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A B S T R A C T   

Background: around one third of clinically significant prostate cancer (CsPCa) foci are reported to be MRI non- 
visible (MRI─). 
Objective: To quantify the differences between MR visible (MRI+) and MRI─ CsPCa using intra- and peri-lesional 
radiomic features on bi-parametric MRI (bpMRI). 
Methods: This retrospective and multi-institutional study comprised 164 patients with pre-biopsy 3T prostate 
multi-parametric MRI from 2014 to 2017. The MRI─ CsPCa referred to lesions with PI-RADS v2 score < 3 but 
ISUP grade group > 1. Three experienced radiologists were involved in annotating lesions and PI-RADS 
assignment. The validation set (Dv) comprised 52 patients from a single institution, the remaining 112 pa-
tients were used for training (Dt). 200 radiomic features were extracted from intra-lesional and peri-lesional 
regions on bpMRI. 
Logistic regression with least absolute shrinkage and selection operator (LASSO) and 10-fold cross-validation was 
applied on Dt to identify radiomic features associated with MRI─ and MRI+ CsPCa to generate corresponding risk 
scores RMRI─ and RMRI+. RbpMRI was further generated by integrating RMRI─ and RMRI+. Statistical significance was 
determined using the Wilcoxon signed-rank test. 
Results: Both intra-lesional and peri-lesional bpMRI Haralick and CoLlAGe radiomic features were significantly 
associated with MRI─ CsPCa (p < 0.05). Intra-lesional ADC Haralick and CoLlAGe radiomic features were 
significantly different among MRI─ and MRI+ CsPCa (p < 0.05). RbpMRI yielded the highest AUC of 0.82 (95 % CI 
0.72–0.91) compared to AUCs of RMRI+ 0.76 (95 % CI 0.63–0.89), and PI-RADS 0.58 (95 % CI 0.50–0.72) on Dv. 
RbpMRI correctly reclassified 10 out of 14 MRI─ CsPCa on Dv. 
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Conclusion: Our preliminary results demonstrated that both intra-lesional and peri-lesional bpMRI radiomic 
features were significantly associated with MRI─ CsPCa. These features could assist in CsPCa identification on 
bpMRI.   

1. Introduction 

Prostate cancer (PCa) is one of the most common cancers among men 
in the US [1]. However, not all PCa patients require curative treatment 
[2]. Accurate identification of clinically significant prostate cancer 
(CsPCa) is critical to avoid under- or over-diagnosis. The CsPCa can be 
defined as the presence of International Society of Urological Pathology 
(ISUP) grade group > 1 (Gleason score 3 + 3 = 6) cancers with either a 
volume ≥ 0.5 mL or extraprostatic extension [3]. 

Although multi-parametric magnetic resonance imaging (mpMRI) 
has played a critical role in PCa diagnosis, localization and risk strati-
fication, biopsy is still assumed as the de-facto ground truth due to the 
chances of missing CsPCa on mpMRI [4,5]. Prostate Imaging-Reporting 
and Data System (PI-RADS) guidelines version 2.1 (v2.1) have been 
designed to standardize mpMRI interpretation for estimating the like-
lihood of a lesion being CsPCa [3]. Lesions assigned PI-RADS v2 score <
3 are deemed to have a low likelihood of being CsPCa and are potentially 
benign conditions or artifacts [3]. Studies have shown that mpMRI has a 
76–94 % negative predictive value (NPV) for CsPCa detection at a pa-
tient level, when defining the MR-nonvisible as PI-RADS [3] or Likert 
[6] score < 3 and CsPCa as ISUP grade group > 1 [4,7–9]. However, PCa 
is often multifocal and more than one third of CsPCa foci have been 
reportedly missed by mpMRI [5]. Most studies have paid little attention 
to these CsPCa foci missed by mpMRI (MRI non-visible) and the public 
datasets have included few MRI non-visible CsPCa annotations for 
model training and validation [10,11]. Therefore, there is a need to 
investigate the characteristics of MRI non-visible CsPCa to assist with 
the improvement of detection accuracy of CsPCa on mpMRI. 

Prostate bi-parametric magnetic resonance imaging (bpMRI) has 
demonstrated comparable performance to mpMRI for PCa diagnosis and 
characterization [12]. BpMRI comprises T2-weighted MRI (T2WI) and 
diffusion-weighted imaging (DWI) sequences, but excludes dynamic 
contrast-enhanced (DCE) imaging sequences due to its limited contri-
bution to PCa diagnosis among treatment-naïve patients [12]. Pre-
liminary studies have shown that bpMRI can be applied on biopsy naïve 
PCa patients to exclude CsPCa while reducing scan times and saving cost 
by avoiding contrast agent injection [13,14]. Additionally, the potential 
risk of long-term effects of gadolinium exposure and gadolinium-related 
anaphylaxis also motivate the application of bpMRI for PCa diagnosis 
[14]. 

Radiomic analysis involves the quantitative extraction of sub-visual 
features on radiological imaging in a high-throughput manner [15, 
16]. These radiomic features are the values calculated through 
pre-defined mathematical equations on image intensities among regions 
of interest and these features can be used as inputs to train machine 
learning models for clinical applications [17]. Radiomic analysis is also 
being widely explored on prostate bpMRI to quantify underlying char-
acteristics of PCa, e.g., shape, and texture [18,19]. Previous studies have 
suggested that radiomic features extracted from the adjacent regions of 
lesions on bpMRI could aid in assessing disease aggressiveness [18,20]. 
For example, Algohary and et al. showed that radiomic features 
extracted from the lesion adjacent regions on bpMRI can assist in 
identifying CsPCa where PI-RADS and biopsy results were discordant 
[18]. Recently, Houlahan and et al. observed that hallmarks of nimbo-
sus, an aggressive micro-environmental and pathological phenomenon 
of prostate cancer, were associated with MRI visibility of PCa [21]. 
These findings suggested the need to explore radiomic features extracted 
not only within the lesions (intra-lesion) but also from corresponding 
adjacent regions (peri-lesion) in identifying MRI non-visible CsPCa. 

In this multi-institutional study, we focused on investigating the 

association between both intra- and peri-lesional radiomic features with 
CsPCa MRI visibility on bpMRI. To the best of our knowledge, this is the 
first study with the largest multi-institutional dataset, dedicated to 
addressing the question of whether radiomic analysis could help better 
identify the phenotype of MRI non-visible CsPCa on bpMRI. 

2. Materials and methods 

2.1. Ethics statement 

This retrospective study was approved by the Case Western Reserve 
University, University Hospitals, and Cleveland Clinic Institutional Re-
view Board (IRB), and is compliant with the Health Insurance Portability 
and Accountability Act (HIPAA); de-identified data was used, and no 
protected health information was needed. The need for informed con-
sent from all patients was waived by the IRB. 

2.2. Patient selection 

The patient selection criteria adopted by this study were as shown in  
Fig. 1. A total of 164 PCa patients from four institutions were finally 
identified. N = 52 patients from a single institution were assigned as the 
validation set (Dv) and the remaining patients comprised of the training 
set (Dt, N = 112). The non-visible (MRI─) lesions on bpMRI referred to 
lesions with PI-RADS < 3 and visible (MRI+) lesions with PI-RADS ≥ 3. 
MRI- CsPCa were defined as PCa with PI-RADS < 3 but ISUP grade group 
> 1. 

2.3. MRI protocol 

The mpMRI were collected on 3T scanners with either a surface 
pelvic phased-array coil (PPAC) or an endorectal coil (ERC) with 
acquisition parameters presented in Supp. Table 1. The apparent diffu-
sion coefficient (ADC) maps were generated from DWI data using the 
corresponding scanner software at each institution. 

2.4. Annotation delineation 

Radiologists initially annotated suspicious lesions on bpMRI using 
the 3D Slicer software [22] while being blinded to the lesion diagnosis 
on pathology. Next, they referred to pathology either from MRI-targeted 
and systematic biopsy or surgical specimens to include the CsPCa foci 
which were missed initially. Specifically, when surgical specimens were 
available, they were spatially co-registered to bpMRI to map the lesion 
annotations onto bpMRI [23]. The co-registered annotations were then 
compared with manual annotations and refined by radiologists using the 
3D Slicer software. Our cohort also comprised delineations of prostatitis 
and normal tissue regions [24,25] with reference to the surgical spec-
imen which were included as negative control cases. When only biopsy 
location information was available, the CsPCa regions were delineated 
based off visual inspection. 

After a wash-out time interval of at least two months, the lesion 
annotations were viewed and assigned PI-RADS V2.1 scores in a way 
that was blinded to their clinical diagnosis by experienced board- 
certificated genitourinary radiologists (A.S.P, 10 years of experience, 
S.H.T, 7 years of experience; and L.K.B 10 years of experience) using the 
RadiAnt DICOM Viewer [26]. The lesion adjacent regions were esti-
mated by expanding the boundary of lesions by 3 mm while clipping the 
region outside of the prostate. 

In addition, to explore the morphologic basis of the radiomic features 
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identified to be associated with MRI─ CsPCa, N = 34 radical prosta-
tectomy (RP) patients were collected for quantitative tissue composition 
analysis. The prostate specimens were firstly sliced into quadrants, he-
matoxylin and eosin (H&E) stained and reviewed by an experienced 
pathologist. The pathologist identified N = 50 lesions, generated RP 

maps illustrating the spatial location of these lesions. The pathologist 
and radiologist consensually provided spatial correspondences between 
MRI and RP slices. The H&E stained slices were digitized at 20 ×, with 
cancer lesions annotated by the pathologist, and were then spatially co- 
registered with T2WI via a multi-scale deformable registration method 

Fig. 1. Flowchart illustrating patient selection criteria and an overview of the experimental design used in this study. Radiologists initially delineated suspicious 
lesions (green outline) on bpMRI blinded to pathologic diagnosis. They then referred to pathology (either systematic biopsy or surgical specimen) to update their 
delineations (orange dotted outline). PI-RADS scores were assigned by radiologists to the delineated lesions blinded to pathologic diagnosis following a wash-out 
period. The red outline indicates peri-lesional region (derived as 3 mm annular ring outside the lesion boundary (green)) retained within the prostate boundary. 

L. Li et al.                                                                                                                                                                                                                                        



European Journal of Radiology Open 10 (2023) 100496

4

[23]. This maps lesion annotations on to MRI, which were then reviewed 
by the radiologist and edited as necessary. 

2.5. MRI pre-processing and radiomic analysis 

Due to the multi-institutional nature of this study, a nonparametric 
intensity standardization method [27] was used to alleviate the het-
erogeneity of T2WI intensity distributions across scans. Furthermore, we 
employed a previously published method to estimate the bias field 
introduced by ERC coil and subtract it from the acquired MRI data [28]. 
In addition, both T2WI and ADC maps were resampled at the same 
spatial resolution in the axial plane (0.5 × 0.5 mm). 

After pre-processing, 200 2D radiomic features were extracted from 
the axial plane within intra- and peri-lesional regions on both T2WI and 
ADC maps, including first and second order statistics, Gabor [29], Laws 
[30], Haralick [31] and CoLlAGe [32] features. These features have 
been previously identified for PCa characterization [18,19]. Statistics 
including mean, standard deviation, skewness, and kurtosis were 
calculated for each radiomic feature to characterize its distribution 
within each lesion and adjacent regions. 

2.6. Statistical analysis 

First, radiomic features were identified to distinguish CsPCa lesions 
and normal tissue regions using Wilcoxon signed-rank test. Then, top 
radiomic features (FMRI−

T2WI , FMRI+
T2WI , FMRI−

ADC and FMRI+
ADC ), which were associated 

with MRI─ or MRI+ CsPCa, were identified using the least absolute 
shrinkage and selection operator (LASSO) [33] with logistic regression 
in Dt. The odds ratios (ORs) were calculated via multivariate analysis to 
evaluate the contribution of each selected radiomic feature. In addition, 
Wilcoxon signed-rank test was used to identify radiomic features that 
were significantly different between MRI+ and MRI─ CsPCa. Then, 
Spearman correlation analysis was applied to evaluate the association 
between these radiomic features and the pathological characteristics of 
CsPCa on a subset of cases where surgical specimens were available. 

Subsequently a generalized linear mixed-effect models were adopted 
to train lesion-wise machine learning classifiers to account for random 
variability introduced when multiple lesions were collected from the 
same patient. Classifiers CMRI−

T2WI , CMRI+
T2WI , CMRI−

ADC , and CMRI+
ADC , were trained 

with 10-fold cross-validation to predict lesions as CsPCa using FMRI−
T2WI ,

FMRI+
T2WI , FMRI−

ADC , and FMRI+
ADC , respectively, and producing radiomic risk 

scores RMRI−
T2WI , RMRI+

T2WI , RMRI−
ADC , and RMRI+

ADC respectively. FMRI−
T2WI , FMRI+

T2WI ,

FMRI−
ADC and FMRI+

ADC were integrated to train classifiers, CT2WI and CADC, 
producing risk score RT2WIandRADC. Finally, RT2WIandRADC were 
ensembled to generate RbpMRI , the ensembling approach involved 
selecting the greater of the risk scores from RT2WIandRADC for each 
lesion. The classifiers and the risk scores were both constructed using the 
rms and glnmet packages in R software version 3.6. 

The contribution of radiomic risk scores in predicting CsPCa were 
further evaluated using multivariate analysis and decision curve anal-
ysis. Furthermore, area under receiver operating characteristic curve 
(AUC), sensitivity, specificity, NPV and positive predictive value (PPV) 
were calculated to evaluate the classification performance of radiomic 
risk scores. 

3. Results 

3.1. Demographic and clinical characteristics 

Demographic and clinical characteristics of all 164 patients are 
illustrated in Table 1. 34 % (45/131) CsPCa were assigned PI-RADS < 3, 
which correspond to 29 % (31/107) and 58 % (14/24) of our training 
and validation cohorts respectively. In addition, we had N = 73 patients 
with n = 150 lesions in Dt read by two experienced radiologists. The 
Cohen’s kappa of PI-RADS scores was found to be 0.71 between the two 

radiologists. A stronger agreement (kappa = 0.81) was reached between 
the two readers for PI-RADS lesions with a cut-off of PI-RADS 3. 

3.2. Identify T2WI and ADC radiomic features that are associated with 
MRI─ CsPCa 

Table 2 lists radiomic features FMRI−
T2WI and FMRI−

ADC that were found to be 
associated with MRI─ CsPCa. Features labeled with asterisk in Table 2 
were independently associated with CsPCa on Dv via multivariate 
analysis (p < 0.05). It was observed that the peri-lesional bpMRI 
radiomic features labeled with asterisk all have odds ration greater than 
1. In addition, FMRI+

T2WI and FMRI+
ADC that were found to be associated with 

MRI+ CsPCa are listed in Supp. Table 2. 
N = 9 intra-lesional and N = 4 peri-lesional radiomic features, spe-

cifically Haralick [31] and CoLlAGe [32] features derived from T2WI 
and ADC maps, showed significant differences between MRI+ and MRI─ 

CsPCa (Supp. Table 3). Furthermore, to explore the morphologic basis of 
the radiomic features identified to be associated with MRI─ CsPCa, we 
identified 34 patients who underwent RP and had digitized H&E stained 
surgical specimens of sufficient quality for quantitative tissue compo-
sition analysis. Compartments of tumor tissue, including gland lumen, 
epithelial tissue, and stroma, on the surgical specimens were segmented 
using the Unet segmentation network [34] at 10 × resolution. Spear-
man’s correlations between the prostate tissue composition and identi-
fied features were calculated with Benjamini-Hochberg correction [35]. 
The statistical significance of the correlation coefficients was defined as 
a false discovery rate ≤ 0.2 [35]. The lumen area was found to be 
negatively correlated with the standard deviation of intra-lesion ADC 
Haralick features, while adjusting the correlation coefficient to − 0.34. 
It was observed that MRI─ CsPCa lesions had less heterogeneous 
intra-lesion ADC Haralick feature expression and tended to have larger 
lumen area compared to MRI+ CsPCa lesions. (Fig. 2) 

3.3. Investigating association of radiomic risk scores with CsPCa 

Our final model contained 32 radiomic features (22 intra- and 10 
peri-tumoral features). Table 3 lists the AUC, sensitivity, specificity, NPV 
and PPV results of RT2WI , RADC, RbpMRI and PI-RADS scores on Dv. In 
addition, the classification performance of the radiomic risk score, 
RMRI+

bpMRI,which was ensembled using RMRI+
T2WI and RMRI+

ADC ,were also measured 
to evaluate the contribution of RMRI−

T2WI and RMRI−
ADC in identifying CsPCa. 

Rintra
T2WI is the radiomic risk score that only combines the intra-tumoral 

radiomic features. 

Table 1 
Demographic and disease characteristics of all 164 patients. PSA = prostate 
specific antigen; SD = standard deviation; ISUP = International Society of 
Urological Pathology; * indicates statistically significant difference.   

Dt Dv 

# Patients 112 52 
# lesions 257 113 
Median age (range) 65 (40–88) 63 (43–81) 
Mean pretreatment PSA ± SD, ng/ 

mL (range) 
8.08 ± 6.14 (1.2 – 
38.6) 

5.77 ± 4.15 
(2.3–25) 

Pathologic ISUP grade, n/# ROI (%) 
0 105/257(40.70) 73/113 (64.60) 
1 46/257(17.83) 16/113 (14.16) 
2 63/257(24.42) 17/113 (15.04) 
3 28/257(10.85) 0/113 (0.00) 
4 13/257(5.04) 0/113 (0.00) 
5 3/257(1.16) 7/113 (6.19) 
PI-RADS v2, n/# lesions (%) 
1 20/257(7.75) 52/113 (46.02) 
2 126/257(48.84) 34/113 (30.09) 
3 21/257(8.14) 3/113 (2.65) 
4 49/257(18.99) 21/113 (18.58) 
5 41/257(15.89) 3/113 (2.65)  
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We found that RbpMRI yielded the highest AUC of 0.82 and correctly 
reclassified 10 out of 14 MRI- CsPCa on Dv at the optimal cut-off point 
learned on Dt. In addition, the multivariate analysis demonstrated that 
RbpMRI was independent compared to RMRI+

bpMRI, in terms of association with 
CsPCa (p-value < 0.05). Decision curve analysis (Fig. 3) indicated that 
the RbpMRI produced larger net-benefit in identifying CsPCa compared to 
PI-RADS score and RMRI+

bpMRI. 

4. Discussion 

In this multi-institutional study, we sought to evaluate whether 
radiomic analysis on bpMRI could enable identification of subvisual 
image features associated with CsPCa MRI visibility. Specifically, we 
sought to evaluate whether radiomic analysis of peri-lesional regions 
could allow for better MRI─ CsPCa characterization by capturing fea-
tures of the tumor microenvironment. 

Although PI-RADS tends to be influenced by inter-reader variability 
[36], our study revealed a moderate inter-reader reliability 
(kappa = 0.71) between two experienced radiologists and a strong 
agreement (kappa = 0.81) when using PI-RADS > = 3 as the cut-off 
[37]. Our findings suggest that the PI-RADS based threshold could 
potentially be an appropriate cut off for definition of MRI─ CsPCa, as 
used this study. 

We observed that intra- and peri-lesional bpMRI Haralick and 
CoLlAGe features were significant predictors of MRI─ CsPCa (Table 2). 
The odds ratios of the identified peri-lesional bpMRI radiomic features 
indicate that peri-lesional area of MRI─ CsPCa tended to have more 
heterogeneous texture, as captured by Haralick and CoLlAGe features on 
bpMRI compared to non-CsPCa lesions. A number of studies have 
investigated computer-aided systems for CsPCa detection on mpMRI 
using radiomic or deep learning models [18,20,38]. However, most of 
these studies only included MRI+ CsPCa lesions in the training data [18, 
20], without focusing on the characteristics of MRI─ CsPCa. For 
example, Algohary and et al. showed that bpMRI radiomic features can 
aid in identifying CsPCa in highly challenging cases where the PI-RADS 
and biopsy results were discordant [18]. However, in their study, no 
MRI─ CsPCa were included in the training set. Hiremath and et al. in-
tegrated deep learning-based bpMRI predictors with PI-RADS score and 
clinical parameters for CsPCa classification, yielding an AUC = 0.76 
[20]. However, their study did not discuss how the deep learning-based 
predictors contribute to identifying MRI─ CsPCa. 

Recently, some studies attempted to establish correlation between 
MRI and histopathology to explore a deeper understanding of PCa 
characterization [25]. Our study also attempted to explore radiomic and 
histopathological correlations between MRI+ and MRI─ CsPCa. Our re-
sults indicated a majority of significant radiomic features (Supp. 
Table 3) were mostly derived from ADC maps suggesting that MRI+

CsPCa tended to be more heterogenous on ADC maps compared to 
non-visible CsPCa. In addition, the gland lumen of MRI─ CsPCa was 
observed to be larger and more loosely distributed within tumor regions 
compared to MRI+ CsPCa. Meanwhile, the gland lumen composition 
ratio was also found to be negatively associated with the intra-lesion 
ADC Haralick features (Fig. 2). This finding appears to suggest that 
gland lumen area and distribution impact CsPCa MRI visibility and that 
intra-lesion ADC Haralick features may be associated with this histo-
pathological signature. Previous studies have also corroborated the fact 
that histopathological difference exists between MRI+ and MRI─ PCa 
[39]. For example, a previous study by van Houdt and et al. demon-
strated that MRI─ PCa had lower tumor density and heterogeneous 
tumor morphology compared to MRI+ PCa [39]. 

Furthermore, on multivariate analysis we observed that the radiomic 
risk score RbpMRI derived from both MRI+ and MRI─ CsPCa associated 
radiomic features yielded independent value to RMRI+

bpMRI and PI-RADS 
score for CsPCa classification on bpMRI. The decision curve analysis 
illustrated that the net-benefit of RbpMRI is superior to PI-RADS or RMRI+

bpMRI 

Table 2 
Identified intra- and peri-lesion radiomic features associated with MRI─ CsPCa. 
In addition, tumor size was evaluated for its association to CsPCa. * indicates a 
statistically independent factor for CsPCa.  

Feature 
type 

Feature name Statistics region Odds 
ratio 

Feature 
number 

FMRI−
T2WI Haralick 

Information 
measure of 
correlation 2 

Standard 
deviation 

Intra- 
lesion 

1.43 3 

CoLlAGe 
Information 
measure of 
correlation 1* 

skewness Intra- 
lesion 

0.98 

Haralick Sum 
Entropy 

kurtosis Intra- 
lesion 

1.07 

Laws 6 mean Peri- 
lesion 

1.01 13 

Haralick 
Information 
measure of 
correlation 2 

Standard 
deviation 

Peri- 
lesion 

1.43 

Haralick 
Correlation 

Standard 
deviation 

Peri- 
lesion 

0.88 

Haralick 
Correlation* 

Skewness Peri- 
lesion 

1.97 

Haralick Entropy Skewness Peri- 
lesion 

1.15 

Haralick Sum 
Average 

Skewness Peri- 
lesion 

1.31 

CoLlAGe 
Information 
measure of 
correlation 2* 

Skewness Peri- 
lesion 

1.19 

CoLlAGe Difference 
Variance 

Skewness Peri- 
lesion 

1.19 

CoLlAGe 
Information 
measure of 
correlation 1 

Skewness Peri- 
lesion 

0.98 

Laws 6 Skewness Peri- 
lesion 

1.20 

Haralick Inverse 
Difference Moment 

Kurtosis Peri- 
lesion 

0.87 

Haralick 
Information 
measure of 
correlation 1 

Kurtosis Peri- 
lesion 

1.50 

CoLlAGe Sum 
Average 

Kurtosis Peri- 
lesion 

0.96 

FMRI−
ADC CoLlAGe 

Correlation 
mean Intra- 

lesion 
0.82 5 

CoLlAGe 
Information 
measure of 
correlation 1 

mean Intra- 
lesion 

0.90 

Haralick 
information 
measure of 
correlation 1 

Standard 
deviation 

Intra- 
lesion 

1.13 

CoLlAGe 
Information 
measure of 
correlation 1* 

Standard 
deviation 

Intra- 
lesion 

1.29 

CoLlAGe 
Correlation 

Standard 
deviation 

Intra- 
lesion 

1.42 

Haralick 
Information 
measure of 
correlation 1 

Standard 
deviation 

Peri- 
lesion 

1.77 2 

CoLlAGe Inverse 
Difference Moment 
* 

Standard 
deviation 

Peri- 
lesion 

2.03 

Tumor 
size 

Tumor size NA Intra- 
lesion 

1.0   

L. Li et al.                                                                                                                                                                                                                                        



European Journal of Radiology Open 10 (2023) 100496

6

when assuming that the occurrence of CsPCa for biopsy-naïve patients 
with elevated PSA is 30 % or less (Fig. 3). Meanwhile, the prevalence of 
CsPCa for biopsy-naïve patients with elevated PSA was observed less 
than 30 % [40]. Therefore, these results suggest statistically significant 
contributions of MRI─ CsPCa associated radiomic features in identifying 
MRI─ CsPCa on bpMRI. 

Our study was limited by a relatively small number of patients 
(n = 164), though it is worth noting that the sample size was 

comparable to other recent studies that have employed radiomic anal-
ysis for prostate cancer [18,41,42]. Another limitation was the fact that 
the study was completely retrospective in nature, additional multi-site 
prospective validation is warranted. Manual delineation of the lesions 
was performed by expert radiologists, however, we do acknowledge that 
annotation by different experts can introduce bias and variability in 
target definition [43]. 

In conclusion, this study identified both intra- and peri-lesional 
bpMRI radiomic features that were significantly associated with MRI─ 

CsPCa. Our study revealed that MRI─ CsPCa tend to have a more het-
erogeneous texture in the peri-lesional region compared to non-CsPCa 
lesions on bpMRI. In addition, we constructed a radiomic risk score 
that integrated MRI+ and MRI─ CsPCa associated radiomics features for 
CsPCa identification. With additional validation, this radiomics risk 
score could potentially serve as a decision support tool to aid clinicians 
in better identification and risk stratification of both visible and non- 
visible prostate lesions on bpMRI. 
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