending pathways are known as the only sources of
serotonin in the spinal cord [2,11,31].

Acetylcholine, noradrenaline and serotonin modulate
noxious inputs processing in the spinal cord (for review see
[11]. Atropine, a non selective muscarinic receptor antago-
nist was used here at 30 μg/rat, 3 fold superior to the dose
known to be effective against the neostigmine-induced anti-
nociception in rats [32].

Phenoxybenzamine, a non selective α-adrenergic receptor
antagonist was used here at 20 μg/rat, 2.5 fold superior to
the dose early shown to be effective against glutamate-
induced analgesia from the RVM of rats [33]. Nonetheless,
neither the atropine nor the phenoxybenzamine changed the
incision-induced increase in the number of Fos-LI neurons
in the laminae I/II, bilaterally, ipsilateral lamina V, or in
lamina X. Consequently, muscarinic and α-adrenergic
receptors are unlikely to participate in mechanisms that
facilitate the response of spinal neurons to noxious inputs
evoked by the incision. On the contrary, the increase in the
number of Fos-LI neurons in the lamina V contralateral to
the incised paw was significantly greater in atropine- than
in saline-treated rats. In agreement to earlier studies [34-
36], we interpret the result as indirect evidence that a mus-
carinic cholinergic mechanism responds to a surgical inci-
sion reducing the response of spinal neurons to noxious
inputs from the contralateral paw. A possibility remains that
the depression of c-Fos labeling is due to toxic effects of the
antagonists used in the study. However, as far as we know,
there is no report showing that at the doses used in the
study, the intrathecal antagonists induces toxic effects
against spinal dorsal horn cells in rats.

Among the seven classes of serotonin receptors (5-HT1-7)
currently known (for review see [37]), at least three (5-HT1/

2/3/) were found in the spinal cord [38,39] and are impli-
cated in spinal pain processing [40-43]. The antinociceptive
effect of 5-HT may also occur via interaction with spinal 5-
HT4 receptors [44,45], but experiments involving pharma-
cological blockade of these receptors were not conducted in
this study.

The increase in the number of Fos-LI neurons in the lam-
ina I/II ipsilateral to the incised paw was significantly
inhibited by antagonists for 5-HT1/2B/2C (methysergide), 5-
HT2A (ketanserin) or 5-HT1/2A/2C/5/6/7 (methiothepin) recep-
tors, but was not changed by a 5-HT3 antagonist (LY
278,584). The same effect was also significantly inhibited
in the lamina V ipsilateral to the incised paw by methyser-
gide or methiothepin, but remained unchanged following
ketanserin or LY 278,584. Therefore, 5-HT1/2A/2C receptors

in laminae I/II and 5-HT1/2Creceptors in lamina V, but not 5-
HT3 receptors in either laminae I/II or V, are involved in the
activity of a descending pathway that facilitates the
response of spinal neurons to noxious inputs induced by a
surgical incision in the ipsilateral paw.

The significant increase in the number of Fos-LI neurons
in the contralateral lamina V was inhibited by all the sero-
tonergic antagonists used in the study. Thus, 5-HT1/2A/2C/3
receptors contribute to the effect of serotonin in the activity
of a descending pathway that facilitates the response of spi-
nal neurons to noxious inputs induced by a surgical incision
in the contralateral paw. Finally, the increase in the number
of Fos-LI neurons in lamina X was significantly inhibited
by LY 278,584, ketanserin or methiothepin, but not by
methysergide. We then conclude that 5-HT2A/3 receptors
contribute to the effects of serotonin in a descending prono-
ciceptive pathway conveyed by lamina X spinal neurons.

Altogether, these results support the involvement of sero-
tonin in descending mechanisms that facilitate the response
of spinal neurons to nociceptive inputs in the spinal cord.
Serotonergic nerve terminals found in the spinal cord origi-
nate from supraspinal sources [2,11,31] and, therefore,
descending pathways utilizing serotonin somehow excite
nociceptive cells in the spinal cord while a postoperative
pain is in course. Bulbospinal influences from the RVM
contribute to facilitation of noxious inputs and development
of secondary hyperalgesia in persistent inflammatory, neu-
ropathic, and visceral pain models[46]. Primary and sec-
ondary hyperalgesia observed after a surgical incision do
not appear to be modulated by descending influences from
the RVM, thus supporting the view that incision pain
involves different mechanisms compared with inflamma-
tory and neuropathic pain[47]. However, in this study
Pogatzki et al., utilized rats 5 days after RVM lesion and,
therefore, it is possible that a structure located more ros-
trally assumes the control of the primary and secondary
hyperalgesia observed after a surgical incision. In fact, sev-
eral other studies have shown the involvement of descend-
ing pain pathways in this model [29,30,48-51].

The spinal actions of serotonin has long been associated
to suppression of the responses to nociceptive inputs [52-
54], but evidence has accumulated questioning whether
descending serotonergic pathways play an exclusive spinal
suppressive effect against nociceptive inputs [53,55]. The
activation of spinal serotonin receptors has been associated
with both pronociceptive and antinociceptive effects
depending on algesimetric test, drug dosage, duration of the
treatment and pathophysiological condition [56-58].

The spinal dorsal horn contains high concentrations of 5-
HT1A, and 5-HT1B receptors [39,59], but the occurrence of
5-HT1D receptors is possible [60,61]. The activation of spi-
nal 5-HT1A may result analgesia [62,63] (see also [64]), or
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hyperalgesia [65,66], while the activation of spinal 5-HT1B
receptors produces antinociception [67,68].

The presence of spinal 5-HT2A [69,70], and 5-HT2C recep-
tors [71,72] has already been demonstrated. Stimulation of
spinal 5-HT2A receptors is pronociceptive [53,73], but the
presence of 5-HT2A receptors on spinal inhibitory interneu-
rons supports an antinociceptive role for 5-HT [74,75]. The
activation of spinal 5-HT2C receptors excites neurons
[55,76,77], and its distribution in the spinal cord is compat-
ible with a pronociceptive role of 5-HT in the dorsal horn
[12,78]. Conversely, 5-HT2C sites on spinal inhibitory
interneurons allow a potential antinociceptive role for sero-
tonin [79].

Studies have demonstrated that 5-HT3 receptors are con-
centrated in superficial layers of the dorsal horn [59,80] and
a significant proportion is located on the terminals of C
fibres [12,81]. The activation of the 5-HT3 receptors depo-
larizes neurons in dorsal root ganglions and, therefore, is
expected to increase the transmitter release from the pri-
mary afferent terminals into the spinal cord (see [64]). In
line with the present results, the activation of spinal 5-HT3
receptors increases nociception [62,82,83], and blockade of
spinal 5-HT3 receptor reduces the hypersensitivity of spinal
dorsal horn neurons of nerve-ligated rats [84]. A pronocice-
ptive role for 5-HT3 receptors in the spinal cord following
activation of descending pronociceptive pathways has
already been proposed [84,85].

It is also noteworthy, that a direct facilitation by serotonin
of glutamatergic synapses has been demonstrated in the spi-
nal cord [86,87] and, therefore, this mechanism may
account for some of the excitatory effects of serotonin
found here.

There is evidence that a peripheral damage simultane-
ously triggers both descending inhibition and facilitation
onto both primary and secondary spinal hyperalgesic mech-
anisms, but the balance for primary hyperalgesia is different
from the balance for secondary hyperalgesia (for review see
[48]).

Behavioral nociceptive responses of our animals were not
evaluated during this study but it may be assumed that the
increased number of Fos-LI neurons in the dorsal horn ipsi-
lateral to the incised paw essentially reflects primary hyper-
algesia. By extension, a secondary hyperalgesia evoked by
central sensitization may be assumed to occur when the
effect was observed in the contralateral dorsal horn (see
[88]). Therefore, our results show that incision-induced pri-
mary and secondary hyperalgesias seem to be spinally
mediated by 5-HT1/2A/2C and 5-HT1/2A/2C/3 receptors, respec-
tively.

Few studies have accessed which neurotransmitters are
involved in the spinal processing of hyperalgesia in the
mode of post-incision pain. They have shown that nora-

drenergic receptors are involved in the spinal mediation of
descending inhibitory pathways in the primary hyperalgesia
of postoperative pain [29,49,51]. Few reports are also avail-
able regarding secondary hyperalgesia after post-incision
pain [47,89-94] but, as far we know, none of them have
studied spinal neurotransmitters involved in descending
mechanisms.

Conclusions
In conclusion (Table 1), 5-HT1/2A/2C receptors in laminae I/
II and 5-HT1/2C receptors in lamina V contribute to the
effects of serotonin in descending pathway that facilitates
the response of spinal neurons to noxious inputs from the
ipsilateral paw (primary hyperalgesia?); 5-HT1/2A/2C/3
receptors mediate the effects of a descending pathway that
facilitates the response of spinal neurons to noxious inputs
from the contralateral paw (secondary hyperalgesia?); and
5-HT2A/3 receptors contribute to the effects of serotonin in a
descending pronociceptive pathway conveyed to lamina X
spinal neurons. Finally, the study confirms that spinal mus-
carinic cholinergic mechanism responds to a surgical inci-
sion reducing the response of spinal neurons to noxious
inputs from the contralateral paw.

Methods
Subjects
Male Wistar rats (200-250 g) were used in this study. Ani-
mals were housed two to a cage under controlled tempera-
ture (22 ± 1°C) and on a 12-h light-dark cycle, with the dark
cycle beginning at 07:00 h, and had free access to food and
water. The experiments were approved by the Commission
of Ethics in Animal Research, Faculty of Medicine of
Ribeirão Preto, University of São Paulo (Number 009/
2004). The guidelines of the Committee for Research and
Ethical Issues of IASP [95] were followed throughout the
experiments.

Surgery
Each rat was anesthetized with halothane via a loose-fitting,
cone-shaped mask, and catheterization of the spinal suba-
rachnoid space was performed as described elsewhere [96].
Briefly, a 20-gauge Weiss needle was introduced through
the skin into the L5-L6 intervertebral space. The correct
positioning of the needle was assured by a typical flick of
the tail or hind paw. A 12-mm length of polyethylene tub-
ing (PE tubing, o.d. = 0.4 mm, dead space = 10 μl) was then
introduced through the needle to protrude 2.0 cm into the
subarachnoid space in a cranial direction. The needle was
then carefully removed and the tubing anchored to the back
skin with a cotton thread suture. Drug or saline was injected
intrathecally soon after the catheterization in a volume of 5
μl over a period of 60 s, followed by 5 μl of sterile saline at
the same rate to flush the catheter. The plantar side of the
right hind paw was prepared with a 10% povidone-iodine
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solution 15-min later. A 1-cm longitudinal incision was
made with a surgical blade, through the skin and fascia of
the plantar region, starting 0.5 cm from the proximal edge
of the heel, as described elsewhere [97]. The plantaris mus-
cle was elevated, but its origin and insertion were left intact.
After hemostasia, the skin was apposed with one single
suture of 5-0 nylon, and the animal was allowed to recover
in the home cage for a period of 2 h. The positioning of the
intrathecal catheter was verified when the spinal cord was
removed for Fos immunohistochemistry.

Fos immunohistochemistry
The animals were sacrificed with an intraperitoneal over-
dose of sodium thiopental performed 2 h after the plantar
incision, and perfused transcardially with saline followed
by 4% paraformaldehyde in 0.1 M PBS, pH 7.4. The spinal
cord was removed, fixed for 2 h in paraformaldehyde and
stored for at least 48 h in 30% sucrose. The side ipsilateral
to the incised paw was marked with a little knife cut. The
samples were then frozen in Tissue Teck (Sakura®). Fos
immunohistochemistry was processed, as described else-
where [98], on 40 μm transverse sections obtained with a
cryostat (Leica CM 1850) from L2-L3 spinal cord seg-
ments. The tissue sections were successively washed and
incubated for 1 h in goat anti-rabbit biotinylated antibody
(1:400 in PBS; Vector Laboratories, Burlingame, CA).
They were then processed by the avidin-biotin immunoper-
oxidase method (Vectastain ABC kit, Vector Lab, Burl-
ingame, CA, U.S.A.), and then Fos-like immunoreactivity
(FLI) was revealed by the addition of chromogen diamin-
obenzidin (Sigma).

All reactions were performed at room temperature. Fos-
like immunoreactivity was quantified using an image analy-

sis system (Leica, Quantimet 500, Leica Microsystems Inc.
Cambridge, UK) that identified and counted immunos-
tained neurons according to a gray level that was empiri-
cally determined prior to analysis. The number of Fos-like
immunoreactive (Fos-LI) neurons/section was calculated as
the mean of the three sections examined for each rat. For
analysis of the laminar distribution of Fos-LI neurons, the
spinal cord gray matter was divided into three regions (lam-
inae I-II, V, and X). Assessment of Fos-like immunoreactiv-
ity was conducted in a blind manner.

The number of Fos-LI neurons per region on both the
ipsilateral and contralateral slides was counted in fixed area
sizes (0.2 mm2 for spinal cord laminae I/II, V or X), using a
software 9.0 image analysis system (W. Rasband, National
Institute of Health). Only rats showing catheter tip posi-
tioned at the dorsal spinal cord were considered for data
analysis.

Drugs
Atropine sulfate, a non selective muscarinic cholinergic
antagonist, phenoxybenzamine hydrochloride, a non selec-
tive α-receptor antagonist, methysergide, a 5-HT1/2B/2C
antagonist [99], ketanserin, a 5-HT2A antagonist [100],
methiothepin, a 5-HT1/2A/2C/5/6/7 antagonist [101], and LY
278,584, a 5-HT3 antagonist [102,103], were purchased
from Sigma (St Louis, MO, USA) and diluted in sterile iso-
tonic saline at the moment of the injection.

Experimental design
All animals were anesthetized and allocated to one of four
experimental groups. A group for the overall control of the
experiment had non-incised and non-catheterized anesthe-

Table 1: Effects of antagonists in the incision-induced increase of Fos-like immunoreactivity in the rat spinal cord

Antagonists LI/LII LV LX

ipsi contra ipsi contra

Atropine (muscarinic) - - - 9* -

Phenoxybenzamine (α-
adrenergic)

- - - - -

Methysergide (5-HT1/2B/2C) |* - |# |# |#

LY 278,584 (5-HT3) - - - |* |*

Ketanserin (5-HT2A) |* - - |* |*

Methiothepin (5-HT1/2A/2C/5/6/7) |* - |* |* |*

Antagonists were injected intrathecally. Abbreviations: ipsi = ipsilateral and contra = contralateral to the incised hind paw; | = decrease and 
9 = increase of the effect produced by the incision on the Fos-like immunoreactivity. (*) Significantly different from intrathecal saline-treated 
incised rats. (#) Abolished the significance of the incision-induced increase of Fos-like immunoreactivity but did not differ significantly from 
intrathecal saline-treated incised rats.
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tized rats (group A), which were sacrificed 2 h after the
beginning of anesthesia. A group for control of the effects
of intrathecal catheterization had non-incised rats treated
intrathecally with saline (5 μl) and were sacrificed 2 h later
(group AS). A group for control of the effects of the hind
paw incision had rats treated intrathecally with saline and
submitted to the surgical incision of the right hind paw per-
formed 15-min later (group ASI). Test groups had rats sub-
mitted to paw incision carried out 3 h after intrathecal
phenoxybenzamine or 15-min after methysergide, atropine,
LY 278,584, ketanserin or methiothepin. Animals from
group ASI and test groups were sacrificed 2 h after the inci-
sion.

Statistics
The mean (± SEM) of the number Fos-LI cells/0.2 mm2 of 3
sections from the spinal cord of 4 - 8 animals per group was
taken to allow comparisons among the different treatments.
Comparisons of groups were made using one-way ANOVA
followed by the Tukey's Multiple Comparison test. The
level of significance was set at P < 0.05 in all cases.
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