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Abstract

In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively

evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus

on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday

listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic

cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound

quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual

evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound

quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improve-

ments in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intellig-

ibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural

minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios.
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Introduction

Many conversations today take place in rather noisy
environments. For normal-hearing (NH) listeners, this
degraded speech does not pose a major challenge and
is typically intelligible. Hearing aid (HA) or cochlear
implant (CI) users, on the other hand, are much more
impacted in their speech intelligibility by interfering
noise sources (Festen & Plomp, 1990; Peters, Moore, &
Baer, 1998; Qin & Oxenham, 2003; Stickney, Zeng,
Litovsky, & Assmann, 2004).

Considerable effort has been made to develop and
investigate single- as well as multichannel noise reduction
algorithms for HAs and CIs (for comprehensive reviews,
see e.g., Bentler, 2005; Doclo, Gannot, Moonen, & Spriet,
2010; Doclo, Kellermann, Makino, & Nordholm, 2015;
Hamacher, Kornagel, Lotter, & Puder, 2008; Levitt,
2001; Wouters, Doclo, Koning, & Francart, 2013).
Spatial filtering (typically referred to as beamforming)
has become a standard in modern hearing devices.
By enhancing signals originating from one direction

(usually the front) and suppressing signals originating
from other locations, these algorithms are able to achieve
large improvements in signal-to-noise ratio (SNR). A
wireless link between hearing devices on the left and
right side is already available in commercial HAs. These
binaural HAs also feature binaural noise reduction algo-
rithms. With the prevalence of bilateral cochlear
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implantation increasing, the possibility of providing such
algorithms to bilateral CI users is emerging. These multi-
channel, binaural algorithms use the microphone signals
from both hearing devices and result in larger SNR
improvements compared to monaural beamforming algo-
rithms (Cornelis, Moonen, & Wouters, 2012; Van den
Bogaert, Doclo, Wouters, & Moonen, 2009), providing
improved speech intelligibility in noise. Algorithms oper-
ating on single channel signals, on the other hand, do not
usually result in speech intelligibility improvements but
have been shown offer improved signal quality and listen-
ing comfort (e.g., Luts et al., 2010).

The objective of signal enhancement strategies is to
enhance two fundamental perceptual aspects of noisy
speech signals: speech intelligibility and sound quality.
However, these two objectives cannot always be achieved
simultaneously. When assessing the merit of signal
enhancement algorithms, both aspects should be taken
into consideration, although improved speech intelligibil-
ity typically is considered to be more important. In gen-
eral, there is a trade-off between noise reduction and
speech distortion. An increase in speech intelligibility
can, for example, be achieved at the cost of lower signal
quality (e.g., due to distortions). Especially for algorithms
operating on single channel signals, an improved signal
quality does not necessarily entail improved speech intel-
ligibility at the same time (Hu & Loizou, 2007a, 2007b).
Multichannel noise reduction algorithms are often able to
achieve both, increased speech intelligibility as well as
increased signal quality.

Instrumental measures are commonly used to evaluate
an algorithm’s capabilities in speech intelligibility
enhancement and quality improvement (e.g., Hendriks
& Gerkmann, 2012). Perceptual speech intelligibility
measurements in NH listeners (Fink, Furst, &
Muchnik, 2012; Healy, Yoho, Wang, & Wang, 2013;
Kim, Lu, Hu, & Loizou, 2009; Yousefian & Loizou,
2012) have also been used regularly to evaluate and char-
acterize signal enhancement algorithms, often in combin-
ation with other measures. Yousefian and Loizou (2012),
for example, supplemented their speech intelligibility
evaluation with an instrumental evaluation of signal
quality, while Healy et al. (2013) and Fink et al.
(2012) additionally reported speech intelligibility
improvements in hearing-impaired (HI) subjects. Large-
scale evaluation studies in HI listeners (e.g., Cornelis
et al., 2012; Luts et al., 2010) or CI users (e.g.,
Brockmeyer & Potts, 2011) have been geared toward
comparing the value of different signal enhancement
algorithms for the respective listener groups.

Although a large number of studies have evaluated
signal enhancement schemes perceptually as well as
with the help of instrumental measures, most studies
focus on the evaluation of only a small number of
signal processing schemes. Differences between studies

in measurement design, speech and noise material, as
well as subject groups in the case of perceptual evalu-
ations, or choice of measures in the case of instrumental
evaluations, limit the comparability across studies.

This article is the first in a series of three articles in this
issue originating from a collaborative project of several
research groups within the Cluster of Excellence
“Hearing4all” in Oldenburg. The goal of this collabora-
tive research project was to comprehensively evaluate
state-of-the-art signal enhancement algorithms, with
emphasis on binaural algorithms. We tested (a) different
listening situations, (b) different instrumental measures,
(c) subjects with a very different hearing status, and (d)
a variety of different algorithms. These four aspects taken
together provide an overview of the benefits obtainable by
monaural and binaural signal enhancement algorithms. A
coherent study design was maintained across all evalu-
ations to ensure high comparability of the results.
Several state-of-the-art noise reduction algorithms were
selected, with a focus on binaural algorithms but also
including two monaural algorithms as references. The
selected algorithms consisted of established algorithmic
building blocks, such as (fixed and adaptive) minimum
variance distortionless response (MVDR) beamforming
and spectral post-filtering, which were combined in
innovative ways. All algorithms were implemented in
real time on a common signal processing platform,
namely the Master Hearing Aid (MHA; Grimm,
Herzke, Berg, & Hohmann, 2006), making the setup
ideal for perceptual listening evaluations.

Four different, synthetic but highly realistic scenarios
were designed to reflect real-world listening situations.
All scenarios included a significant amount of reverber-
ation (T60 � 1:25s), further challenging the algorithms.
The noise scenarios were created in a three-dimensional
listening environment using head-related impulse
responses (HRIRs; Kayser et al., 2009).

Starting from these common algorithms and test scen-
arios, which are described in detail in the following
Methods section, we have branched out into specific stu-
dies reported in the three articles. The current article
presents the common framework and the instrumental
evaluation of speech intelligibility and quality. Three
measures were employed: the speech intelligibility-
weighted signal-to-noise ratio (iSNR; Greenberg,
Peterson, & Zurek, 1993), the short-time objective intel-
ligibility (STOI; Taal, Hendriks, Heusdens, & Jensen,
2011) measure, and the perceptual evaluation of speech
quality (PESQ; ITU-T, 2001). The second article aims at
evaluating the same signal enhancement strategies
through perceptual evaluations in bilateral CI users
(Baumgärtel et al., 2015). In a third article, perceptual
evaluations in NH listeners and HI subjects, as well as an
evaluation using a binaural speech intelligibility model,
are presented (Völker, Warzybok, & Ernst, 2015).

2 Trends in Hearing



Methods

Noise Reduction Algorithms

The signal enhancement strategies evaluated in this study
were implemented on a common processing platform.
All output files had a sampling rate of 16 kHz.

Adaptive differential microphone (ADM). The adaptive differ-
ential microphone algorithm was implemented according
to the description in Elko and Anh-Tho Nguyen (1995).
The two omnidirectional microphones present in each
hearing device were combined adaptively so that the
sound energy from the rear hemisphere is minimized in
the output of the algorithm. This is achieved by steering
a spatial zero to suppress sound originating from the
loudest source in the rear hemisphere. The ADM algo-
rithm first computed front-facing and back-facing differ-
ential microphones with a spatial zero pointing to 180�

and 0�, respectively. These signals were then weighted
and combined, with the weight parameter determining
the direction of the spatial zero. The weight parameter
was adapted using a gradient-descent procedure to
ensure the above energy criterion. The combination of
two closely spaced omnidirectional microphones resulted
in a comb-filter effect present in the output signal of the
ADM. Therefore, a low-pass filter was used to counter
the effect of the first minimum of the comb filter. The
ADMs worked on the left and right side independently
and were included here as a second reference condition
alongside the unprocessed signals.1

Coherence filter (COH). The coherence-based noise reduc-
tion algorithm (Grimm, Hohmann, & Kollmeier, 2009;
Luts et al., 2010) computes a spectral gain based on the
concept of coherence to separate the desired speech
signal from undesired noisy components. Coherent
signal components were assumed to belong to the desired
target signal, for example, a single speaker talking to the
listener. Incoherent signal components are assumed to
belong to the undesired noisy part.

The processing algorithm works in the short-time
Fourier transform (STFT) domain, where STFT bins
were grouped into 15 non-overlapping third-octave fre-
quency bands with center frequencies ranging from
250Hz to 8 kHz. The interaural phase difference (IPD)
was used as an estimate for the coherence. The coherence
C(k, l) in each frequency band k and time segment l is
estimated from the vector strength of the complex IPD
cIPDðk, l Þ, as defined in Grimm et al. (2009):

Cðk, l Þ ¼ cIPDðk, l Þ
� �

�ðkÞ

��� ���: ð1Þ

The coherence value was estimated using a running aver-
age h�i�ðkÞ with time constant �ðkÞ. Since, for short-time

constants, the estimate C(k, l) may be larger than the
actual coherence, a linear mapping of the coherence
was introduced. The coherence interval ½C1,C2� was
mapped linearly to the interval [0,1]:

Ĉðk, l Þ ¼

Cðk, l Þ�C1

C2�C1
C1 5Cðk, l Þ5C2

0 Cðk, l Þ4C1

1 Cðk, l Þ5C2:

8><
>: ð2Þ

An identical mapping interval was used for all frequency
bands. The gain in each frequency band was then com-
puted by applying an efficiency exponent �ðkÞ, i.e.:

Gðk, l Þ ¼ Ĉðk, l Þ�ðkÞ: ð3Þ

By applying the same gain to both channels, the binaural
cues were preserved.

The two main parameters for the algorithm are the
time constant �ðkÞ and the efficiency exponent �ðkÞ. Both
frequency-dependent parameters were optimized manu-
ally. The efficiency exponent �ðkÞ roughly followed the
band importance function for the calculation of the
speech intelligibility index (SII; American National
Standard Institute, 1997). The values for the time con-
stant �ðkÞ were approximated by 1

fk
� 100, where fk denotes

the center frequency of the kth frequency band Hz. In this
study, the coherence-based noise reduction algorithm
was used in serial processing after the ADM algorithm,
that is, the ADM supplied a binaural input signal for
the coherence-based noise reduction algorithm (see
Figure 1).

Single-channel noise reduction (SCNR). In this processing
scheme, the frontal microphone signals of the left and
the right hearing device were enhanced separately using
an STFT-based single-channel noise reduction setup as
outlined in Figure 2. For the STFT, we used a segment
length of 32ms with 50% overlap, and a square root
Hanning window for analysis and overlap-add synthesis.

Figure 1. Block diagram illustrating the coherence filter setup.
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In the STFT domain, the noise power spectral density
PNðk, l Þ was estimated from the noisy input STFT Y(k,
l), using the speech presence probability-based estimator
(Gerkmann & Hendriks, 2012). An estimate of the speech
power PSðk, l Þ was obtained by temporal cepstrum
smoothing as proposed in Gerkmann, Breithaupt, and
Martin (2008). In the next step, the speech power
PSðk, l Þ and the noise power PNðk, l Þ were used to esti-
mate the clean speech spectral amplitude jŜðk, l Þj accord-
ing to Breithaupt, Krawczyk, and Martin (2008), which is
parameterized with a compression parameter b and a
form parameter l. As in Breithaupt et al. (2008), here
we used � ¼ � ¼ 0:5, that is, the so-called super-
Gaussian amplitude root (SuGAR) estimator. While
� ¼ 0:5 modeled the clean speech STFT coefficients as
being complex super-Gaussian distributed, � ¼ 0:5 corres-
ponded to minimizing the mean square error between the
square roots of the true and the estimated amplitudes.
This choice has been reported to yield a good noise reduc-
tion performance with only little audible speech distor-
tions (Breithaupt et al., 2008). The clean speech spectral
amplitude is estimated by multiplying the input STFT
amplitude with a real-valued gain function, i.e.,
jŜðk, l Þj ¼ Gðk, l ÞjYðk, l Þj. To minimize speech distor-
tions, we applied a lower limit of �9 dB to the gain func-
tion G(k, l). Finally, the estimated spectral amplitude was
combined with the noisy spectral phase of the input signal,
i.e., Ŝðk, l Þ ¼ jŜðk, l Þj exp iffYðk, l Þð Þ and the enhanced
time domain signal ŝðnÞ, with time index n, was
synthesized via overlap-add, which is denoted as iSTFT
in Figure 2. The employed monaural enhancement
scheme is used due to its generality. With more know-
ledge about the specific acoustic scenario, such as the
noise type, alternative methods, for example, based on
supervised-learning techniques (Kim et al., 2009), might
lead to further improvements at the cost of a loss in
generality.

Fixed MVDR beamformer (fixed MVDR). The binaural
MVDR beamformer aimed at minimizing the overall
noise output power, subject to the constraint of preser-
ving the desired speech component in the frontal micro-
phone signals of the left and the right hearing device. The
frequency-domain binaural MVDR filters for the left

and the right hearing devices WLðkÞ and WRðkÞ were
equal to Van Veen and Buckley (1988):

WLðkÞ ¼
!�1ðkÞAðkÞ

AH
ðkÞ!�1ðkÞAðkÞ

A�LðkÞ; ð4Þ

WRðkÞ ¼
!�1ðkÞAðkÞ

AH
ðkÞ!�1ðkÞAðkÞ

A�RðkÞ; ð5Þ

where !ðkÞ denotes the spatial coherence matrix of the
noise field (assumed to be diffuse), AðkÞ denotes the anec-
hoic head-related transfer function (HRTF) vector
between the speech source and the microphones of the
left and the right hearing device, and ALðkÞ and ARðkÞ
denote the anechoic HRTFs of the frontal microphones
in the left and the right hearing device, respectively. A
detailed description of the beamforming scheme
employed here can be found in Doclo et al. (2015).
Assuming the speech source to be fixed in front of the
listener, the filters WLðkÞ and WRðkÞ can be precalcu-
lated. The output signal at the left hearing device zLðnÞ
was obtained by filtering and summing all microphone
signals using the time-domain representation of the filter
WLðkÞ. The output signal at the right hearing device
zRðnÞ was obtained similarly.

Adaptive MVDR beamformer (adapt MVDR). Since in practice
the noise field is generally not known and changes over
time, fixed beamformers such as the described binaural
MVDR are only able to achieve a limited amount of
noise reduction. To adapt to changing noise environ-
ments, the noise coherence matrix !ðkÞ needs to be
updated, or alternatively, the generalized sidelobe can-
celer (GSC; Gannot, Burshtein, & Weinstein, 2001;
Griffiths & Jim, 1982) structure has been proposed, con-
sisting of a fixed beamformer, a blocking matrix, and an
adaptive filtering stage, as depicted in Figure 3. The fixed
beamformer generated a speech reference signal, the
blocking matrix generated so-called noise reference sig-
nals by steering spatial zeros in the direction of the
speech source, and the adaptive filtering stage used a
multichannel adaptive filter aiming to remove the
remaining correlation between the residual noise compo-
nent in the speech reference signal and the noise refer-
ence. For the fixed beamformer, the binaural MVDR
beamformer was used. The spatial zero toward the
speech source (assumed to be in front of the listener) in
the blocking matrix was realized by subtracting the
microphone signals of the right hearing device from the
microphone signals of the left hearing device, such that
two noise reference signals, one for each side, are avail-
able at the input of the adaptive filter. The adaptive fil-
tering stage was realized using a frequency-domain
normalized least mean squares (NLMS) algorithm
according to Shynk (1992).

Figure 2. Block diagram illustrating the single-channel noise

reduction setup.

4 Trends in Hearing



Combination of beamformer and postfiltering. Both the
fixed and the adaptive beamformers only consider
spatial characteristics of the microphone signals.
To additionally exploit spectro-temporal characteristics,
we also considered the combination of the beamformers
described earlier with a postfiltering based on single-chan-
nel speech enhancement, as presented above. The basic
block diagram, encompassing all combinations considered
in this article, is illustrated in Figure 4. First, a binaural
MVDR beamformer was applied as presented in the pre-
ceding paragraphs. The binaural output signals of the
beamformer were then transformed into the STFT
domain, followed by the same SCNR that has been out-
lined earlier. Based on the signals at the output of the
SCNR processing, gain functions for the left and for the
right ear were computed, i.e., GLðk, l Þ and GRðk, l Þ, and
applied to the left and right frontal microphone signals.
Finally, the enhanced signals were synthesized via over-
lap-add. For more details on spectral post-processing for
binaural speech enhancement, see Lotter (2004),
Rohdenburg (2008), Simmer, Bitzer, and Marro (2001),
and Gannot and Cohen (2007). The three combinations
under investigation differed only in the choice of the beam-
former and the postfiltering scheme, either using a common
postfiltering, i.e., GLðk, l Þ ¼ GRðk, l Þ, or an individual
postfiltering, i.e., GLðk, l Þ 6¼ GRðk, l Þ.

Common postfilter based on fixed binaural MVDR beamformer

(com Pf (Fixed MVDR)). In this setup, the fixed MVDR
beamformer was combined with a common postfilter,
defined as:

GLðk, l Þ ¼ GRðk, l Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~ZLðk, l Þj

2 þ j ~ZRðk, l Þj
2

jYL1ðk, l Þj
2 þ jYR1ðk, l Þj

2

s
: ð6Þ

By using the same real-valued gain on both signals, the
interaural level differences (ILDs) and interaural time
differences (ITDs) of both the speech and noise compo-
nents were maintained, as the signals at both ears were
scaled by the same factor. This was not necessarily the
case for the output of the binaural MVDR beamformer
without postfilter.

Common postfilter based on adaptive MVDR beamformer (com

PF (adapt MVDR)). In this setup, the adaptive MVDR
beamformer was combined with the same common post-
filter as introduced above.

Individual postfilter based on adaptive MVDR beamformer (ind

PF (adapt MVDR)). In this setup, the adaptive binaural
MVDR beamformer is combined with a different post-
filter, which works individually on the left and the right
hearing device. The gain functions were defined as:

GLðk, l Þ ¼
j ~ZLðk, l Þj

jYL1ðk, l Þj
; ð7Þ

GRðk, l Þ ¼
j ~ZRðk, l Þj

jYR1ðk, l Þj
: ð8Þ

On the one hand, since the SCNR scheme itself is mini-
mum mean-square error (MMSE) optimal (Breithaupt
et al., 2008), using individual postfilters potentially
achieved an increased SNR improvement compared
with using the common postfilter described earlier. On
the other hand, the input ILDs were not maintained
anymore.

Real-time implementation on the MHA platform. The MHA
(Grimm et al., 2006) is a real-time signal processing plat-
form designed for implementation and evaluation of hear-
ing device algorithms. It runs on multiple operating
systems and processor architectures. The MHA frame-
work as well as the existing algorithms were implemented
in Cþþ. Using the MHA configuration language, the
implemented algorithms could be easily configured by

Figure 3. Block diagram illustrating the adaptive binaural MVDR

beamformer setup.

Figure 4. Block diagram illustrating the combination of a binaural

MVDR beamformer with single-channel postfiltering. The indices n,

k, and l were omitted for the sake of clarity.

Baumgärtel et al. 5



setting their parameters and could be combined with each
other. Once a configuration had been loaded, all corres-
ponding algorithms were loaded with their current settings
as plug-ins at runtime into the MHA. The MHA supports
re-configuration of algorithms at runtime. For this, a net-
work connection can be established using network tools
(e.g., telnet) as well as using MATLAB tools, which are
part of the MHA distribution. All algorithms presented
here (see Table 1 for overview) were implemented on the
MHA platform. Although the save-to-file function was
used for the instrumental evaluations of algorithm per-
formance, all algorithms ran in real time, making the
system an ideal platform for subjective listening tests.
Such tests have been conducted with bilaterally implanted
CI users, HI, and NH listeners. The results from these
evaluations are presented in the two accompanying studies
(Baumgärtel et al., 2015; Völker et al., 2015).

Speech and Noise Material

All scenarios were created in a highly reverberant, cafe-
teria-style room (see Figure 5 and Kayser et al., 2009).
The reverberation time of this cafeteria of T60 � 1:25s is
larger than one would expect in typical conversation
environments, yet listeners will at times be faced with
environments exhibiting such long reverberation. The
scenarios created here can, in terms of reverberation
time, be understood as worst-case scenarios. With the
exception of the cafeteria ambient noise (see below for
details), all scenarios were created by convolving target
speech and background noise signals with HRIRs rec-
orded using behind-the-ear (BTE) HA shells on a
dummy head in a reverberant cafeteria (Kayser et al.,
2009). In the work described here, only front and rear
BTE microphone channels were used, mimicking two-
microphone HA or CI devices. The distance between the
two microphones on each side was approximately 1.6 cm.

Speech material. The Oldenburg sentence test (OLSA)
(Wagener, Brand, & Kollmeier, 1999) was used as
speech material. The OLSA speech material shows a
phoneme distribution that is equivalent to the mean
phoneme distribution of the German language and is
spoken at medium speed. Dry recordings of the OLSA
sentences were convolved with HRIRs as described
above in order to create the four-channel target input
signals. The target speech source was located at 0�

(front) at a distance of 102 cm in all test conditions
(Position A in Figure 5). A total of 120 sentences were
used in this instrumental evaluation.

Noise material. Instrumental evaluations of all algorithms
were performed in four distinct acoustic scenarios
described in detail below. To create interfering speech
signals, speech material from the German few-talker
corpus of the EUROM1 speech corpus (Chan et al.,
1995) was used, where we chose only the five male talk-
ers. To create the speech signals, 35 randomly selected
passages by one talker were concatenated and the result-
ing signal was then cropped to ten minutes length. The
four scenarios were as follows:

1. olnoise (OLN). To create a stationary yet spatial
noise scenario, the speech-shaped noise file provided
with the OLSA sentence material (olnoise) was used.
A 10-minute long version of the noise file was cre-
ated. Five different (uncorrelated) sections of this
noise were chosen by delaying the starting point of
the signal by 0, 2, 4, 6, and 8 seconds. Each noise
signal was then assigned to one of five locations (pos-
itions B, C, D, E, and F, see Figure 5) in the cafeteria
environment to create incoherent stationary back-
ground noise.

2. 20-talker babble (20T). A multitalker babble noise
was created by placing 20 talkers at five different

Table 1. List of Signal Enhancement Strategies.

No. Abbreviation Algorithm

1 NoPre no pre-processing

2 ADM* adaptive differential microphones

3 ADMþ coh adaptive differential micro-phones in combination with coherence filter

4 SCNR* single-channel noise reduction

5 fixed MVDR fixed binaural MVDR beamformer

6 adapt MVDR adaptive binaural MVDR beamformer

7 com PF (fixed MVDR) common postfilter based on fixed binaural MVDR beamformer

8 com PF (adapt MVDR) common postfilter based on adaptive binaural MVDR beamformer

9 ind PF (adapt MVDR) individual postfilter based on adaptive binaural MVDR beamformer

Note. Two algorithms marked with asterisks are established monaural strategies, which were included as reference (ADM) and because they have been used

as processing blocks in some of the binaural algorithms (ADM and SCNR). MVDR¼minimum variance distortionless response.
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locations (four talkers at each location) around the
listener. Speech signals were created using the speech
material taken from the EUROM1 corpus. Each
of the five talkers was used four times (at four differ-
ent locations). Therefore, for each of the five talkers,
four different 10-minute signals were created as
described above. The talkers were located to the left
and right of the listener, as well as front left and back
right (positions B, C, D, E, and F, see Figure 5).

3. Single competing talker (SCT). A single, male inter-
fering talker was placed at þ90� (right-hand side,
Position D in Figure 5) of the subject at a distance
of 162 cm and an elevation of 40 cm above ear level
(tilted to be pointed directly at the ear). The speech
material was taken from the EUROM1 speech
corpus as described above.

4. Cafeteria ambient noise (CAN). As the most realistic
scenario, the CAN signal was recorded alongside the
HRIRs in the same cafeteria-type room (Kayser
et al., 2009) during lunch hour. The noise signal
includes periods of two-person conversations being
carried out next to the recording dummy, periods
of more diffuse talking in the background as well as
typical cafeteria sounds such as dishes and cut-
lery being used and chairs being pushed across the
floor.

Signal generation. Clean speech and noise signals were
mixed at a broadband, long-term SNRs between
�10 dB and þ10 dB. The SNR was determined from
the reverberant speech and noise signals, averaged
across left and right ears, front and back microphones.
Three seconds of noise-only in the beginning of each
signal were provided to allow enough time for all algo-
rithms to converge before target speech onset. For each
test scenario, each of the 120 OLSA sentences used in
this evaluation was mixed with one noise segment ran-
domly cut from the longer, original noise files. The same
noise segment was used for all SNRs. Signals were then
processed by the signal pre-processing strategies using
the MHA platform. The processed speech and noise sig-
nals were computed following the protocol introduced
by Hagerman and Olofsson (2004). In short, two differ-
ent signals were produced and processed by the algo-
rithms: Speech mixed with the original noise signal
(SþN) and speech mixed with a phase-inverted version
of the noise signal (S – N). Under the assumption that
both signals are processed equally by the algorithms, the
processed speech and noise signals were calculated as
follows:

Sproc ¼
1

2
� ððSþNÞproc þ ðS�NÞprocÞ; ð9Þ

Figure 5. Layout of the cafeteria-type room used to create the target speech and noise signals. Position and head orientation 1 was

chosen for the listener. Target speech originated from Position A, interfering talkers were located at either Position D or Positions B, C, D,

E, and F. The inset (marked by red box) shows the detailed position and orientation of speakers located at Position D (a), Position E (b), and

Position F (c).
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and

Nproc ¼
1

2
� ððSþNÞproc � ðS�NÞprocÞ: ð10Þ

Subsequently, all signals were time-aligned to compen-
sate for different processing delays introduced by the
algorithms. In this step, the 3 seconds of noise added
at the beginning of each signal were also eliminated.

Reference signals. To compute the STOI and PESQ meas-
ures (see later for measure descriptions), a clean speech
reference signal is required. All algorithms aim at esti-
mating the anechoic speech component at the BTE
microphones; therefore, clean speech convolved with
anechoic HRIRs (Kayser et al., 2009) rather than dry
clean speech was used as a reference.

Instrumental Measures

Instrumental evaluations of the considered algorithms
were performed using instrumental measures of speech
intelligibility as well as speech quality. Here the STOI
measure as well as the iSNR were used as the instrumen-
tal speech intelligibility measures, while PESQ was used
to evaluate speech quality.

Intelligibility-weighted SNR. The iSNR (compare Greenberg
et al., 1993) calculates the long-term SNR in 18 fre-
quency bands and weighs the obtained SNRs with the
band-importance function according to the SII standard
(American National Standard Institute, 1997) to obtain
an overall iSNR measure. Since this measure does not
require a reference signal, it was computed based on the
processed speech (Sproc) and noise (Nproc) signals
obtained from equations (9) and (10).

Short-time objective intelligibility (STOI) measure. The STOI
measure (Taal et al., 2011) determines the correlation
between time-frequency segments of a clean speech ref-
erence signal and a (noisy) processed speech test signal.
Both signals are divided into 25.6-ms, Hanning-wind-
owed segments with 50% overlap. After decomposition
into 15 third-octave bands with center frequencies ran-
ging from 150Hz to 4.3 kHz, the correlation between the
clean speech reference signal and the processed signal is
determined for temporal envelope segments of 384ms
length. Before calculation of the correlation coefficient,
the processed signal is normalized to compensate for
global level differences. Additionally, the signal is
clipped, resulting in an upper bound for the sensitivity
of the measure toward severely degraded time-frequency
units (Taal et al., 2011). The obtained intermediate intel-
ligibility measures are averaged across all time frames
and all frequency bands to obtain one value, the STOI

score. STOI scores are mapped to an absolute intelligi-
bility prediction (Taal et al., 2011) where a score of 1
corresponds to 100% speech intelligibility. For NH lis-
teners, the measure shows a high correlation with sub-
jective speech intelligibility in different noise types for
speech processed with different noise reduction schemes.
In Hu et al. (2012), it has also been shown that STOI
was able to predict speech intelligibility for noise-
vocoded speech.

Perceptual evaluation of speech quality (PESQ). The PESQ
measure is more complex than the other two measures
used. It was developed and introduced by Rix, Beerends,
Hollier, and Hekstra (2001) and is recommended by
ITU-T for speech quality assessment of telephone net-
works (ITU-T, 2001). PESQ compares a clean speech
reference signal with a processed speech signal by
means of a perceptual model. PESQ was found to be
in good agreement with subjective quality measures for
NH listeners (Hu & Loizou, 2008). In short, the test and
reference signals are time- and level-aligned and filtered
to model a standard telephone handset. Subsequently,
both the reference and the test signal are passed through
an auditory transform. Two parameters are calculated
from differences between the two transformed signals
and are aggregated in time and frequency. These differ-
ences are then mapped to a mean opinion score
(MOS), covering a range from 0.5 (highly degraded test
signal) to 4.5 (no difference between reference and test
signal). PESQ results will be reported here in terms of
MOS. For reference, a decrease in SNR from 0dB to
�5 dB in the unprocessed signal results in a
reduction in MOS of 0.3. The choice of an anechoic,
clean-speech reference file resulted in the evaluation of
dereverberation and SNR improvements as quality
improvements.

Results and Discussion

In this section, we compare the performance of the con-
sidered noise reduction schemes by means of three differ-
ent instrumental measures. The same algorithms have
been evaluated in the same noise conditions with bilat-
erally implanted CI subjects by Baumgärtel et al. (2015)
and in NH and HI subjects by Völker et al. (2015).
Absolute values obtained from the instrumental
evaluation at an input SNR of 0 dB are presented in
Figure 6.

Additionally, for each measure, the improvements
provided by each algorithm in each scenario were deter-
mined as

� ¼ maxðScoreAlgo,L,ScoreAlgo,RÞ

�maxðScoreRef,L,ScoreRef,RÞ; ð11Þ
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where either the unprocessed condition (NoPre) or the
signals processed with ADMs were chosen as the refer-
ence condition. We refer to these improvements as
better-channel-improvements, and they are plotted for
an input SNR of 0 dB in Figure 7(a) with respect to
the unprocessed signal and Figure 7(b) with respect to
the ADM processed signals. In Figure 8, better-channel-
improvements with respect to the unprocessed reference
condition are depicted for each algorithm as a function
of the input SNR.

All results presented here are averaged across 120 sen-
tences and, consequently, across 120 different noise seg-
ments for each test scenario. The error bars in Figures 6
to 8 (standard deviation) therefore provide an estimate
of the variation in algorithmic performance for each
algorithm in each test scenario. In the scenarios tested
here, the fluctuations are rather small, suggesting all

algorithms work robustly in each of the tested scenarios.
The fluctuations in the highly nonstationary CAN and
SCT scenarios are larger than fluctuations in the more
stationary OLN and 20T babble scenarios as can be
expected. For PESQ, the variation decreases with
increasing input SNR. The same is true for STOI,
albeit to a lesser extent. The variation seems to be
caused almost exclusively by the noise characteristics;
the standard deviations for all algorithms within one
noise scenario are very similar.

The results from the three instrumental measures dif-
fered slightly, as each measure sheds light on certain
signal characteristics (see Instrumental Measures section
for details). It should be noted that the absolute mean
opinion scores obtained from the PESQ evaluation are
comparatively low. The full scale of the PESQ scores
ranges from 0.5 to 4.5, whereas the results here only

Figure 6. Instrumental evaluation results at 0 dB input SNR. Top panels show the results for the iSNR measure, middle panels show the

results for the STOI measure, and bottom panels show the results for the PESQ measure. Columns from left to right show results for OLN

(Navy), 20T (Turquoise), CAN (Red), and SCT (Yellow) noise scenarios. Left channel results are indicated by bar graphs with solid filling,

and right channel results by bar graphs with hashed filling. Error bars denote the standard deviation.
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covered a range up to 2.3. The PESQ measure was ori-
ginally developed to evaluate telephone transmission by
comparing a clean speech signal to a transmitted (and
presumably degraded in quality), yet still clean signal.
Here, however, we have used PESQ as an instrumental
quality measure by comparing a noisy speech signal
(output of the signal enhancement algorithms) with a
clean reference speech signal (compare Reference
Signals section). Residual noise, not accounted for in
the original model, was therefore treated as a quality
impairment.

For the unprocessed reference condition (NoPre) in
the SCT scenario, a large difference between the left
and right channels was found (Figure 6, rightmost
column), with the left channel showing better values in
all measures. This finding was expected considering the
highly asymmetric setup of this noise scenario: One com-
peting talker was located to the right of the listener, while
no noise sources are present to the listener’s left. In the
other three conditions, only small differences were

observed between the left and right channels, with the
right channel being evaluated as slightly better than the
left. This difference could again be attributed to a slight
asymmetry in the measurement scenario setup (see
Figure 5 for geometric layout of the measurement envir-
onment). In the OLN and 20T scenarios, noise sources
were located at positions B–F. The left side sources were
located closer to the hearing devices and therefore pro-
duced higher noise power than the sources located at the
right side. Additionally, the listener was seated in close
proximity to a wall on the left side resulting in left-biased
reflections, while the listener’s right side faced an open
room.

Signal processing with the ADM algorithm enhanced
the differences between left and right channels, especially
in the 20T condition. This is due to the ADM acting on
the right microphone channels being able to steer a spa-
tial zero toward two interfering noise sources located
toward the back (positions E and F, see Figure 5), result-
ing in high noise suppression, while the ADM acting on

Figure 7. Better-channel-improvements obtained for each instrumental measure score at an input SNR of 0 dB. (a) The better channel

for each algorithm condition is compared with the better channel in the corresponding no pre-processing condition. (b) The better channel

for each algorithm condition is compared with the better channel in the corresponding ADM processed condition. Color codes are used

for the test scenario, error bars denote the standard deviation.
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the left signal channels were more influenced by the inter-
fering noise source at a rather frontal position (B), which
cannot sufficiently be suppressed due to the close prox-
imity to the target direction (A). Better-channel-
improvements obtained by processing with ADMs were
seen with all measures in all scenarios. Considering that
the target and interfering sound source are spatially
separated in the SCT scenario, the ADMs were expected
to yield the largest improvements in this scenario. None
of the measures, however, matched this expectation. As a
function of the input SNR, the iSNR measure shows a
minimal decrease in better-channel-improvement with
increasing input SNR. The reason for this behavior is
that at low input SNRs, the noise sources are more
prominent than the target source which allows for an
efficient adaptation of the algorithm to the interfering
sound. Both the STOI and PESQ measures predict the
best performance at input SNRs of �5 dB or 0 dB. While
the decrease in performance at higher input SNRs can be
attributed to the loss in algorithm efficiency as discussed
above, the decrease at lower input SNRs is likely influ-
enced by distortions introduced by the processing algo-
rithm which are evaluated negatively by the STOI and
PESQ measures, but not by the iSNR measure.

The combination of ADMs with coherence-based
postfiltering (ADMþ coh) resulted in further increases
in better-channel-improvements for all measures in all
conditions (see Figure 7(b)), with the only exception
being STOI which showed a slight decrease in perform-
ance due to the addition of the coherence-based postfilter
in the stationary OLN scenario. In both, the iSNR and
STOI results, the same trend is apparent: ADMþ coh
provides larger benefits with increasing nonstationarity
of the interfering noise. We speculate that this is due to
the temporal variation of the interaural coherence

decreasing with increasing stationarity of the interfering
noise. Since the coherence-based postfilter derives the
gain from the interaural coherence, it provides less bene-
fit with decreasing temporal variation of the interaural
coherence. Unlike the iSNR measure, the STOI measure
takes into account signal distortions to a certain extent.
In all test scenarios but OLN, the improved SNR (as
apparent from the iSNR scores) outweighs the negative
impact of the distortions. In the stationary OLN, how-
ever, the reduced STOI score for ADMþ coh with
respect to the ADM reference is likely due to distortions
introduced by the processing that could not be offset by
SNR improvements. As a function of input SNR, each
measure will be discussed individually. For the iSNR
measure and nonstationary noises (SCT and CAN), a
similar behavior as ADM alone was found but with
overall larger benefits. In the stationary noises (OLN
and 20T), an increase in benefit with increasing input
SNR can be seen. The STOI measure shows similar
behavior to the ADM algorithm alone except for two
findings: in the OLN scenario, overall benefits are smal-
ler and, in the SCT scenario, the benefits at low input
SNRs are larger. Overall larger benefits than ADM alone
were seen in the PESQ measure, especially in the SCT
scenario at low input SNRs.

The SCNR algorithm yielded the smallest improve-
ments (sometimes degradations) in all scenarios, using
all measures. Since all other algorithms evaluated in
this study are multichannel processing schemes, this find-
ing was expected. Multichannel algorithms are well
known to provide larger benefits in both speech intelli-
gibility and signal quality than single-channel algo-
rithms. For all measures, the best performance of the
SCNR algorithm was observed, as expected, in the sta-
tionary OLN condition. The worst performance was seen

Figure 8. Better-channel-improvements for all tested algorithms are plotted at varying input SNRs between �10 dB and þ10 dB. Top

panels show results for iSNR, middle panels STOI, and bottom panels PESQ results. Error bars denote the standard deviation. Color codes

are used for the different test scenarios.
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in either the 20T or SCT scenarios. The SCNR scheme
employed here relied on speech and noise power esti-
mates based on the speech presence probability. For
the stationary OLN, these estimates and therefore the
separation of a noisy signal into speech and noise com-
ponents worked quite well, giving rise to the observed
improvement in all measures. For nonstationary noise
scenarios, where the noise contains more speech-like
signal parts (SCT being the extreme case), estimation
errors occur and consequently no improvements were
found. It is notable, however, that even in the extreme
case of speech-on-speech masking (SCT scenario), where
the SCNR scheme was expected to fail in its ability to
correctly estimate speech and noise powers, only rather
small degradations were observed. With respect to the
iSNR and PESQ measures, the algorithm performance
increased with the input signal’s SNR for all interfering
noise conditions. This behavior was anticipated as lower
interfering noise power reduces errors in the speech
probability estimates. The STOI measure, however, pre-
dicts no change in performance with input SNR or even
a small decrease.

Two versions of the binaural MVDR beamformer
were tested here, a fixed MVDR and an adaptive
MVDR beamformer. In the OLN, 20T and CAN scen-
arios both beamformers performed similarly, whereas in
SCT scenario, the performance of the adaptive MVDR
beamformer algorithms was substantially better than the
fixed MVDR beamformer. While both beamformers
were designed to enhance signals originating from dir-
ectly in front of the listener, the adaptive beamforming
algorithm had the additional ability to selectively sup-
press an interfering noise source originating from a dif-
ferent direction. This additional noise suppression did
not yield much advantage in environments containing
many noise sources located at a number of locations;
however, in the SCT environment, the suppression of
the single noise source in combination with the enhance-
ment of the target speech source resulted in a much more
favorable SNR than the target source enhancement
alone (fixed MVDR).

For the fixed binaural MVDR, the best performance
determined by each of the measures was seen in one of
the diffuse-like noise scenarios (iSNR: 20T, STOI: 20T,
and PESQ: OLN). For the iSNR and the STOI measure,
the lowest performance of the fixed MVDR was seen in
the highly directional SCT scenario. Since this binaural
beamforming algorithm utilizes the assumption of a dif-
fuse noise field in the calculation of the filters WLðkÞ and
WRðkÞ, this trend was anticipated. Compared with the
ADM baseline, the fixed binaural MVDR showed the
largest improvements in the stationary OLN scenario.
The iSNR and STOI measure revealed smaller, yet
noticeable improvements also for the CAN, 20T, and
SCT scenarios. The PESQ measure shows further

improvements only for the CAN condition and no dif-
ference to ADM for the remaining two (20T and SCT).
The similarities and differences between ADM and fixed
MVDR are also apparent when comparing the algo-
rithms’ performance across input SNRs for the iSNR
and PESQ measures. The STOI measure, however,
while showing similar trends for three of the noise scen-
arios (20T, CAN, and SCT), shows a larger improve-
ment for the fixed binaural MVDR at negative input
SNRs. For the fixed binaural MVDR beamformer, the
addition of a common postfilter resulted in improved
PESQ and iSNR scores in all scenarios. The STOI meas-
ure, however, showed decreased performance in all scen-
arios, except for the SCT scenario. As a function of input
SNR, the behavior of the common postfilter based on the
fixed MVDR beamformer is similar to the sum of the
fixed binaural MVDR alone and the SCNR algorithm.

The adaptive binaural MVDR beamformer yielded
the largest improvements overall for all measures in the
SCT scenario. Since this scenario consists of spatially
separated target and interfering sources, it is an ideal
match for the adaptive MVDR algorithm. For the adap-
tive MVDR without postfilters, all measures revealed the
largest better-channel-improvements in the SCT scen-
ario. When regarding the iSNR and STOI measures,
the adaptive MVDR in the SCT scenario also yielded
the largest improvements across all algorithms and
noise scenarios. For iSNR, both combinations of the
adaptive MVDR with postfilters yielded the second-
and third-largest overall better-channel-improvements.
For STOI, however, these two algorithms achieved
better results in the 20T condition. PESQ showed the
highest improvements for each of the adaptive MVDR
algorithms in the SCT scenario. For this measure, the
overall (across all scenarios and all algorithms) best per-
formance was achieved by the adaptive MVDR in com-
bination with the individual postfilter in the SCT
scenario. Compared to the ADM, the adaptive binaural
MVDR showed the largest improvements in the station-
ary OLN scenario and the nonstationary SCT scenario.
For the 20T and CAN scenarios, iSNR and STOI predict
an improvement while the PESQ measure shows no dif-
ference to ADMs. These improvements are caused by the
enhanced directivity of the adaptive MVDR beamformer
compared to the ADMs. The same trend held true when
comparing the common and individual postfilters based
on the adaptive MVDR beamformer (with respect to the
ADM baseline): The best performance was seen in the
OLN and SCT scenarios. The amount of improvement
provided by each of the postfilters, however, differs from
measure to measure. STOI showed a decrease in all algo-
rithm benefits cause by the addition of postfilters. The
iSNR measure, on the other hand, showed increases in
performance in all but the SCT scenario and PESQ
revealed increases for both types of postfilters in all
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test scenarios. It can be assumed that the decrease in
STOI score caused by the addition of postfiltering is
due to the introduction of distortions, while the improve-
ments in iSNR and PESQ are caused by an increase in
SNR achieved by improved noise reduction. The decrease
in iSNR in the SCT scenario can be attributed to errors in
the speech-presence probability estimation of the postfil-
ter, when confronted with two single speech sources. As a
function of the input SNR, three general trends can be
identified when comparing the adaptive binaural MVDR
to the previously discussed ADMs: In the 20T and CAN
scenarios, all measures show very a similar behavior
between the ADMs and adaptive MVDR, with slightly
larger improvements by the adaptive MVDR. In the
OLN scenario, all measures show notably larger benefits
for the adaptive MVDR than the ADM, yet the input
SNR-dependence is similar. In the SCT scenario, we see
drastically larger benefits across all measures provided by
the adaptive MVDR that also shows a very different
SNR-dependence. The benefits provided by the adaptive
MVDR algorithm decrease with increasing SNR. This
behavior can again be explained by the nature of the
noise scenario and the algorithm itself: At low input
SNRs, the speech power of the interfering talker domin-
ates the acoustic scene and the algorithm can efficiently
adapt to this interfering sound source. The direction of
enhancement is set and therefore not impacted by the low
speech power of the target speaker source at low SNRs.
As with the common postfilter based on the fixed binaural
MVDR, both postfiltering schemes based on the adaptive
binaural MVDR reveal SNR-dependencies that can be
understood as the sum of the SCNR algorithm and the
adaptive binaural MVDR alone.

It can be observed that the individual postfilter (ind
PF) performs slightly better than the common postfilter
(com PF) for most scenarios and most measures.
Exceptions to this finding were the iSNR in the SCT
scenario, which showed a slight decrease in performance
for the individual postfilter compared to the common
postfilter and PESQ, which revealed the exact opposite:
a slight increase in performance for the individual post-
filter only for the SCT scenario and slight decreases for
the three other scenarios.

The common postfilter was motivated to cause no dis-
tortions to the binaural cues (most importantly ILD) by
applying the same (real-valued) gains to the left and the
right channels. In contrast, for the individual postfilter,
the gains were calculated for the left and right channels
individually. While this approach produced distortions
in the interaural level difference, the SNR improvement
for each channel was maximized. NH listeners can bene-
fit from a spatial separation between a target speech
source and a noise source by exploiting the interaural
cues resulting from this separation (Plomp & Mimpen,
1981). Consequently, it has previously been shown

that they can benefit from a signal processing scheme
preserving binaural cues (Van den Bogaert et al.,
2009). In the instrumental evaluation presented here,
however, no binaural instrumental measures were used.
The left and the right channels were always regarded
separately and such a binaural interaction benefit could
not be assessed. Accordingly, the individual postfilter
scheme yielded, with few exceptions, the expected
better performance compared to the common postfilter
scheme.

General Discussion

The SCNR scheme included here for reference per-
formed similarly to what had previously been reported
for subjective speech intelligibility measurements in
noise, using (single-channel) noise reduced signals. Luts
et al. (2010), in a large, multicenter study of signal
enhancement algorithms, included two algorithms oper-
ating on single channel signals: noise suppression based
on perceptually optimized spectral subtraction as well as
Wiener filter-based noise suppression. Both of those
algorithms showed no change in speech reception thresh-
old compared to unprocessed signals, neither improving
speech intelligibility in noise, nor impairing it.

The coherence-based noise reduction scheme investi-
gated here had also previously been investigated in the
aforementioned study by Luts et al. (2010). The algo-
rithm was evaluated using speech intelligibility tests
with a total of 109 subjects (NH and HI) across four
countries. In all test sites, the algorithm showed no
improvement in speech intelligibility, contrary to what
our instrumental evaluation predicted. In a subjective
preference test, however, Luts’ subjects preferred the
coherence-filtered signals over the unprocessed signals,
rating them as slightly better. These findings are in line
with the PESQ results presented here.

The instrumental evaluation performed here revealed
differences between the common and the individual post-
filter scheme, that despite being rather small (less than
1 dB iSNR and less than 3% predicted speech intelligi-
bility (STOI)), were highly consistent across measures.
The current instrumental evaluation suggested a benefit
in speech intelligibility from using individual postfilters,
providing maximal noise reduction for each channel.

Overall, all three instrumental measures considered
here predicted good performance of the noise reduction
algorithms with respect to speech intelligibility as well as
speech quality. The optimal working point for most algo-
rithms is around 0 dB input SNR, according to the STOI
measure. Algorithms including SCNR can benefit from
higher SNRs and provide more benefit in these more
favorable conditions. Algorithms including the adaptive
binaural MVDR yield the best performance in OLN and
the SCT scenario at negative SNRs. The best results were
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obtained with the binaural MVDR beamforming algo-
rithms (fixed and adaptive MVDR with and without
postfilter). It should be noted, however, that these beam-
formers assume the direction of the target speaker to be
known and would hence be unable to cope with nonfron-
tal talker locations or moving speech targets. For fixed
sources located around 0�, however, these algorithms
were able to provide improvements in all three instru-
mental measures.

Summary

In this article, an extensive instrumental evaluation of six
binaural and two monaural signal enhancement schemes
was presented. Evaluations were performed in four dis-
tinct reverberant scenarios that were designed to reflect
real-world listening situations. All algorithms were imple-
mented on a common real-time signal processing plat-
form, making the setup ideal for perceptual evaluations.

The following findings emerged:

1. The adaptive differential microphones (ADMs)
showed good results in the perceptual evaluation of
speech quality (PESQ) evaluation.

2. The predicted speech quality was even more
improved when using a coherence-based postfilter
in combination with the ADMs.

3. The single-channel noise reduction (SCNR) algo-
rithm tested here showed intelligibility-weighted
signal-to-noise-ratio (iSNR) improvements in the sta-
tionary speech-shaped noise.

4. The adaptive binaural minimum variance distortion-
less response (MVDR) beamformers showed larger
improvements in predicted speech intelligibility and
predicted speech quality than the fixed binaural
MVDR beamformer.

5. Processing with the binaural adaptive MVDR beam-
former resulted in larger improvements than the
monaural ADM in all measures.

6. Postfiltering schemes deriving gains for the left and
right channels individually resulted in larger improve-
ments than postfiltering schemes deriving a common
gain for the left and the right channels when employed
based on the adaptive MVDR beamformer.

7. The best overall performance was seen with the adap-
tive binaural MVDR beamformer in the single com-
peting talker (SCT) scenario, resulting in a better-ear
iSNR improvement of 10.8 dB.

These results are encouraging for perceptual listening
tests to assess speech intelligibility and signal quality in
NH listeners, HI listeners, and CI users. These tests have
been performed and are reported in two subsequent stu-
dies in this issue (Baumgärtel et al., 2015; Völker et al.,
2015).
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Note

1. Fixed differential microphones (FDMs) working on the left

and right side independently are another possible choice of
reference algorithm condition. FDMs implemented analo-
gously to the ADMs presented here have been tested using
the iSNR measure. Performance differed by less than .1 dB,

except for one condition (right side channels, SCT noise),
where the ADMs outperformed the FDMs by 2.9 dB. We
therefore decided to include the technically more refined

ADMs as reference algorithms in this study rather than
FDMs.
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