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Abstract

Ecotoxicology is primarily concerned with predicting the effects of toxic sub-

stances on the biological components of the ecosystem. In remote, high latitude

environments such as Antarctica, where field work is logistically difficult and

expensive, and where access to adequate numbers of soil invertebrates is limited

and response times of biota are slow, appropriate modeling tools using micro-

bial community responses can be valuable as an alternative to traditional sin-

gle-species toxicity tests. In this study, we apply a Bayesian nonparametric

model to a soil microbial data set acquired across a hydrocarbon contamination

gradient at the site of a fuel spill in Antarctica. We model community change

in terms of OTUs (operational taxonomic units) in response to a range of total

petroleum hydrocarbon (TPH) concentrations. The Shannon diversity of the

microbial community, clustering of OTUs into groups with similar behavior

with respect to TPH, and effective concentration values at level x, which repre-

sent the TPH concentration that causes x% change in the community, are pre-

sented. This model is broadly applicable to other complex data sets with similar

data structure and inferential requirements on the response of communities to

environmental parameters and stressors.

Introduction

An understanding of the environmental processes that

affect ecosystems is of fundamental importance for their

management and conservation. Ecotoxicology is primarily

concerned with predicting the effects of toxic substances

on the biological components of the ecosystem. Toxicity

data based on the response of a range of native biota are

critical to the derivation of site-specific environmental

quality guidelines. These include trigger values or con-

taminant thresholds, which when exceeded prompt reme-

diation and/or cleanup activities. They also include

remediation targets which define an acceptable level of

ecosystem recovery and restoration and, once reached

through remediation, enable sign-off of sites as no longer

posing significant environmental risk.

While ecotoxicological assessments aim to predict the

effects of contaminants on an ecosystem, monitoring and

characterizing the state of an entire ecosystem is rarely

practicable. Thus, toxicity tests are generally conducted

on single species (populations), or groups of species

(communities), as indicators of the overall system state.

In remote, high latitude environments such as Antarctica,

where field work is logistically difficult and expensive,

and where terrestrial ecosystems are comprised of rela-

tively few species and simple food webs, appropriate

modeling tools using microbial community responses can

be valuable as an alternative to traditional single-species
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toxicity tests. Such community assessments may provide

more representative and relevant information that incor-

porates complex interactions between species compared

with simple single-species tests.

Modeling the responses of species or communities to

contamination gradients is conceptually very similar to

the broader goal of modeling species responses to envi-

ronmental conditions, which is an area of long-standing

study in the ecological sciences. Conventional observa-

tional ecological studies have generally dealt with a rela-

tively small number of species, and the modeling

methods have been developed accordingly. Thus, while

methods for single-species modeling are relatively

mature and diverse (e.g., Elith et al. 2006), community

modeling methods are less well established. The develop-

ment of community modeling methods has, at least in

part, been driven by the emergence of high-throughput

microbial and similar studies, which can provide infor-

mation on tens of thousands of species simultaneously,

many of which can be extremely sparse. One approach

to community modeling is to model single species in an

independent fashion and then assemble the individual

model predictions into a composite prediction of the

community (e.g., Ellis et al. 2011). However, such

approaches typically struggle with rare species, which are

difficult to model with confidence because of their

sparse observations. Appropriate propagation of the

uncertainty in individual species models into the com-

posite predictions can also be difficult. An alternative

approach, which has become more common in recent

years, is to simultaneously model the response of the

community as a whole. This can involve the modeling

of univariate summaries of multispecies responses, such

as compositional dissimilarity (e.g., Ferrier and Guisan

2006; Ferrier et al. 2007) or rank abundance distribu-

tions (Foster and Dunstan 2010). Alternatively, the

responses of multiple species can be modeled simulta-

neously (e.g., Foster and Dunstan 2010; Dunstan et al.

2011; Wang et al. 2012).

A common approach to characterizing single-species

responses is through the probability of presence pj of each

species j at a site, often as a function of the environmen-

tal conditions at that site. This approach can be extended

to multiple species using a multiresponse model. The

multinomial distribution, which generalizes the binomial

distribution to the case where there are more than two

species, provides an intuitive framework when the sam-

pling process consists of independent observations of a

fixed number of species. This distribution gives the prob-

ability of observing any given combination of species,

conditional on parameters which are the species relative

proportions. This intuitive modeling of species relative

proportions has led to the recent popularity of multino-

mial methods in ecological (e.g., Bohlin et al. 2009; Ford-

yce et al. 2011; De’ath 2012; Holmes et al. 2012) and

genomic (Dunson and Xing 2009) applications. The mul-

tinomial approach also provides a natural link to indices

that describe various community properties of interest to

ecologists, such as species diversity, richness, and even-

ness. The literature on diversity in ecology is extensive,

see, for example, Hill (1973); Patil and Taillie (1982);

Foster and Dunstan (2010); Colwell et al. (2012); De’ath

(2012). We focus here on the Shannon index, cf Sec-

tion “Methods”.

In ecotoxicological studies with contaminants, interest

is generally directed toward estimating the concentrations

of toxicants that cause a certain level of impact on a pop-

ulation or community. The effective concentration, or ECx

value, is the concentration that causes x% effect on the

population relative to the controls (e.g., Newman 2012).

For example, the EC50 is the median effective concentra-

tion and represents the concentration of a toxicant which

induces a response halfway between the control baseline

and the maximum after a specified exposure time (see

section “Methods” for a more detailed definition). Of

more ecological relevance in terms of protecting the eco-

system, estimates of lower effective quantiles such as the

EC10 and EC20 are also commonly estimated. These more

sensitive estimates are included in species sensitivity dis-

tribution (SSD) models, which are in turn used to derive

appropriate protective guidelines on contaminant concen-

trations. Currently, it is not clear how to best calculate

ECx values using whole-community data and to identify

the vulnerable members within.

In this study, we apply the modeling method presented

by Arbel et al. (2013) to a soil microbial data set acquired

across a hydrocarbon contamination gradient at the site

of a fuel spill in Antarctica. The method used here

extends that presented by Holmes et al. (2012). It allows

for an unknown a priori number of species, accounts for

additional factors by introducing dependence into the

model, and allows predictions to be made at any value of

the dependent variable (i.e., contaminant concentration

value). This brings estimates which are more efficient,

both computationally and inferentially, and allows assess-

ment of the response of species, for instance, in terms of

diversity, to contamination. This method provides a

robust and practical way to assess a mixed community of

organisms (whether microbes or macroorganisms) and

determine their responses to a toxicant. There are many

studies that focus on the response of a single organism,

but often this response will have repercussive effects on a

community and the surrounding ecosystem. This method

provides a platform by which to explore those effects and

derive toxicology data for multiple species without the

need for empirical data.
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Methods

Soil sample collection and analysis

Soil samples were collected from a range of sites across a

fuel contamination gradient at Australia’s Casey Station

in East Antarctica (110�320E, 66�170S). The data comprise

counts of a large number (of the order of 1800) of micro-

bial taxa, referred to as OTUs (operational taxonomic

units; see Schloss et al. 2009), collected at 22 sites, across

a range of hydrocarbon contamination (Siciliano et al.

2014). Genomic DNA extracted from samples was

sequenced on a 454 Titanium FLX instrument (Roche,

Branford, CT) at the Research and Testing facility (Lub-

bock, TX) using the universal bacterial primers 28F and

519R (Dowd et al. 2008). Pyrosequencing data were pro-

cessed using the mothur software package (Schloss

et al. 2009). This involved removal of short reads

(<150 bp), excessive homopolymeric reads (>8 bp

repeats) and denoising with AmpliconNoise
(min/max flows 360/720) (Quince et al. 2011). Precluster-

ing at 1% was performed to negate the per-base error rate

of the 454 platforms. Seed sequences were then aligned to

the SILVA 16S rRNA gene database alignment using a

NAST alignment algorithm (Pruesse et al. 2007; Caporaso

et al. 2010). Reads were then chimera-checked (Edgar

et al. 2011) and clustered into OTUs at 96% sequence

similarity to achieve approximately species-level units as

derived by Kim et al. (2011). Seed sequences from each

OTU were then classified using a Na€ıve Bayesian classifier

in mothur against the Greengenes 16S reference data-

base (October 2012 version, see McDonald et al. 2012).

While a range of geographic, environmental, and soil

physicochemical measurements were taken as covariate

data for each sample, in this study we specifically focus

on the concentration of fuel in the soil, measured as total

petroleum hydrocarbon (TPH) in mg/kg of soil. TPH

concentrations in each soil sample were measured using a

gas chromatograph with flame ionization detection (GC-

FID) via hexane extraction, as described by Schafer et al.

(2007). Total signal in the C9–C28 range was measured

to determine TPH concentrations.

Although a continuous variable, the same TPH concen-

tration was recorded for several sites, ranging from 0 to

22,000 mg TPH/kg soil. This is the case for the baseline

which comprises 10 uncontaminated sites (i.e., with zero

TPH). The statistical model expresses the count of each

OTU as a function of the environmental covariates. In

order to accommodate for multiple sites with identical

TPH concentrations, the ties in concentration were

jittered, that is, had a random Gaussian noise added

(absolute value for the case TPH = 0). This noise can be

interpreted as errors in the measurement process and be

incorporated in the probabilistic model. Reproducing the

estimation for different small values of variance for that

noise compared with the variability in observed TPH, we

have noted that the results were not substantially altered.

For computational reasons, only the most abundant

OTUs were included in the analyses. Here, only OTUs

with total abundance exceeding 10 over all sites were

included, which occurred for 392 OTUs. However, we

show in the Appendix that repeating the analyses by

including or discarding up to 20% of OTUs did not sub-

stantially alter the results.

Statistical model

A brief summary of the modeling procedure is given here:

Full details of the model are provided by Arbel et al.

(2013). The following notation is used to refer to the

data. Each unique covariate value, possibly after jittering,

is indexed by i and is denoted by Xi, i = 1,. . .,I. Recall

that this may correspond to a single site or to a collection

of sites with the same covariate value. However, for the

sake of simplicity, we refer to i as the site index (i.e., “site

i”). OTUs are indexed by j = 1,2,. . ., so that the abun-

dance of OTU j at site i is denoted by NjðXiÞ and the

total abundance of all OTUs at site i by NðXiÞ. The same

notation, using p instead of N, relates to proportions, or

average proportions, rather than abundances. That is,

pjðXiÞ is the probability of observing OTU j at site i. The

probability distribution pðXiÞ ¼ ðp1ðXiÞ; p2ðXiÞ; . . .Þ,
denoted with a bold letter for a vector, is the distribution

of these probabilities across all OTUs at site i, that is, the

community composition. The dependence of the commu-

nity composition on the covariate X is modeled by:

Yn;i j pðXiÞ�ind
X1

j¼1

pjðXiÞdj;

where the nth observation made at site i is denoted by

Yn;i, for i ¼ 1; . . .; I; n ¼ 1; . . .;NðXiÞ, and dj stands for

taxa j. That is, observation is OTU j with probability

pjðXiÞ.
Not all taxa in the population are assumed to have

been observed, and no a priori value is placed on this

total number, which might be much larger than the num-

ber of observed taxa. Note that we do not attempt to esti-

mate the number of undetected taxa (see e.g., Royle and

Dorazio 2008 for an extensive account on the role of

imperfect detectability).

A Bayesian perspective is adopted for estimation of this

model. The basic machinery requires specification of the

prior distributions of the community vectors pðXiÞ. It takes
the form of a probability distribution, which represents a

reasonable prior knowledge about the parameters of the
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model. It is updated with the data and the sampling model

through the celebrated Bayes’ rule in order to obtain the

posterior distribution of the parameters. All inferential

information is enclosed in that distribution. A common

approach to estimating such models is through Markov

chain Monte Carlo methods (MCMC), which (approxi-

mately) sample from the posterior distribution. Hence, the

inference from the fitted model makes use of a so-called

posterior sample, which is a random sample of probabilities

pðXiÞ drawn from the posterior distribution.

A common prior distribution for models of this type is

the Griffiths–Engen–McCloskey distribution, denoted by

pðXiÞ�GEMðMÞ, and defined by

pjðXiÞ ¼ VjðXiÞ
Y

l\j

ð1� VlðXiÞÞ with VjðXiÞ �ind Betað1;MÞ:

This construction of generic probability weights pj is

often described using the analogy of breaking a stick.

Start with a stick of length 1, break it at a random length

V1, and define p1 ¼ V1. Do the same for the remaining

stick of size : break it at a random length V2, define

p2 ¼ V2ð1� V1Þ, and continue iterating with this pro-

cess. The remaining length at stage j,
Qj

i¼ 1ð1� ViÞ, goes
to zero when j goes to infinity, and so, the pj’s sum to 1.

Commonly, independent priors on pðXiÞ are used for dif-

ferent Xi (e.g., Holmes et al. 2012). However, as we are

dealing with a continuous covariate, it is arguably more

appropriate to adopt a dependent prior that evolves

smoothly with the covariate X: a small change in Xi

induces a small change in pðXiÞ. The GEM distribution

can thus be extended to a dependent version with this

smoothness constraint, denoted here by DepGEM. Both
models will be compared in our analyses.

The GEM prior on the vector VjðXiÞ is required to be

marginally beta-distributed. The DepGEM prior addi-

tionally requires that VjðXiÞ exhibit dependence across i

in order to be smooth with respect to the covariate X.

This is achieved using Gaussian processes Z, whose

covariance matrices allow a very flexible modeling of the

dependence through a so-called bandwidth parameter.

Informally speaking, the bandwidth can be thought of as

roughly the distance one has to move in the covariate

space before the process can change substantially. Also,

the model allows estimation of the probability pðX�Þ for

covariate values X� that are unobserved, by computing

the predictive distribution of the Gaussian processes. See

Arbel et al. (2013) for details.

The parameter M is called the precision parameter of

the prior and governs the uniformity of the probabilities

drawn from it. Higher values of M yield a more uniform

probability distribution, which is equivalent to a more

diverse community, and so, M effectively controls the

level of diversity in the prior. For small M, the first few

taxa share most of the weights, whereas in the limiting

case M, the weights tend to be uniformly distributed, cf

Fig. 1. Exploratory analyses indicate that, given a suffi-

ciently large range of M, the OTU frequencies drawn

from this distribution are similar to those observed in the

data. A random prior distribution on M can be used to

ensure that it has adequate range.

A means of studying communities diversity is through

the Shannon diversity index (also known as the Shannon–
Wiener index, the Shannon–Weaver index, and the Shan-

non entropy), defined by

HShanðpÞ ¼ �
X

j

pj log pj: (1)

The prior expectation of the Shannon index under the

GEM prior is given by

EðHShanÞ ¼ wðM þ 1Þ � wð1Þ;
where w is the digamma function (see Cerquetti 2014).

Figure 2 illustrates the a priori effect of M on the Shan-

non index.

The estimation of the model is described in Arbel et al.

(2013). Posterior sampling is performed by a Gibbs algo-

rithm, with a Metropolis–Hastings step for nonconjugate

conditionals. It is run for 50 000 iterations thinned by a

factor of 5 with a burn-in of 10 000 iterations. The

parameters of the hyperpriors are chosen so that they are

weakly informative. The efficiency and convergence of the

sampler was assessed by trace plots and autocorrelations

of the parameters, which did not reveal any convergence

issues.

Inference from fitted models

Fitted models can be used to make a range of inferences

about the microbial taxa and the response of the commu-

nity to contamination.

Diversity, defined in equation (1) by the Shannon

index as noted above, was estimated from the posterior

sample obtained from the Gibbs algorithm. It consists of

a sample of probabilities p(X) (i.e., estimates of commu-

nity composition). The Shannon index can be calculated

for each of these samples, yielding a posterior estimate of

the Shannon index, which is illustrated in Fig. 3, for both

GEM and DepGEM models.

On the basis of their fitted responses, OTUs were clas-

sified as increasing or decreasing with contamination. The

classification was based on the difference mj, for each

OTU j, between its average probability at low contami-

nant (i.e., X\Xmed ¼ 6050 mg/kg TPH, the median

value of observed TPH) and its average probability at high

contaminant (i.e., X [ Xmed). An intuitive interpretation
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of mj is that it indicates to what extent OTU j is

impacted by the contaminant. The posterior distribution

is available for mj, along with 95% credible intervals. The

clustering was conducted as follows: if zero was on the

left of the credible interval (i.e., mj was deemed from

the posterior distribution to be highly likely to be larger

than zero), then OTU j was classified as decreasing with

TPH; if zero was on the right, it was classified as increas-

ing. Otherwise (if the credible interval included zero), it

was deemed that the model did not give enough informa-

tion about the response of OTU j to the contaminant,

and it was given a “no classification” label. The classifica-

tion was performed for both the GEM and the Dep-
GEM models. We also classified each OTU directly using

the raw data, from which no credible interval is available,

and so, no OTUs were placed in the “no classification”

group in this case.

In order to obtain an overview of the ecological rele-

vance of these classification results, we compared the

results to a list of 181 genera of known hydrocarbon-

degrading bacteria (Prince et al. 2010). This list is based

on published results from a wide range of ecosystem

types – not just Antarctic soils – and so, this comparison

was only expected to give general indications of ecological

relevance. We expected that genera known to be hydro-

carbon degraders would typically show an increasing

response to contamination, whereas the reverse would be

true for other genera. The sensitivity (true positive rate)

and specificity (true negative rate) were calculated on the

basis of the number of correctly classified OTUs (exclud-

ing those OTUs that were given “no classification” by the

model). The weighted sensitivity and specificity were also

calculated by taking into account the relative abundances

of the OTUs. Note that these comparisons were only con-

ducted using those OTUs identified to a taxonomic level

of genus or finer.

The ECx value (see e.g., Newman 2012) is the TPH con-

centration associated with an x% response in the target

organisms. For single-species studies, this is commonly

assessed by an x% increase in mortality or some sublethal

response and is determined using logistic or probit regres-

sion. In applications with a multispecies response, it is

the response of the community as a whole that is of inter-

est. This can be defined in a number of ways depending

on the specific aspects of interest to the ecological appli-

cation. In an application where the Shannon index is

deemed to be an appropriate community indicator, the

estimated Shannon index curve (e.g., Fig. 3) could be

used to define the ECx threshold. As an alternative, we

illustrate the use of a dissimilarity index as a measure of

change in community composition. Many dissimilarity

functions are available; for the purposes of demonstra-

tion, we adopted the commonly used Bray–Curtis dissim-

ilarity (Bray and Curtis 1957). We defined the baseline

community as the ten uncontaminated sites, where TPH

equals zero. To calculate an ECx value, we seek the TPH

level that corresponds to an x% change in the community

composition relative to the baseline. The dissimilarity at

TPH zero (labeled D0 here) is an estimate of the variability
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in community composition between uncontaminated sites

and so is greater than zero. The Bray–Curtis dissimilarity

has a maximum value of 1, which occurs when two sites

have no species in common (i.e., disjoint community

compositions). For ECx, we therefore calculated the Dx

threshold as Dx ¼ 1� ð1� D0Þð100� xÞ=100. This is

equivalent to assuming that an EC0 value (i.e., no change

relative to baseline) occurs at D ¼ D0, an EC100 value

(i.e., 100% change in composition) occurs at D = 1, and

with linear interpolation for intermediate values. The dis-

similarity curve is not guaranteed to be monotonic, and

so, there may be several TPH values associated with a cer-

tain dissimilarity level Dx. In this situation, the smaller

value should generally be used, so as to provide a conser-

vative ECx estimate. It is unlikely that this dissimilarity

threshold will coincide exactly with one of the measured

TPH levels in the data, and so, this approach required the

model to be able to interpolate between observed TPH

values. This is one of the features of the DepGEM
model. This approach also allowed the uncertainty in the

ECx value to be estimated, by considering the 95% credi-

ble intervals on the estimated dissimilarity. As the curves

of the credible intervals are similarly not necessarily

monotonically increasing, it may be necessary to define

an increasing envelope of them in order to derive the

credible intervals for ECx values. Note that this technique

leads to conservative estimates for the uncertainty about

ECx values, as it enlarges the proper credible intervals for

the dissimilarity.

Results for Microbial Data

Estimates of diversity with respect to hydrocarbon con-

tamination are shown in Fig. 3. The DepGEM model

(Fig. 3A) suggested that diversity first increases with TPH

with a maximum at 3000 mg TPH/kg soil and then

decreases with TPH. The GEM model estimates are

shown for comparison in Fig. 3B. These estimates showed

more variability with respect to TPH, being closer to the

estimates of the diversity from raw data. Note that the

GEM estimates were only available at levels of the covari-

ate that were present in the data, because of the indepen-

dent nature of the model specification. The DepGEM,
in contrast, provided predictions across the full range of

TPH values.

The clustering results are summarized in Table 1. Our

data included 64 distinct bacterial genera, of which 22

also appeared on the list of known hydrocarbon-degrading
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Figure 3. Diversity estimation results. (A)

DepGEM model estimates (50,000 MCMC

samples). Thick line: Shannon diversity

estimate. Dashed lines: credible interval for the

diversity index. Dots: Shannon diversity index in

raw data. (B) GEM model estimates (50,000

MCMC samples). Triangles: posterior mean

estimate of the Shannon diversity index.

Table 1. Comparison of the clustering to taxonomic information. Clustering is performed according to the models (Data: raw data, DepGEM:

dependent model, GEM: independent model).

Sensitivity

(Abundance-weighted sensitivity)

Specificity

(Abundance-weighted specificity)

DepGEM 0.35 (0.62) 0.91 (0.93)

GEM 0.41 (0.63) 0.80 (0.90)

Data 0.43 (0.63) 0.72 (0.81)

Known hydrocarbon-degrading genera Other genera

N OTUs classified

as increasing

N OTUs classified

as decreasing

N OTUs not classified

(no classif. rate)

N OTUs classified as

increasing

N OTUs Classified

as decreasing

N OTUs not classified

(no classif. rate)

DepGEM 18 34 13 (0.20) 6 58 18 (0.22)

GEM 15 21 29 (0.45) 6 24 52 (0.63)

Data 28 37 – 23 59 –
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taxa. Table 1 shows the comparison of the classification

results to the list of known hydrocarbon-degrading gen-

era. Broadly, the results of all methods showed a reason-

able match to the expected responses. The GEM model

gave more “no classification” results than the DepGEM
model. This illustrates the fact that the GEM model uses

less information than the DepGEM (which, for each

contaminant value, borrows information to neighboring

contaminant values for the estimation), hence has larger

credible intervals which tend to include zero more often.

This means that, although the sensitivity and specificity of

the GEM model were similar to that of the DepGEM,
more OTUs were left unclassified by the GEM approach

compared to the DepGEM. The sensitivity and specific-

ity of all methods were generally higher when weighted

by OTU abundance (rather than simply calculated on the

number of OTUs correctly classified). This suggests that

high-abundance OTUs were typically deemed to have a

response that matched the expected behavior. This may

be because the higher-abundance OTUs are better mod-

eled by these methods, and so, their response is more

likely to be correctly characterized. Alternatively, low-

abundance OTUs may simply not express the response

type that might be expected for their genus. OTUs from a

hydrocarbon-degrading genus, if present only in low

numbers, might not tend to increase in response to the

presence of hydrocarbons because they are outcompeted

by other, more abundant hydrocarbon-degrading bacteria.

All methods showed generally low values of sensitivity

(i.e., not all OTUs from hydrocarbon-degrading genera

actually showed increasing responses to contamination).

This is consistent with the nature of the list of hydrocar-

bon-degrading bacteria, which was drawn from a diverse

range of studies covering many ecosystem types. Particu-

lar species found to be associated with hydrocarbon deg-

radation in those studies might not match the species

within the same genera found in our samples. Addition-

ally, the model was estimated separately on the three

groups. We plot the results for diversity and dissimilarity

estimation in Fig. A1 in Appendix A. Note that the

decreasing/increasing pattern of the groups with respect

to TPH is not visible in the graphs as it is defined in

terms of probability of the species, while we plot diversity

and dissimilarity.

The estimated compositional dissimilarity curve with

TPH is shown in Fig. 4, along with the ECx values

extracted from it and provided in Table 2. Dissimilarity

generally increased with TPH, illustrating that the con-

taminant alters community structure. Typically, EC10,

EC20 and EC50 values, cf Table 2, are reported in toxicity

studies to be used in the derivation of protective concen-

trations in environmental guidelines or for comparisons

of sensitivity between biota. EC10, EC20, and EC50 values

estimated from this model are 1875, 3125, and 6875 mg

TPH/kg soil, respectively. For small x (<10%), the lower

bound of the credible interval on the ECx value is zero,

because both TPH and dissimilarity values are bounded

below by zero. Conversely, for large x (more than 75%),

the upper bound on the credible interval is 25,000, which

is the limit of the TPH range in our analysis.
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Figure 4. Dissimilarity and ECx estimation

results. (A) Posterior distribution (DepGEM
model) of the dissimilarity between the control

community (TPH equals zero) and other sites

(color dots show the TPH levels actually

present in the data). The thick line shows the

mean estimate, including TPH values in

between those actually observed. The dashed

lines give 95% credible intervals of the

dissimilarity estimate. (B) Illustration of

estimation of ECx values and credible intervals.

Table 2. Estimates of mean ECx values and their 95% credible inter-

vals for fuel based on microbial community dissimilarity (all units are

mg TPH/kg of soil).

X ECx min max

5 1250 0 2500

10 1875 0 3125

15 2500 1250 3750

20 3125 1250 4375

25 3125 1875 4375

30 3750 2500 5625

35 4375 3125 6250

40 5000 3750 6875

45 6250 4375 8125

50 6875 5000 8750

55 8125 6250 10,000

60 9375 6875 11,250

65 10,625 8750 13,125

70 12,500 10,000 16,250

75 15,000 11,875 25,000

80 20,625 14,375 25,000
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As a sensitivity analysis of the performance of the

model, we have estimated the model on modified data, by

D1 Deleting the least abundant taxa (fixing the threshold

total abundance limit at 12 instead of 10 in the

default data set), which amounts to a decrease of

15% in the number of taxa,

D2 Including additional taxa up to total abundance of 8

(instead of 10 in the default data set), which amounts

to an increase of 19% in the number of taxa,

D3 Excluding randomly 5 sites of 22 in the default data

set, that is, 23% of the sites.

As the plots of the results in Fig. A2 in Appendix B show,

the model is fairly robust to these modifications of the data

as the estimations are consistent with Figs. 3 and 4.

Discussion

In this study, we applied a dependent Bayesian model to

soil microbial data, to assess the effects of hydrocarbon

contamination on microbial communities. While many

ecotoxicology studies are conducted using single species,

in microbial analysis, whole communities are generally

considered. Some studies have considered the effects of

toxicants on microbial communities, but with the advent

of next-generation sequencing technologies, we are now

able to accurately identify members of the communities

to make reliable inferences (Vazquez et al. 2009). Our

method allows community-level analyses to derive toxi-

cology end points and to understand the effects of con-

taminants closer to the whole-of-ecosystem level. This is

novel in the field of microbiology and can provide insight

to the harmful effects of pollutants, because microbes are

typically the most sensitive members of the ecosystem

and can therefore potentially be used as an indicator of

contamination impacts (van Dorst et al. 2014). While sta-

tistical methods to determine point estimates for single-

species tests are well established (e.g., probit analysis,

trimmed Spearman Karber), standard methods to deter-

mine the sensitivity of whole communities and to derive

single point estimate values are currently lacking. In addi-

tion, the responses of whole communities to stressors are

often poorly understood. Such community-based assess-

ments are becoming more important, especially in harsh

environments such as Antarctica in which plant and

invertebrate communities typically display low diversity,

and are difficult to measure responses in. The method

presented here has potential value in other applications

that consider changes in community composition with

respect to environmental or other processes. More

broadly, the method can be applied to any set of categori-

cal response variables indexed by integers. As seen in the

introduction, the literature on diversity in ecology is

extensive, but we note that similar indices arise in other

areas of science, such as biology, engineering, physics,

chemistry, economics, health, and medicine (see Havrda

and Charv�at 1967; Borges and Roditi 1998; Kaniadakis

et al. 2005) and in more mathematical fields, such as

probability theory (Donnelly and Grimmett 1993), which

are possible fields of application of our methodology.

There are several computational limitations of the

approach: The model is difficult to estimate on very large

data sets, even if extremely sparse as is the case of the ori-

ginal ecotoxicological data set studied here. Indeed, the

sparsity of the data is a source of computational difficulty

with the posterior computation (see Arbel et al. 2013).

However, in terms of diversity, most of the information

is driven by the largest OTUs, and so, working on a sub-

sample of the data is satisfactory in this respect. We used

only the most abundant OTUs, but showed that the

results were not sensitive to the abundance threshold used

for inclusion.

An attractive feature of the dependent model is that it

allows predictions at arbitrary covariate levels, not just

those values that were present in the data. This allows

inferences to be made across the full range of covariate

values (and, with care, possibly beyond the range of co-

variate values actually sampled). This is a particularly use-

ful consideration in several situations, for instance, where

experimental data are sparse, such as in polar applications

that involve costly and logistically difficult fieldwork, or

in situations in which a critical contaminant level lies in

between two tested TPH levels (as with the calculation of

ECx values demonstrated here). However, extra care

should be taken with the interpretation of estimates that

lie between sampled values as they are typically driven by

the assumptions on the model (e.g., smoothness con-

straints) rather than by the data.

In Holmes et al. (2012), the total number of species is

assumed to be known. In this case, the observational

model is equivalent to the multinomial model at the spe-

cies level. This assumption is a limitation of that model

specification, in the sense that incorrect assumptions for

the total number of species might alter the resultant esti-

mations. This limitation is overcome by the nonparamet-

ric structure of the DepGEM model.

There are many ways in which this work can be

extended. Additional factors to TPH, which include other

types of environmental factors about soil composition,

geographic factors, etc, could be utilized in the model.

This extension to multiple covariates would be more

demanding to fit numerically, although with little addi-

tional coding cost. This would allow interactions between

predictor variables to be specified a priori by the covari-

ance structure of the Gaussian processes. The model

could also handle categorical covariates (as well as a mix

of continuous and categorical) using a latent continuous
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variable (say a normal) for each of them and then using,

for example, its sign in the case of a binary variable.

This study brings some new elements to the under-

standing of the effects of contaminants on ecosystems.

The grouping is a valuable information for knowing

which OTUs are to be studied for deriving environmental

quality guidelines, while the EC50 and EC20 estimates

allow fixing thresholds in these guidelines.

The sensitivity and specificity of all methods were gen-

erally higher when weighted by OTU abundance (rather

than simply calculated on the number of OTUs correctly

classified). This suggests that high-abundance OTUs were

typically deemed to have a response that matched the

expected behavior. This may be because the higher-abun-

dance OTUs are better modeled by these methods, and

so, their response is more likely to be correctly character-

ized. Alternatively, low-abundance OTUs may simply not

express the response type that might be expected for their

genus. OTUs from a hydrocarbon-degrading genus, if

present only in low numbers, might not tend to increase

in response to the presence of hydrocarbons because they

are outcompeted by other, more abundant hydrocarbon-

degrading bacteria.

All methods showed generally low values of sensitivity

(i.e., not all OTUs from hydrocarbon-degrading genera

actually showed increasing responses to contamination).

This is consistent with the nature of the list of hydrocar-

bon-degrading bacteria, which was drawn from a diverse

range of studies covering many ecosystem types. Particu-

lar species found to be associated with hydrocarbon deg-

radation in those studies might not match the species

within the same genera found in our samples.

Several OTUs were consistently classified as increasing

with hydrocarbon contamination, yet did not appear on

the list of known hydrocarbon-degrading genera. These

were from the genera Methyloversatilis (order Rhodocycl-

ales), Propionicimonas (order Actinomycetales), and Simplic-

ispira (order Burkholderiales). However, other species from

these genera are known hydrocarbon degraders (Prince

et al. 2010). It is thus possible that the OTUs in our study

observed to increase with TPH also possess the genes for

metabolic utilization of the various compounds in the fuel

(Cooksey et al. 1990; Dressler et al. 1991; Cho et al. 1998).

Diversity of microbial communities, although not

strongly affected, was reduced in response to fuel contami-

nation. The EC25 value of 3125 mg TPH/kg soil estimated

in this study indicates that relatively small concentrations

of hydrocarbons can elicit an effect on the microbial com-

munity. Few other point estimates of fuel toxicity are avail-

able for Antarctic soil biota. Our results here for microbial

diversity are higher than those of Schafer et al. (2009) who

reported EC25 values for microbial community composi-

tion and microbial biomass of 800 and 2400 mg TPH/kg

soil, respectively. Harvey et al. (2012), using nitrification

rates as a surrogate for microbial activity, reported EC25

values of 200 and 400 mg/kg for potential nitrification

activity and gross nitrification, respectively. However, all of

these microbial end points (including the results from the

present study) are lower than the findings of Nydahl (2013)

who investigated the response of several Antarctic moss

species and a terrestrial alga from Casey Station to soil arti-

ficially contaminated with fuel. All species were relatively

insensitive to fuel contamination with reduced photosyn-

thetic efficiency observed at concentrations ≥25,500 mg

TPH/kg soil. Inhibitory concentrations (IC) were calculated,

and IC10 and IC20 estimates ranged from 21,300 to 61,500

mg TPH/kg soil. Hence, microbial processes and commu-

nity structure and function appear to be more sensitive

indicators of fuel contamination than are the responses of

plants in single-species tests. Further work is required using

other Antarctic biota including plants and microinverte-

brates to assess whether this truly represents an increased

sensitivity of microbial species compared to higher taxa.

Degradation of the hydrocarbon present in the soils

and survivability of bacteria is a possible explanation for

the community profile shifts observed in the data that

were examined. However, there are a number of other

reasons why the microbes may respond to an exogenous

toxicant. Microbial communities are complex and many

dependencies and competitive relationships exist (Hosni

et al. 2011; Stewart 2012). The restriction of the domi-

nance of abundant taxa can significantly alter the impact

on other bacteria. For example, if a dominant species

is significantly impacted by the presence of a toxic

hydrocarbon, then other species will have the opportu-

nity to thrive and increase abundance, provided they are

tolerant of or resistant to the compound. Additionally,

the removal of a bacterial species from a community

may limit the quantity of secondary metabolites available

to a dependent symbiont species that subsequently

diminishes in abundance due to this indirect effect of

the toxicant (Epstein 2009; Lewis et al. 2010). These

effects can at first have a positive impact of community

measures such as species richness at low TPH levels, but

will always impact negatively as levels rise.

The list of known hydrocarbon-degrading bacteria used

here is certainly incomplete. The vast majority of bacteria

are unable to be cultured in vitro (Ferrari et al. 2005). In

addition to the well-characterized species that degrade

hydrocarbons, there are a large range of taxa from extreme

environments, such as Antarctica, that are yet to be cul-

tured (Lee et al. 2012). It is highly likely that, given the

range of compounds in TPH and the richness of species in

the samples examined, there are many more species capable

of degradation. Here, the analysis was limited to those taxa

that were able to be classified to genus level. However, it is
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common knowledge that bacterial taxonomy is far behind

the rest of the field and many thousands of taxa isolated

through molecular surveys remain unclassified (McDonald

et al. 2012; Werner et al. 2012; Winsley et al. 2012). If a

taxonomy was provided for all OTUs, it is likely that the

confidence in this method will increase further as more

taxa can be analyzed, making the testing more robust.

Overall, this study presents a novel modeling method

for deriving point estimate concentrations in toxicological

studies. It is unique in its approach and its ability to

work with multiple species and large data sets to produce

toxicity estimates which reduce complex multispecies

responses to a single sensitivity value that represents the

response of the community. The model is broadly appli-

cable to other complex data sets with similar data struc-

ture and inferential requirements on the response of

communities to environmental parameters and stressors.
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Appendix A: Estimation on the Different Response Groups
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Figure A1. Estimation of the DepGEM
model on the three response groups (50,000

MCMC samples). (Left) Diversity estimation

results. Thick line: Shannon diversity estimate.

Dashed lines: credible interval for the diversity

index. Dots: Shannon diversity index in raw

data. (Right) Bray–Curtis dissimilarity index and

credible intervals. (Top) probability decreasing

with TPH, (Middle) probability increasing with

TPH, (Bottom) group with no clear pattern (see

Section “Results for Microbial Data”).
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Appendix B: Sensitivity Analysis
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Figure A2. Sensitivity analysis for DepGEM
model estimates (50,000 MCMC samples).

(Left) Diversity estimation results. Thick line:

Shannon diversity estimate. Dashed lines:

credible interval for the diversity index. Dots:

Shannon diversity index in raw data. (Right)

Illustration of estimation of ECx values and

credible intervals based on the Bray–Curtis

dissimilarity index. (Top) data D1, (Middle) data

D2, (Bottom) data D3 (see Section “Results for

Microbial Data”).
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