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Abstract
Aim: With the late Cenozoic uplift of the Qinghai–Tibetan Plateau (QTP), drainage of 
the southeastern edge of the QTP changed significantly. However, the impact of this 
dramatic change on the geographical distribution and genetic diversity of endemic 
organisms is still poorly understood. Here, we examined the geographical patterns 
of genetic variation in the Yunnan small narrow-mouthed frog, Glyphoglossus yun-
nanensis (Microhylidae), and two alternative hypotheses were tested: That is, the 
geographical distribution of genetic variation was determined by either the contem-
porary drainage basin or historical drainage basins.
Location: The Mountains of southwest China.
Materials and methods: Analyses were based on 417 specimens collected from 
across the distribution of the species. We reconstructed the genealogy (Bayesian and 
maximum parsimony methods) and assessed demographic history based on DNA se-
quencing data from mitochondrial and nuclear markers. We also mapped the genetic 
diversity and estimated the divergence times by a relaxed clock model.
Results: The species has maintained a relatively stable population size without recent 
population expansion. Four major maternal lineages were identified with good sup-
port, one representing a possible cryptic species and the other three showing further 
subdivision. The distribution of these deeply differentiated lineages/sublineages cor-
responded well to geographical regions. The secondary contact zones and phylogeo-
graphic breaks in distinct lineages of G. yunnanensis were almost concordant with 
those of Nanorana yunnanensis.
Main conclusions: Lineage division conformed to the hypothesis of drainage sys-
tem evolution, that is, the phylogeographic pattern of G. yunnanensis was shaped by 
historical drainage patterns. Concordance in phylogeographic patterns may suggest 
a shared response to common hydrogeological history and also might indicate that 
there was more contribution of the drainage history than ecological or life-history 

www.ecolevol.org
https://orcid.org/0000-0001-5105-9860
https://orcid.org/0000-0002-0220-6550
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:xiaoheng@ynu.edu.cn
mailto:raodq@mail.kiz.ac.cn


1568  |     ZHANG et Al.

1  | INTRODUC TION

The southeastern edge of the Qinghai–Tibetan Plateau (QTP) is an oro-
genetically young region that encompasses two geologically dynamic 
and biodiverse areas, namely the Hengduan Mountain and Indo-Burma 
hot spots (Myers, 2003; Myers, Mittermeier, Mittermeier, da Fonseca, 
& Kent, 2000; Tang, Wang, Zheng, & Fang, 2006). These mountainous 
regions of southwest China and the rearrangement of their major river 
drainage systems are considered evolutionarily important (Stewart, 
Lister, Barnes, & Dalen, 2010). The Yunnan–Guizhou Plateau (YGP) 
formed a planation surface (or peneplain) with smooth relief during 
the middle–late Pliocene (Cheng, Liu, Gao, Tang, & Yue, 2001; He & 
He, 1993; He, He, & Zhu, 1985). With the strong uplift of the QTP, 
the Yunnan planation surface began to collapse from the late Pliocene 
to early Pleistocene (He et al., 1985). Along with the obvious change 
in topography, the previous lake-centered drainage network was bro-
ken. In the late early Pleistocene, the most significant drainage system 
changes occurred on the Central Yunnan Plateau (CYP) and in north-
west Yunnan (Cheng et al., 2001; Clark et al., 2004).

Increasing evidence has shown that the rearrangement of drain-
age systems has played a key role in shaping current geographical 
patterns of genetic and species diversity of aquatic organisms in 
many parts of the world (Adamson, Hurwood, & Mather, 2012; 
Burridge, Craw, & Waters, 2006; de Bruyn et al., 2013; Hurwood & 
Hughes, 1998; Kozak, Blaine, & Larson, 2006; Thomaz, Malabarba, 
Bonatto, & Knowles, 2015). The historical drainage systems in 
the southwest mountains of China are markedly different from 
present systems (Brookfield, 1998; Clark et al., 2004). Prior to the 
most recent uplift of the QTP, the initial drainage system along 
the plateau margin primarily consisted of tributaries of a single, 
southward flowing paleo-Red River. With uplift of the QTP, disrup-
tion of the paleo-drainage system occurred by river capture and 
reversal. The Jinsha, Yalong, and Dadu rivers connected to form 
the modern Jinsha River, which redirects drainage away from the 
southward Red River eastward into the East China Sea, and the 
Upper Mekong and Upper Salween rivers drained into their mod-
ern drainage positions. The impact of paleo-drainage rearrange-
ment on species diversification and geographical distribution has 
been evaluated via molecular phylogenetic studies among fresh-
water fish (Guo, He, & Zhang, 2005; He & Chen, 2006; Peng, Ho, 
Zhang, & He, 2006; Rüber, Britz, Kullander, & Zardoya, 2004) and 
a few riparian plant species and amphibians (Wang, Mao, Zhao, & 
Wang, 2013; Yan et al., 2013; Zhang, Chen, et al., 2010; Zhang, 
Comes, & Sun, 2011).

The potential for diversification triggered by environmental 
changes or climatic oscillations likely varies among taxa. Organisms 
with different ecological preferences may have differing responses 
to the same event, as well as contrasting evolutionary histories. 
Previous research on freshwater fish has provided evidence that 
changes in ancient drainage systems contributed to allopatric spe-
ciation and population range expansion (Guo et al., 2005; He & Chen, 
2006; Peng et al., 2006; Rüber et al., 2004). Furthermore, phylo-
geographic studies on riparian plant species endemic to the hot–dry 
river valleys of the eastern Sino-Himalayan region have indicated 
that current genetic structures were historically sculpted by pa-
leo-drainage patterns (Yue, Chen, Sun, & Sun, 2012; Zhang et al., 
2011; Zhang & Sun, 2011). In contrast, however, recent research on 
pine species endemic to the major river valleys of southwest China 
has indicated that spatial genetic structure is a reflection of current 
geography and environmental factors rather than hydrogeological 
history (Wang, Mao, Zhao, & Wang, 2013).

The two patterns mentioned above have also been observed in 
amphibians from southwest China. For example, the current pop-
ulation structure of the Yunnan spiny frog, Nanorana yunnanensis, 
was primarily shaped by the historical drainage system (Zhang, 
Chen, et al., 2010). Studies on other amphibians from the same 
region have revealed that present-day genetic structures were 
shaped predominantly by Pleistocene climatic oscillations (Li, Yu, 
Rao, & Yang, 2012; Yu, Zhang, Rao, & Yang, 2013), with deep river 
valleys identified as strong geographical barriers to dispersal (Li, 
Chen, Tu, & Fu, 2009; Yuan et al., 2016; Zhang, Rao, Rao, Yang, 
Yu, & Wilkinson, 2010). Differentiation in ecological adaptations 
among taxa has also been proposed to explain variation in the 
geographical patterns of genetic diversity. For example, the ge-
netic structures of species living in lentic environments, for exam-
ple, Yunnan pond frog (Babina pleuraden) (Li et al., 2012) and Red 
Knobby Newt (Tylototriton shanjing) (Yu et al., 2013), differ from 
those inhabiting lotic environments, for example, N. yunnanensis 
(Zhang, Chen, et al., 2010). Drainage system evolution may have 
significant influence on the genetic structure of species preferring 
lotic water (Yu et al., 2013). However, Leptobrachium ailaonicum 
(Zhang, Rao, et al., 2010) occupies montane streams similar to N. 
yunnanensis (Zhang, Chen, et al., 2010), but both have highly dis-
tinct phylogeographic patterns. Thus, the responses of organisms 
to changes in drainage patterns are complex. Further research is 
needed to explore the impact of hydrogeological history of drain-
age basins on the geographical distribution and genetic structure 
of endemic taxa in southwest China.

traits in structuring genetic variation between these two disparate codistributed taxa 
G. yunnanensis and N. yunnanensis.

K E Y W O R D S

drainage history, genetic structure, Glyphoglossus yunnanensis, phylogeography, secondary 
contact, shared response, southwest China
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Glyphoglossus yunnanensis occurs in southwest China (Yunnan, 
southern Sichuan, and western Guizhou), adjacent northern Vietnam, 
and presumably in adjacent Laos (Frost, 2019). It inhabits moist and 
soft soil, and breeds in puddles of rainwater and ditches at elevations 
of 1,700–3,600 m (personal observation). Its distribution overlaps 
considerably with N. yunnanensis and B. pleuraden. Vicariance theory 
assumes that common genealogical distribution patterns and geo-
graphical position of lineage breaks across multiple organisms in the 
same geographical range may originate from shared biogeographical 
history (Rissler & Smith, 2010). Thus, G. yunnanensis is an ideal species 
for exploring the mechanisms driving the phylogeographic patterns of 
species in this region from a comparative phylogeographic perspective.

Our objective was to examine the impacts of drainage sys-
tem rearrangement on the genetic patterns of G. yunnanensis. We 
tested two alternative hypotheses: That is, geographical distri-
bution of the genetic variation of G. yunnanensis was determined 
primarily by the contemporary drainage basin or by the historical 
drainage basins. We collected samples from throughout the dis-
tribution range of G. yunnanensis. Using DNA sequence data from 
both mitochondrial and nuclear genes, we analyzed genealogical 
and population genetics of the nucleotide sequence data. If the 
geographical structure of the genetic variation was best explained 

by the contemporary drainage basin, we would expect haplotypes 
from the same drainage basins have closer phylogeographic re-
lationships and cluster together. On the other hand, phylogeo-
graphic breaks would be expected among haplotypes sampled 
from the same drainage basins if historical drainage basins were 
responsible for the phylogeographic structure.

2  | MATERIAL S AND METHODS

2.1 | Sampling

From 2013 to 2016, a total of 417 individuals were collected from 
48 localities throughout the distribution range of G. yunnanensis, 
except Vietnam (Supporting Information Table S1 in Appendix S1; 
Figure 1). Sample size ranged from 5 to 20 individuals per locality, 
depending on population density. Tissues, including toe clips and 
muscle and liver samples, were collected and preserved in 95% 
ethanol and frozen at −20°C in the laboratory. Voucher specimens 
were deposited at the Kunming Institute of Zoology, Chinese 
Academy of Sciences. Other members of the genus Glyphoglossus 
and several related species were chosen as hierarchical outgroup 

F I G U R E  1   Information on sampling localities and hydrological history. (a) Geographical distribution of sampling populations of G. 
yunnanensis. Localities are numbered as in Supporting Information Table S1 in Appendix S1. Solid triangles, circles, diamonds, and five-
pointed star correspond to major matrilines (lineages W, C, E, and LD, respectively) in Figure 2. Overlap of different symbols denotes 
sympatric occurrence of distinct clades. Grayish dotted line designates geographical distributions of four main haplotype subclades of clade 
C in Figure 2. Both (b) and (c) are adapted from T. C. Zhang et al. (2011). Paleo-drainage pattern prior to major river reversal/capture (b) and 
modern river pattern after putative capture and reversal events (c) are shown, respectively
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taxa for genealogical reconstruction (Supporting Information 
Table S2 in Appendix S1) according to studies of Das, Min, Hsu, 
Hertwig, and Haas (2014), Peloso et al. (2016), and Matsui et al. 
(2011).

2.2 | Laboratory procedures

Using the proteinase K/sodium dodecyl sulfate (SDS) method 
(Sambrook & Russell, 2001), genomic DNA was extracted from 
tissue samples. Partial segments of two mitochondrial genes, cy-
tochrome oxidase I (COI) and cytochrome b (CYTB), were amplified 
for all individuals. Mitochondrial ribosomal subunit 16S rRNA and 
nuclear gene tyrosinase (Tyr) were amplified only for a small subset 
of individuals (176 and 58 samples, respectively) belonging to dif-
ferent lineages identified by preliminary analysis. References for 
primers are given in Supporting Information Table S3 in Appendix 
S1. For the mitochondrial gene COI, due to difficulty in polymer-
ase chain reaction (PCR) amplification and sequencing for some 

samples, primer H-t COI (Stuart & Parham, 2004) was used to pair 
with primer Chmf4 in this study.

All amplifications were conducted in 25 μl volume reactions and 
were initiated at 95°C for 5 min followed by 35 cycles at 94°C for 
1 min, 46°C–55°C for 1 min, 72°C for 1 min, and a single final exten-
sion at 72°C for 10 min. Standard annealing temperatures are given 
in Supporting Information Table S3 in Appendix S1. Negative con-
trols were run for all amplifications. The PCR products were purified 
with a Gel Extraction Kit (Tsingke Co., Ltd., Beijing, China). Cycle se-
quencing reactions were performed using a BigDye Terminator Cycle 
Sequencing Kit (v2.0, Applied Biosystems, USA), and sequencing 
was conducted on an ABI PRISM 3730XL automatic DNA sequencer 
(Applied Biosystems, USA) with both forward and reverse primers.

Nuclear gene clonal sequencing was carried out for individuals 
that contained more than one ambiguous site and failed to infer alleles 
using PHASE v2.1.1 (Stephens & Scheet, 2005; Stephens, Smith, & 
Donnelly, 2001). First, the nuclear gene Tyr fragment was re-amplified 
following the above procedures. The purified PCR products were then 
cloned into a pClone007 Versatile Simple Vector Kit (Tsingke Co., Ltd., 

F I G U R E  2   Bayesian inference (BI) tree estimated using BEAST based on mitochondrial DATA I. Posterior probabilities (BEAST), BI 
postprobabilities, and maximum parsimony (MP) bootstrap values (*>95, **>99%) are shown for main clades. Vertical bars show lineage/
sublineage assignment
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Beijing, China) and transferred into TreliefTM 5α chemically competent 
cells (Tsingke Co., Ltd., Beijing, China). Plasmids carrying the PCR frag-
ment were then extracted and sequenced. For each PCR product, at 
least four clones were randomly selected, with one then sequenced.

All newly derived sequences have been deposited on GenBank 
under the accession numbers MN851304–MN852232 and 
MN860291–MN860466.

2.3 | DNA sequence alignment

DNA sequences were assembled and edited using DNASTAR 5.0 in 
Lasergene v.7.1.0, aligned using ClustalX 1.81 (Thompson, Gibson, 
Plewniak, Jeanmougin, & Higgins, 1997) with default parameters, 
and then examined and revised by eye in MEGA 7.0 (Kumar, Stecher, 
& Tamura, 2016). Protein-coding nucleotide sequences were trans-
lated to amino acids to confirm alignment. Allele sequences of in-
dividuals with heterozygous sites were inferred using PHASE 2.1.1, 
with the algorithm applied five times with different seeds and the 
assumption of the stepwise mutation mechanism for multiallelic loci 
relaxed. The input files for PHASE were generated using the web tool 
SEQPHASE (Flot, 2010). Individuals whose haplotype analysis failed 
underwent clonal sequencing. The final nuclear gene dataset was 
the combination of both haplotype estimates and clonal sequencing.

2.4 | Datasets

Three datasets were available under study. Two mtDNA datasets 
were prepared for different analyses. DATA I, for genealogical re-
construction, were the concatenation of 16S rRNA, COI, and CYTB, 
and contained 195 individuals plus seven outgroup taxa. DATA II, 
which excluded individuals representing the cryptic species based 
on genealogical analysis, were the combination of COI and CYTB of 
406 samples for genetic analysis. Identical haplotypes were gener-
ated using DnaSP 5.10 (Librado & Rozas, 2009). Nuclear gene was 
the third dataset.

2.5 | Genealogical reconstruction and divergence 
dating estimation

To estimate phylogenetic relationships among mitochondrial haplo-
types, Bayesian inference (BI) and maximum parsimony (MP) were 
implemented using DATA I. The best-fit models of sequence evo-
lution were determined using ModelTest 3.7 (Posada & Crandall, 
1998). The BI analysis was performed using MrBayes 3.2.1 (Ronquist 
& Huelsenbeck, 2003) with six million generations, and two inde-
pendent runs starting from different random trees were performed 
with four Markov chains. The chains were sampled every 100 gen-
erations. Convergence between the two runs was checked in Tracer 
1.7.1 (Rambaut, Drummond, Xie, Baele, & Suchard, 2018). The first 
25% of trees were discarded as burn-in, and the remaining sampled 

trees were used to construct majority rule consensus trees and es-
timate Bayesian posterior probabilities (BPP) of the tree nodes. The 
MP analyses were conducted in PAUP4.0b10 (Swofford, 2002) using 
a heuristic search with 1 000 random-addition sequence replicates, 
with support for nodes of the resulting MP tree assessed based on 
1 000 bootstrap replicates.

Lineage divergence times were estimated in BEAST v1.8.4 
(Drummond, Suchard, Xie, & Rambaut, 2012) implemented using 
the CIPRES Science Gateway portal (Miller et al., 2015). No fossil 
data were available to serve as internal calibration points within the 
genus Glyphoglossus or within the closely related genus Microhyla. 
Therefore, we assumed a substitution rate of 0.65%–1.00% 
(mean = 0.8%) per million years (Ma) for CYTB based on evolutionary 
rates commonly suggested for anurans (Macey et al., 1998, 2001; 
Monsen & Blouin, 2003). The mutation rate was multiplied by the 
ratio of the average distance for combined sequences versus that 
for CYTB alone, after which we deduced the substitution rate of the 
concatenated fragment (Qu et al., 2011). The net average distance 
(Da) was estimated to be 0.059 for combined gene fragments, 0.855 
times greater than that of CYTB alone. The evolutionary rate of 
0.65%–1.00% (mean = 0.80%) per Ma for CYTB was multiplied by a 
factor of 0.855 to deduce the substitution rate of all fragments com-
bined, 0.556%–0.855% (mean = 0.684%). We employed an uncor-
related log-normal relaxed molecular clock with constant-size tree 
prior. Analyses were implemented for 100 million generations using 
the GTR model of nucleotide substitution with gamma-distributed 
rate variation among sites. Effective sample size for each parameter 
and convergence were checked using Tracer v1.7.1.

The allele network of the nuclear gene Tyr was constructed. 
After generation of a neighbor-joining (NJ) tree based on uncor-
rected p-distances in MEGA 7.0, the network of haplotypes was 
visualized in Haploview (Salzburger, Ewing, & Von Haeseler, 2011).

2.6 | Molecular diversity and genetic structure

Analysis of DATA II was conducted in ARLEQUIN 3.5 (Excoffier & 
Lischer, 2010). Haplotype diversity (h) and nucleotide diversity (π) 
were estimated for overall and for each population with more than 
five samples, respectively. Geographical partitioning of genetic di-
versity was inferred via two approaches. First, the G. yunnanensis 
populations were grouped using spatial analysis of molecular varia-
tion (SAMOVA) (Dupanloup, Schneider, & Excoffier, 2002) and were 
separately analyzed based on mtDNA and nuDNA data. Second, 
the genetic structure of the populations was inferred by an analy-
sis of variance framework (analysis of molecular variance, AMOVA) 
(Excoffier, Smouse, & Quattro, 1992). There were three grouping op-
tions. First, all samples were divided into groups based on mtDNA 
lineages E, W, and C. Second, groups of populations were defined 
according to the contemporary drainage basin where the individual 
population resided: that is, eastward river basins (Jinsha and Pearl 
rivers) and southward drainage basins (Ruili, Salween, Mekong, and 
Red rivers). Third, due to the subdivisions within each lineage, all 
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sampled populations were grouped based on sublineages. Population 
genetic differentiation was evaluated by pairwise values of FST. Both 
AMOVA and FST used Kimura's two-parameter (K2P) (Kimura, 1980) 
genetic distance.

2.7 | Population demography

The demographic history of each main phylogenetic clade was in-
vestigated using Extended Bayesian Skyline Plot (EBSP) analyses 
(Drummond et al., 2012; Heled & Drummond, 2008) implemented 
in BEAST2 (Bouckaert et al., 2014), based on mtDNA DATA II 
(COI + CYTB, 1,140 bp) and nuDNA data (546 bp). The substitution 
rate (mean = 0.00738) of the mtDNA gene fragment was deduced 
as in previous BEAST analyses and used as a reference to guide rate 
estimates for the nuDNA. The analysis was set up following the 
recommendations of Heled (2015) for BEAST2. Chains were run 
for 100 million generations sampling every 10,000 steps, and three 
independent runs were conducted. Final graphs were generated fol-
lowing Heled (2010) with a burn-in cutoff of 20%.

3  | RESULTS

3.1 | Sequence characteristics

No premature stop codons were observed in the mitochondrial 
protein-coding genes, indicating that the sequences were obtained 
from functional genes rather than nuclear mitochondrial pseudo-
genes. For the ingroup, the 16S rRNA, COI, and CYTB alignments 
were 1,014, 570, and 570 bp in length, respectively. For DATA I, of 
the 2,154-bp nucleotides from 195 aligned ingroup individuals, there 
were 240 potentially phylogenetically informative sites and 119 gen-
erated haplotypes. For DATA II, 110 haplotypes were collapsed from 
406 ingroup sequences that contained 128 potentially parsimony in-
formative sites. Haplotypes were geographically restricted, 83.64% 
of them were private. No widespread haplotype was found.

For Tyr, a total of 58 individuals were sequenced. One to seven 
heterozygous sites were observed in some individuals. After allele 
estimates and clonal sequencing, the nuclear gene was 546 bp in 
length, and 71 haplotypes were generated from 101 allele sequences 
that included 23 parsimony informative sites.

3.2 | Genealogical reconstruction and divergence 
time estimation

GTR + I + G was selected as the best evolutionary substitution 
model. The BI, MP, and BEAST trees consistently revealed that 
the ingroup contained four highly supported major lineages and 
that these independent evolutionary lineages showed strong geo-
graphical structure: that is, LD, W (western), E (eastern), and C (cen-
tral) (Figures 1 and 2). Lineage LD included haplotypes only from 

populations 1–2, and 48, and was sister to the group of the other 
three lineages. Lineage W contained three sublineages (i.e., W1, 
W2, and W3) and consisted of haplotypes from western and south-
western areas of Yunnan (populations 29–41), where drainages are 
tributaries of the Mekong, Red, Salween, and Jinsha rivers. Lineage 
E was comprised of haplotypes from the eastern areas of Yunnan 
(populations 19–28), where drainages are tributaries of the Jinsha 
and Pearl rivers. Sublineage E1, which contained haplotypes from 
localities 19, 24, 25, and 28, was highly supported. Lineage C in-
cluded four well-supported sublineages, with C1 sister to the clade 
consisting of other three sublineages with strong support. C1 was 
distributed in southwestern Sichuan (populations 15, 17, and 18), 
C2 was located in central Yunnan (populations 3–6 and 16), and C3 
was composed of haplotypes from northeast Yunnan and northwest 
Guizhou and Lijiang (populations 1 and 7–14). Drainages in these re-
gions belong to tributaries of the Jinsha River and several from the 
Red River. Sublineage C4 occurred in a small area of western Yunnan 
(populations 42–47), where drainages are tributaries of the Salween, 
Mekong, and Ruili rivers.

Lineages C and E co-occurred in populations 4 and 5 (Figure 1). 
Lineages W and C were sympatric in sites 3, 42, and 45–46 (Figure 1). 
Net average genetic distances (Kimura-2 parameter model) between 
lineages were W/C, 1.4%; W/E, 1.5%; and C/E, 1.3%. Lineage LD was 
deeply separated from the other three lineages: that is, LD/E, 9.6%; 
LD/W, 9.1%; and LD/C, 9.2%.

Lineage LD diverged from the remaining ingroups about 5.98 Ma 
(95% HPD, 3.15–9.49 Ma). Lineage W diverged about 3.10 Ma (late 
Pliocene) (95% HPD, 1.84–4.62 Ma), and lineage E diverged from lin-
eage C about 2.48 Ma (95% HPD, 1.47–3.68 Ma). The most recent 
common ancestor of lineage W was 1.77 Ma (early Pleistocene) (95% 
HPD, 0.92–2.69 Ma), with lineages E1–E2 diverging about 1.16 Ma 
(early Pleistocene) (95% HPD, 0.60–1.82 Ma). In lineage C, lineage 
C1 first diverged about 1.82 Ma (early Pleistocene) (95% HPD, 1.06–
2.70 Ma), whereas lineages C2–C4 became isolated from each other 
about 1.44 Ma (95% HPD, 0.83–2.10 Ma) (Figure 3).

Compared with the maternal pattern, the network of Tyr loci 
(Figure 4) did not recover most lineages strongly supported by the 
mitochondrial gene tree, except for lineage LD. Moreover, most 
of the alleles were private, while shared alleles were mainly found 
among some populations in the border zone of different mitochon-
drial clades, for example, H7, H8, H13, and H62 were shared among 
populations in the border zone between lineages W and C4; H28 
shared by W/C2, and H2 and H24 by E/C. No alleles were shared 
between lineages W and E.

3.3 | Population genetic diversity

Overall h and π were 0.9831 ± 0.0014 and 0.023105 ± 0.011225, re-
spectively, and varied considerably among populations (Supporting 
Information Table S1 in Appendix S1). Populations 3–5, 17, 42, and 
45–46, where different lineages or sublineages co-occurred and al-
leles were shared, had remarkably higher π.
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3.4 | Population genetic structure

The SAMOVA results revealed similar significant FCT values for dif-
ferent numbers (K) of groups (from three to nine) (Table 1). For the 
mtDNA data, the FCT value reached a plateau at K = 6, but the six 
suggested groups did not completely correspond to mtDNA line-
ages (Figure 2). Localities 3–4, 6, 16–17, and 42–47, geographically 
corresponding to sublineages C2 and C4, were grouped together 
(Supporting Information Figure S1 in Appendix S1). Furthermore, 
the eastern region included two groups: that is, 5, 19, and 24–25 
grouped to form E1, and 20–23 and 26–28 grouped to form E2. With 
the increase in K value, FCT also increased, but to a lesser extent, 
and new subdivision emerged (Supporting Information Figure S1 in 
Appendix S1), which were roughly consistent with mtDNA lineages. 
Unlike mtDNA analyses, SAMOVA based on nuDNA data suggested 
no phylogeographical division (Table 1).

The AMOVA results revealed significant geographical structure 
in the mtDNA genetic variation at all hierarchical levels examined 
(p < .01; Table 1). When populations were grouped according to the 
mtDNA lineages (six strongly supported clades W, E, and C1–C4 by 

three methods) (Figure 2), AMOVA produced the maximum FCT value 
(0.7186). In contrast, grouping of contemporary drainage basins did 
not adequately explain the distribution of genetic diversity across 
the study (FCT = 0.3033).

Pairwise FST estimates ranged from 0.00 to 1.00, and analy-
sis of genetic differentiations showed strong evidence for cor-
respondence between geographical area and lineage as well as 
between geographical subdivision and sublineage. Genetic differ-
entiations between geographical zones and between subdivisions 
were significantly high (Table 2). In contrast, FST estimates within 
geographical zones and subdivisions were lower. Therefore, the 
mtDNA of G. yunnanensis demonstrated considerable geographi-
cal structure.

3.5 | Population historical demography

Historical dynamic analyses for main lineages yielded similar results 
(Figure 5), with no sign of population size change in their recent 
history.

F I G U R E  3   BEAST time estimation for G. yunnanensis. Branch lengths are proportional to divergence times. Matrilines correspond to 
Figure 2. Numbers at nodes are average ages. Numbers in bracket on nodes are 95% confidence intervals
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4  | DISCUSSION

4.1 | Genetic structure and historical drainage 
pattern

The matrilineal genealogy (Figure 2) revealed clear genetic di-
vergence (W, C, and E) in G. yunnanensis, and further division oc-
curred in each main clade. The analysis of mitochondrial variation by 
SAMOVA and AMOVA supported this division (Table 1; Supporting 
Information Figure S1 in Appendix S1). However, our nuDNA data 
did not find the pattern identified in mtDNA, possibly due to incom-
plete lineage sorting or implied gene flow. So, we largely restricted 
this section discussion to the present mtDNA data as they provided 
a finer geographical resolution compared with the nuDNA analysis.

The geographical distribution of G. yunnanensis exhibits greatest 
similarity to the montane stream amphibian species N. yunnanen-
sis, and the Yunnan pond frog B. pleuraden. In contrast to montane 
stream species, however, G. yunnanensis breeds and lays eggs in still 
water, mainly in the Jinsha River basin. This geographical distribution 
highlights its use as an ideal model organism for testing scenarios 
regarding the role of historical drainage rearrangement on species 
genetic diversity. We may expect its genetic structure to be unaf-
fected by drainage basin history, such as that found for the Yunnan 
pond frog (B. pleuraden) (Li et al., 2012) and red knobby newt (T. shan-
jing) (Yu et al., 2013), two other standing-water taxa. To prove this 
conjecture, we hypothesized that a strong association would exist 

between the geographical distribution of genetic variation and con-
temporary drainage basins (H0) and that historical drainage basins 
would be accountable for the phylogeographic structure (H1). H0 
would be rejected by evidence suggesting a phylogeographic break 
in the genetic relationships of haplotypes from the same drainage 
basin. Individuals from Jinsha River basin were deeply divergent and 
scattered in different mtDNA lineages (Figures 1 and 2; see the de-
tails below). The AMOVA results (Table 1) showed that differentia-
tion among populations within the same drainage was almost twice 
that between different drainages (48.93% and 30.33%, respectively) 
when groupings were based on the current drainage system. These 
lines of evidence showed there was a phylogeographic discontinuity 
in the genetic variation within the same drainage basin. Thus, we 
rejected H0 and supported that contemporary drainage basins are 
connected by historically independent drainage systems. Groupings 
based on the mtDNA lineages, which conformed to the hypothesis 
of drainage system evolution, explained the greatest amount of vari-
ation (Table 1) and gave strong support to H1.

Deep phylogeographical divergence among populations was 
found in the modern Jinsha River drainage basin. Haplotypes from 
some tributaries (including populations 19, 22, 25, and 28; lineage 
E; Figures 1 and 2) demonstrated deep divergence from those of 
other tributaries (populations 1, 3–5, and 7–18, lineage C; population 
41, lineage W). This discovery was predicted by the scenario that 
the modern Jinsha River drainage basin developed from a connec-
tion of historically independent paleo-drainage basins (Clark et al., 

F I G U R E  4   (a)Median-joining network of nuclear gene Tyr. Circle size is proportional to relative number of individuals sharing a particular 
allele, and circle color represents an individual's membership in clades/subclades from maternal analysis. (b) Geographical distribution of 
main shared alleles. The localities number and grayish dotted line are the same as Figure 1. The overlap of solid circles of different colors 
indicates the co-occurrence of different alleles
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2004; Li, Yang, Huang, Ge, & Wang, 2009; Ren, Yang, & Han, 2006) 
(Figure 1). The geographical transition zone between lineages C and 
E is roughly concordant with the CYP, which divided the ancient Red, 
Pearl, and Jinsha rivers (Wang & Wang, 2005) (Figure 1). The diver-
gence time of G. yunnanensis (~3.10 Ma) roughly corresponds to the 
late Cenozoic extrusion uplift of the CYP (2 ~ 4 Ma) (Wang & Wang, 
2005), which is proposed to be associated with the rapid uplift of 
the QTP in the same period (Cheng et al., 2001; Clark et al., 2004; 
Yang, Li, Huang, & Ge, 2010). This scenario is further supported by 
phylogeographic studies on endemic amphibian species and riparian 
plant species in this region (Zhang, Chen, et al., 2010; Zhang et al., 
2011; Zhang & Sun, 2011).

The above hypothesis is also supported by the presence of 
three geographically distinct haplogroups (sublineage C1, C2, 
and C3) in the Jinsha River drainage basin (Figures 1 and 2). 
Sublineage C1 mainly consists of haplotypes from three pop-
ulations 15, 17–18 distributed in the Lower Jinsha River. This 
genetic distribution is likely along the paleo-Dadu River and is 
concordant with the hypothesis that the paleo-Dadu River was 
a tributary of the paleo-Red River (Clark et al., 2004) (Figure 1b). 
The estimated divergence time between C1 and the other three 
subgroups (C2–C4) (~1.82 Ma) roughly corresponds to the early 
Pleistocene capture of the paleo-Dadu/Anning River due to the 
uplift of the Gonga Shan region (Clark et al., 2004; Jiang, Wu, 
Xiao, & Zhao, 1999; Li & Ming, 2011), which resulted in signifi-
cant changes from lacustrine to fluviatile sediment (Jiang et al., 
1999). Sublineage C2 includes four populations from the Jinsha/
Yalong River drainage basin (3–5 and 16) and one population (6) 
from the Red River drainage basin, which agrees with the hypoth-
esis that the Jinsha and Yalong rivers once flowed southwards 
into the paleo-Red River prior to the capture of the paleo-Yalong 
River by the Lower Jinsha River (Clark et al., 2004) (Figure 1b). TA
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TA B L E  2   Pairwise FST among geographical zones/subdivisions 
(p < .05), and summary of average pairwise FST values within 
geographical zones/subdivisions

 FST  FST

Between W and C 0.8048* Within C 0.6206

Between W and E 0.8194* Within W 0.5051

Between C and E 0.8168* Within E 0.4235

Between C1 and C2 0.7615* Within C1 0.1225

Between C1 and C3 0.9355* Within C2 0.2893

Between C1 and C4 0.8946* Within C3 0.4346

Between C2 and C3 0.6587* Within C4 0.3549

Between C2 and C4 0.6068* Within W1 0.0913

Between C3 and C4 0.8091* Within W2 0.4493

Between W1 and W2 0.4918* Within W3 0.2053

Between W1 and W3 0.6059* Within E1 0.1058

Between W2 and W3 0.8171* Within E2 0.3833

Between E1 and E2 0.5772*   

*p < .05 
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These genetic patterns have also been revealed in other endemic 
species (Li et al., 2012; Yue, Chen, Sun, & Sun, 2012; Zhang, Chen, 
et al., 2010; Zhang & Sun, 2011).

The C3 sublineage mostly occurs in the Lower Jinsha River, but 
also shows a scattered distribution in the Middle Jinsha River (pop-
ulation 1) (Figure 1). The sharing of some haplotypes among these 
disjunctive populations (populations 1 vs. 7–14) is difficult to explain, 
but similar patterns have also been found in riparian plant species 
such as Terminalia franchetii (Zhang et al., 2011). Sublineage C3 
also consists of populations from Niulan River, and their close ge-
netic relationship is concordant with the hypothesis that the Niulan 
River–Yongshan–Xinshizhen paleo-drainage was a north-flowing 
tributary (Li & Ming, 2011; Li, Yang, et al., 2009), different from the 
south-flowing Yalong and Dadu rivers.

Since the Pliocene, with the exception of the upper reaches in 
northwest Yunnan, the drainage basins on both sides of the Red 
River are of antiquity and have experienced little change relative to 
other regions (Cheng, Chen, Luo, & Peng, 1994; Cheng et al., 2001; 
Clark et al., 2004), thus resulting in higher genetic homogeneity (Li 
et al., 2012; Zhang, Chen, et al., 2010; Zhang, Rao, et al., 2010). That 
is, we would expect populations within the same drainage system 
are more closely related. Populations from east of Yunnan and from 
west of the Red River respectively clustered together and formed 
Lineage E and lineage W (Figure 1). Lineage C4 includes haplotypes 
from both the Ruili and Salween River basins (Figure 1). The patterns 
are in accordance with the hypothesis.

C4 is distributed geographically far from the other sublineages 
of group C, but genetically closer to C2 (Table 2). The close genetic 
relationship between these geographically isolated sublineages 
(C1–C4) indicates a probable connection or no obvious dispersal 
barriers among these regions during the Pliocene, which coincides 
with the hypothesis that the YGP formed a planation surface with 
smooth relief during the middle–late Pliocene (Cheng et al., 2001; 
He & He, 1993; He et al., 1985). Several phylogeographic studies 
of endemic species also confirm this inference (Wang et al., 2013; 
Zhang, Chen, et al., 2010; Zhang et al., 2011). However, more sam-
ples from areas between the sublineages are needed to clarify the 
issue.

The phylogeographical structure of G. yunnanensis substan-
tially corresponds with historical drainage patterns and was 
largely in concordance with codistributed but disparate Yunnan 
spiny frog (N. yunnanensis, Zhang, Chen, et al., 2010). Expectation 
of the concordance of genetic structure among taxa with dispa-
rate traits is almost null in most comparative phylogeographic 
researches (Papadopoulou & Knowles, 2016). Thus, the congru-
ence here might indicate that there was more contribution of the 
drainage history than ecological or life-history traits in structuring 
genetic variation between these two disparate codistributed taxa. 
However, there are discordant phylogeographic patterns between 
codistributed Yunnan pond frog (B. pleuraden, Li et al., 2012) and 
G. yunnanensis. Thoroughly sampling and reanalysis of Yunnan 
pond frog would be helpful to clarify the discordance. In addition, 
other amphibian species studied in this area, such as Knobby Newt 
(T. shanjing, Yu et al., 2013) and Ailao Mustache Toad (L. ailaoni-
cum, Zhang, Rao, et al., 2010), are mainly found west of the Red 
River. At this finer scale, broadly congruent structuring was iden-
tified among all amphibian species investigated here. To be sure, 
more phylogeographic data from endemic organisms with differ-
ent ecological or life preferences are needed and require further 
comparative studies to gather a realistic overview of biological 
consequences of the historical drainage change.

4.2 | Persistence during Pleistocene climatic 
oscillations

Cyclical Pleistocene glaciations have had profound influence on popu-
lation dynamics (Hewitt, 2000, 2004), whose spatial effects depend 
on latitude and topography. Population demographic dynamics vary 
with life history and geography (Hewitt, 2004). Our study showed 
that G. yunnanensis diverged prior to Pleistocene climatic change and 
survived Pleistocene climate oscillations intact; thus, its mtDNA ge-
netic diversity was highly structured geographically, as shown by the 
SAMOVA/AMOVA and FST results. Historical demographic analysis 
did not reveal any signs of recent population expansion, indicating 
that the species has maintained a relatively stable population size over 

F I G U R E  5   Demographic 
reconstructions with the Extended 
Bayesian Skyline Plot (EBSP) for the 
Central, West, and East lineages. They 
are based on 52, 22, and 22 samples 
sequenced of nuclear and 185, 122, 
and 99 samples sequenced of mtDNA, 
respectively. Dashed line: mean 
population size. Shaded area: 95% 
confidence interval. Y-axis is in log scale, 
and X-axis is time before present (million 
years, Ma)

Central lineage West lineage

East lineage
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time. Thus, based on the demographic stability coupled with low vagil-
ity, inference could be made that lineages have sufficient geographical 
stability to preserve the phylogenetic characteristics of ancient hy-
drological rearrangement and the geographical background of lineage 
splitting (Kozak et al., 2006). Much effort has been made to explore 
the pattern and extent of Pleistocene climatic oscillations on the geo-
graphical distribution and genetic diversity of organisms on the QTP 
and adjacent areas (Qiu, Fu, & Comes, 2011; Wan et al., 2018; Yan et 
al., 2013; Yang, Dong, & Lei, 2009; Yu et al., 2013; Yuan et al., 2016). 
Although complex topography is characterized by buffering effects of 
dramatic climatic oscillations (Muellner-Riehl, 2019; Tzedakis, Lawson, 
Frogley, Hewitt, & Preece, 2002), responses to Pleistocene climatic 
changes vary among species in southwest China. Several studies 
have shown long-term demographic stability (Fan et al., 2013; Wan 
et al., 2018; Yan et al., 2013), whereas others have revealed extensive 
population expansion (Liu et al., 2013; Yu et al., 2013; Zhan, Zheng, 
Wei, Bruford, & Jia, 2011; Zhang, Chen, et al., 2010; Zhang, Rao, et al., 
2010). Yuan et al. (2016) believed that the ecological requirements of 
species within the same region, such as lowland and montane areas, 
should be considered in response to climate fluctuations. However, 
two montane species, Quasipaa boulengeri (Yan et al., 2013) and N. 
yunnanensis (Zhang, Chen, et al., 2010), exhibit completely distinct re-
sponses to Pleistocene climate fluctuations. In our opinion, ecological 
opportunity (Wagner, Harmon, & Seehausen, 2012) and microeco-
logical niches should also be included to further investigate the re-
sponses of organisms to Pleistocene climatic oscillations.

4.3 | Secondary contact

Sympatric distribution of distinct lineages was demonstrated in a 
few populations (Figure 1; populations 3–5, 42, and 45–46), which 
may result from incomplete lineage sorting, admixture events, 
or both (Wendel & Doyle, 1998). If incomplete coalescence oc-
curred, we would expect extensive coexistence of haplotypes 
from different lineages. Contrary to the incomplete coalescence, if 
secondary contact occurred, coexistence of haplotypes from dif-
ferent lineages would only be observed in populations where two 
distinct lineages were adjacent to each other, as observed in the 
present study (Figure 1). Furthermore, the higher π (Supporting 
Information Table S1 in Appendix S1) and absence of intermedi-
ate divergent haplotypes are suggestive of secondary contact. 
Although nuclear data from Tyr do not well-resolve relationships 
among G. yunnanensis, they show some noteworthy features. 
Perhaps because of the small sample size of Tyr sequences, allele 
sharing is not common, and it is mainly distributed in the border 
zone between geographically adjacent matrilines (W/C4; W/C2; 
and E/C; Figure 4), roughly corresponding to the sympatric areas 
of different lineages. For example, allele H13 is shared by popu-
lations 29, 38, 44–45, and 47 from matrilines C4 and W. Allele 
H28 is present in populations 3 and 41 from matrilines C2 and W, 
and allele H2 was shared by E and C2. These patterns indicate ei-
ther gene flow or the retention of ancestral polymorphisms. More 

samples and multiple informative nuclear loci, such as short tan-
dem repeats (microsatellites), are required to distinguish between 
the possibilities.

Like the matriline patterns of N. yunnanensis (Zhang, Chen, 
et al., 2010), sympatric distribution of distinct lineages also oc-
curred in areas adjacent to major drainage divides (Figure 1). For 
example, lineages C and E co-occurred along the CYP, which forms 
the Jinsha, Red, and Pearl River watershed (Wang & Wang, 2005) 
(Figure 1). This further indicates that the evolution of drainage 
basins in southwest China has had significant impact on the con-
temporary geographical distribution of G. yunnanensis genetic 
variation.

5  | IMPLIC ATIONS FOR CONSERVATION

Sympatric distribution of distinct lineages in G. yunnanensis and N. 
yunnanensis occurs in many areas. For example, in the CYP, localities 
4, 5, and 17 from this study largely correspond to N. yunnanensis 
sample sites 32, 55–56, and 70 (Zhang, Chen, et al., 2010), which all 
harbor a particularly high level of nucleotide diversity. The same pat-
tern also appears in western Yunnan for both species. These areas 
may be major genetic reservoirs for organisms and should be consid-
ered for priority protection, pending further monitoring and assess-
ment of additional species.

6  | CONCLUSIONS

Our study documents the genetic structure within G. yunnanensis. 
We found that historical drainage systems are responsible for the 
divergence between lineages/sublineages. The frog diverged prior to 
Pleistocene climatic change and experienced a stable demographic 
history thereafter. Sympatric distributions of distinct lineages re-
sulted from secondary contact, and these areas are major genetic 
reservoirs and require priority protection. The phylogeographic pat-
terns of G. yunnanensis are almost in concordance with those of N. 
yunnanensis, thus showing a shared response to hydrogeological his-
tory. Comparative phylogeographic studies of other endemic taxa in 
southwest China are now required to estimate whether their popula-
tion genetic structures still preserve evidence of these late Cenozoic 
changes in palaeohydrology.
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