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Reduced binding activity of
vaccine serum to omicron
receptor-binding domain
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Guangzhou, China, 3Department of Clinical Laboratory, Jiangxi Provincial Children’s Hospital,
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Coronavirus disease 2019 (COVID-19) vaccination regimens contribute to

limiting the spread of severe acute respiratory syndrome Coronavirus-2

(SARS-CoV-2). However, the emergence and rapid transmission of the SARS-

CoV-2 variant Omicron raise a concern about the efficacy of the current

vaccination strategy. Here, we expressed monomeric and dimeric receptor-

binding domains (RBDs) of the spike protein of prototype SARS-CoV-2 and

Omicron variant in E. coli and investigated the reactivity of anti-sera from

Chinese subjects immunized with SARS-CoV-2 vaccines to these recombinant

RBDs. In 106 human blood samples collected from 91 participants from Jiangxi,

China, 26 sera were identified to be positive for SARS-CoV-2 spike protein

antibodies by lateral flow dipstick (LFD) assays, which were enriched in the ones

collected from day 7 to 1 month post-boost (87.0%) compared to those

harvested within 1 week post-boost (23.8%) (P < 0.0001). A higher positive

ratio was observed in the child group (40.8%) than adults (13.6%) (P = 0.0073).

ELISA results showed that the binding activity of anti-SARS-CoV-2 antibody-

positive sera to Omicron RBDs dropped by 1.48- to 2.07-fold compared to its
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homogeneous recombinant RBDs. Thus, our data indicate that current SARS-

CoV-2 vaccines provide restricted humoral protection against the

Omicron variant.
KEYWORDS
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Introduction

COVID-19 is a worldwide pandemic caused by SARS-CoV-

2. Although multiple measures have been adopted, COVID-19 is

still rife amid the world and poses a threat to social, mental, and

economic wellbeing (1, 2). The newly evolved Omicron mutant

spread quickly within highly vaccinated populations. Viral

sequence analysis reveals that as the most heavily mutated

variant, Omicron harbors 15 mutations in its spike RBD

region. Considering that the RBD domain of the SARS-CoV-2

spike protein mediates the viral entry, thus contributing to viral

infection and transmission, a primary concern arises about the

effectiveness of the current vaccine regimen against this viral

variant (3). To this end, we expressed the RBD monomer and

dimer of Omicron spike protein and examined the cross-

reactivity of anti-sera from subjects immunized with prototype

SARS-CoV-2 vaccines (either inactivated vaccines or RBD dimer

subunit vaccines) to Omicron RBDs. Our data showed that

vaccine-immunized sera displayed reduced binding activity to

Omicron RBDs, implying the low efficacy of the prototype

SARS-CoV-2 vaccine to protect against the Omicron variant.
Methods

Materials

Ninety-three human serum samples from 78 individuals

immunized with prototype SARS-CoV-2 vaccines including

inactivated whole-virus vaccines Sinopharm BBIBP-CorV and

Sinovac CoronaVac (n = 62), Sinopharm BBIBP-CorV (n = 16),

Sinovac CoronaVac (n = 14), or RBD dimer-based subunit vaccine

Zhifei ZF2001 (n = 1) were obtained from the Affiliated Hospital of

Jiangxi Agricultural University and Jiangxi Children’s Hospital

(Supplementary Table 1). Thirteen unimmunized serum samples

from Jiangxi Children’s Hospital served as negative controls

(Supplementary Table 1). All studies involving human sera were

performed under the standard of the Jiangxi Agriculture University

Ethical Committee. SARS-CoV-2 Antibody Detection Kits (Cat:

W19501110, 2020340177, and Y5021010552A) were obtained from

Wondfo, Innovita, and Vazyme of China, respectively. Antibodies
02
against His-tag (RIID: AB_11,232,599), actin (RIID: AB_2,687,938),

and HRP-labeled goat anti-human (Cat: SA00001-17) were

purchased from Proteintech in USA. HEK293 cell-expressed

RBDs of prototype SARS-CoV-2 (Cat: CSB-DP7031) and

Omicron variant (Cat: 40592-V08H121) were obtained from

CUSABIO and Sino Biological in China, respectively.
Protein expression and purification

The coding sequence for spike RBD of Omicron strain

B.1.1.529 (GenBank: PRJNA784547) was used for prokaryotic

expression. The Omicron RBD dimer was synthesized in a

tandem repeat form of the RBD monomer separated by their

own flexible terminal residues (2). The corresponding sequence

of the Omicron spike RBD monomer was amplified with the

synthetic dimer sequence as the template. A similar strategy was

used to amplify the monomeric and dimeric RBDs of prototype

SARS-CoV-2 (GenBank: YP_009724390). All RBD DNA

segments were cloned into the pET-28a plasmid for expression

in E. coli. After induction at 18°C for 8 h in the presence of IPTG

(0.5 or 1 mM), cells were collected to examine the recombinant

protein expressions. All RBDs were further purified by the NI-

NTA column followed by renaturation using dialysis and then

concentration with Amicon® Ultra-15 (10 or 30K) (4, 5).
Immunoblotting

Immunoblotting was performed as described previously (6).

Briefly, after electrophoresis on an SDS-PAGE gel, separated

proteins were transferred to polyvinylidene difluoride

membranes (Millipore). The membranes were blocked with 10%

skimmed milk and then incubated with an antibody specifically

targeting His-tag at 4°. Finally, the proteins were visualized with

Clarity ECL immunoblotting substrate (Bio-Rad).
LFD and ELISA

To detect SARS-CoV-2-specific antibodies in vaccine-

immunized human sera, LFD assays were performed using

SARS-CoV-2 Antibody Detection Kits according to the
frontiersin.org
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manufacturer’s instructions. ELISA was performed as described

previously (4, 7). Briefly, plates were precoated with the

recombinant RBDs (100 ng/well) at 4° overnight in 0.05 M

carbonate-bicarbonate buffer. After blocking with 5% skim milk,

human sera were diluted and added to each well. Goat anti-

human IgG-HRP antibodies were then added. Plates were finally

developed with TMB substrate. Commercial RBDs expressed in

HEK293 cells were used to evaluate the quality of lab-made

recombinant RBDs expressed in E. coli. To exclude the

interference of His-tag reactivity, the anti-His antibody was

also used in ELISA assays (Supplementary Figure 2). Optical

density was measured at a wavelength of 450 nm using a plate

reader (Tecan, Infinite M200 Pro).
Statistical analysis

Student’s t-test and chi-square test were adopted to compare

the intergroup differences using GraphPad Prism 8.0 software.

P < 0.05 was considered statistical significance.
Results

Expression of monomeric and
dimeric RBDs

Upon IPTG induction, the RBD monomer and dimer of the

SARS-CoV-2 prototype and Omicron variant were expressed in

E. coli, all of which dominated in the cellular inclusion bodies,

accounting for 26%–55% of total protein mass (Figures 1A–D,

top). After purification with Ni-NTA columns followed by the

separation by electrophoresis on SDS-PAGE gel, intensive bands

were detected for monomer and dimer RBD proteins in a buffer

with 250 mM of imidazole. The purities of the recombinant RBD

proteins were no less than 95% (Figures 1A–D, top). To confirm

the identities of E. coli-derived recombinant proteins, we

performed immunoblotting assays with an anti-His tag

antibody. Expected bands were detected for all recombinant

proteins in IPTG-induced lysate or purified samples, but not in

un-induced ones, demonstrating the successful expression and

purification of E.coli-expressed recombinant RBD proteins

(Figures 1A–D, bottom).
Cross-reactivity of prototype SARS-CoV2
vaccine-immunized sera against
Omicron RBDs

To assess the cross-reactivity of prototype SARS-CoV2

vaccine-immunized sera against Omicron RBDs, we first

collected 106 blood samples based on availability. Among

them, 44 samples were collected from 29 adults while the
Frontiers in Immunology 03
remains were from 62 children (Supplementary Table 1). LFD

assays were conducted to identify vaccine sera with high-titer

antibodies against prototype SARS-CoV-2 spike protein. Results

revealed that 26 samples of 93 vaccine sera contained detectable

ant ibodies spec ific to SARS-CoV-2 sp ike prote in

(Supplementary Figure 1). We next wondered the LFD-

positive ratio of these samples by vaccine, age, sex, and post-

immunization time. Therefore, a retrospective analysis was

performed (Supplementary Table 2). The LFD-positive ratio

for both BBIBP-CorV and CoronaVac immunization groups

was 11 [17.7%] of 62 (adult: 6 [14.0%]/43, children: 5 [41.6%]/

19). The LFD-positive ratio for the BBIBP-CorV immunization

group was 7 [43.8%] of 16 (children). The LFD-positive ratio for

the CoronaVac immunization group was 8 [57.1%] of 14

(children). The majority (20 [87.0%] of 23) of LFD-positive

samples were the ones collected from day 7 to 1 month post-

boost (BBIBP-CorV and CoronaVac immunization groups: (5

[83.3%] of 6); BBIBP-CorV immunization group: (7 [77.8%] of

9); CoronaVac immunization group: 8 [100%] of 8), different

from those harvested within 1 week post-boost (5 [23.8%] of 21,

BBIBP-CorV and CoronaVac immunization groups: 5 [23.8%]

of 21; BBIBP-CorV immunization group: none; CoronaVac

immunization group: none) (P < 0.0001, Figure 2A). A higher

positive ratio was observed in the child group (20 [40.8%] of 49,

BBIBP-CorV and CoronaVac immunization groups: 5 [26.3%]

of 19; BBIBP-CorV immunization group: 7 [43.8%] of 16;

CoronaVac immunization group: 8 [57.1%] of 14) than adult

(6 [13.6%] of 44, BBIBP-CorV and CoronaVac immunization

groups: 6 [13.6%] of 44; BBIBP-CorV immunization group:

none; CoronaVac immunization group: none) (P = 0.0073,

Figure 2B). The low LFD-positive ratio of vaccine sera is likely

due to the limited sensitivity of the LFD assay. To test this

possibility, we randomly chose three LFD-positive/-negative

vaccine sera and three unimmunized sera to examine the

quantities of antibodies targeting SARS-CoV-2 spike RBD.

ELISA data showed that LFD-negative vaccine sera harbored

small, but decent amounts of anti-SARS-CoV-2 spike RBD

antibodies (Figure 2C).

To evaluate the binding activity of vaccine-immunized

human sera to Omicron variants, LFD-positive sera were used.

As shown in Figures 2D–F, although the tested sera cross-

recognized Omicron spike RBDs, their reactivity magnitudes

decreased by 1.48- to 2.07-fold compared to those of SARS-CoV-

2 RBDs, which partially explained the rapid transmission of

Omicron in the vaccinated regions. With the engagement of

antibodies in human vaccine sera and RBDs as readout, general

drops were observed for the E.coli-expressed prototype RBD

monomer (1.53-fold, P < 0.0001), prototype RBD dimer (2.24-

fold, P < 0.0001), Omicron monomer (1.26-fold, P = 0.0006),

and dimer (1.62-fold, P < 0.0001) with the corresponding

commercial ones as control (Figure 2G).

Of note, all recombinant RBD proteins carried a His-tag and

recognized anti-His antibody with a reactivity corresponding to
frontiersin.org
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the quantity of its His-tag. In addition, recombinant RBD

proteins recognized vaccine sera, but not unimmunized

control sera (Supplementary Figure 2; Figures 2C–F). These

data together suggested that the difference in vaccine serum

reactivity to recombinant RBD proteins was not due to the anti-

His antibody which could exist in vaccine sera.
Discussion

Different from other SARS-CoV-2 variants, the Omicron

strain occurs in the situation in which SARS-CoV2 vaccine

immunization has been rolled out globally. Its fast spread in

fully vaccinated countries such as the USA reveals that the

existing vaccine provided limited protection. The World
Frontiers in Immunology 04
Health Organization (WHO) reported on February 15, 2022,

that the Omicron variant had replaced the Delta variant as the

main circulating strain worldwide. This study aimed to explore

how the Omicron variant effectively evades the immune

responses induced by heterogeneous SARS-CoV-2 vaccines.

The CoV spike RBD is an attractive vaccine target. Its dimeric

form fully exposes the dual receptor-binding motifs, thus

significantly increasing neutralizing antibody (NAb) titers as

compared to its conventional monomer (8). In this study, the

Omicron spike RBD monomer and dimer were expressed and

purified (Figure 1), serving as the antigens to evaluate the cross-

protection of host immunity induced by prototype SARS-CoV-2

vaccines in the ELISA (Figure 2).

One hundred six blood samples from adults and children

were collected and analyzed by LFD assays. The anti-SARS-
A B

DC

FIGURE 1

Expression, purification, and identification of recombinant spike RBDs. Recombinant pET-28a vectors expressing either monomeric or dimeric
spike RBDs for prototype SARS-CoV-2 (A, B) and Omicron variant (C, D) were used to express the recombinant proteins in E. coli. The expressions
and purities of RBDs were examined by SDS-PAGE (A-D, top) or immunoblotting (A–D, bottom). (A-D) Top: M: protein marker; lane 1: empty
vector; lane 2: un-induced sample; lanes 3–5: IPTG induced whole-cell lysate (lane 3); cellular supernatant (lane 4); inclusion body (lane 5); lanes
6–7 (A-D): purified monomeric (A, C) or dimeric (B, D) RBDs in eluted buffer with 250 mM imidazole. (A-D) Bottom: identification of spike RBDs by
immunoblotting with anti-His tag antibody.
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FIGURE 2

Reactivity of human sera with SARS-CoV-2 spike protein and recombinant RBDs. (A, B) Detection of anti-SARS-CoV-2 spike protein antibodies in
human sera with LFD assays. (A) Examination of the contributions of age and sample collection time point to LFD-positive rates with the chi-square test.
Children LFD-positive rate: (20 of 23, 86.9%); adult LFD-positive rate: (5 of 21, 23.8%). Child sera were collected at 7 days to 1 month after boost. Adult
vaccine sera were collected within 1 week after boost. (B) Comparison of the LFD-positive rate of vaccine sera between adults (6 of 44, 13.6%) and
children (20 of 49, 40.8%) with chi-square test. (C) Titration of SARS-CoV-2 RBD-specific antibodies in LFD-positive vaccine sera (participant IDs: 08-2,
13-2 and 19-2; LFD-P), LFD-negative vaccine sera (participant IDs: 18-2, 21-2 and 53-1; LFD-N), and unimmunized sera (participant IDs: 54-1, 60-1 and
83-1; UC-sera) by ELISA using the recombinant RBD monomer as coating proteins. The dashed line indicates the cutoff value. (D-F) Reactivity of 26
LFD-positive vaccine sera (further details in Supplemental Figure 1A and Supplemental Table 1) to commercial prototype and omicron RBD monomer
(D), E. coli-expressed prototype and omicron RBD monomer (E), and E. coli-expressed prototype and omicron RBD dimer (F). Top panels: absolute
titers; bottom panels: fold change. cpRBDm/coRBDm: commercial prototype/omicron RBD monomer; epRBDm/eoRBDm: E. coli-expressed prototype/
omicron RBD monomer; epRBDd/eoRBDd: E. coli-expressed prototype/omicron RBD dimer. (G) Fold change for comparison between commercial and
lab-made RBDs. Prototype SARS-CoV-2 RBDs (top panel) and Omicron RBDs (bottom panel). Fold change is defined as mean fold change. Each dot
represents a biological replicate, and the assays were performed three times (A, C-G). (H) Schematic diagram showing reduced binding activity of
vaccine serum to Omicron RBD.
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CoV-2 spike protein antibody in vaccine sera collected at 5–6

months after the first boost dropped to below the detectable

threshold, highlighting the necessity of the second boost

(Supplementary Figure 1). Interestingly, vaccine sera at 7 days

to 1 month after boost had a higher SARS-CoV-2 spike protein

antibody titer than those within 1 week after boost (P < 0.0001,

Figure 2A). Consistent with the finding, a recent report indicated

that RBD antibody titers reached a plateau in 2 weeks or so after

a boost, then dropped about fivefold within the following 2

weeks (9). These data suggest that boosted time affects the

antibody titer of vaccine sera. Interestingly, a higher positive

ratio was observed in the child group than in adults (P = 0.0073,

Figure 2B), which could attribute to age besides the collection

time points. Similarly, recent reports showed that immunity of

CoronaVac for children seems better than that for adults (10,

11). It should be noted that LFD exhibited low sensitivity in

detecting SARS-CoV-2 spike protein antibody of vaccine serum

than ELISA (Figure 2C). Thus, the development of a more

convenient and accurate CoV-2 antibody detection kit

is warranted.

Coronavirus spike RBD is the key domain mediating the

engagement between coronavirus and host. The majority of

antibodies targeting spike RBDs bear neutralization function

which in part determines the spread of CoV viruses. The

positive sample in LFD assays displayed decent responses to

SARS-CoV-2 and reduced binding to Omicron (Figures 2D–F),

aligning with recent reports (8). Carreno et al. found that the

eukaryotic expressed monomeric RBD of Omicron reduced

binding activity to convalescent and vaccine (mRNA-1273 and

BNT162b2) serum with a more than 1.5-fold drop (8). Cameroni

et al. demonstrated that most receptor-binding motif (RBM)-

directed monoclonal antibodies (mAbs) lost in vitro neutralizing

activity against Omicron (8). High-throughput yeast display

screening assays from Cao et al. revealed that over 85% of the

RBD-neutralizing antibodies were escaped by Omicron (8).

Neutralizing assays using authentic and pseudotype viruses

indicated that the Omicron variant showed lower neutralizing

sensitivity than other SARS-CoV-2 variants to convalescent and

vaccine (mRNA1273, BNT162b2, BBIBP-CorV, and ZF2001)

serum (8). All these data suggest that omicron can penetrate the

vaccine-induced immune barrier, which explained at least in part

the quick spread of Omicron. One thing that needs to be

emphasized is that even in the vaccinated hosts who are

negative in Omicron RBD-specific antibodies, the preexisting

SARS-CoV-2-specific memory B cells and T cells can provide

protection in the following Omicron infection, although they may

contribute less to inhibit the entry of Omicron into host cells (8).

This is possibly the reason why Omicron spreads rapidly but does

not induce more severe symptoms.

Collectively, our study demonstrates that Omicron RBD

displays a lower reactivity to prototype SARS-CoV-2 vaccine-

immunized human sera as compared to homogeneous SARS-
Frontiers in Immunology 06
CoV-2 RBD, implying the insufficient protection of the

prototype SARS-CoV-2 vaccine against the Omicron variant

(Figure 2H). The booster of the prototype SARS-CoV-2 vaccine

enhances the level of antibodies against both the SARS-CoV-2

prototype and the Omicron variant, which can help defend

against the COVID-19 pandemic. Omicron RBD reactivity to

SARS-CoV-2 vaccine-immunized human sera requires to be

assessed on a large scale.
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SUPPLEMENTARY FIGURE 1

Examination of anti-SARS-CoV-2 spike protein antibodies in human
immunized sera using LFD assays. (A) The intensity of LFD bands in was

quantified using Image J. (B-C) Adult sera collected at month 1, 5, or 6
post the second round of vaccination were examined with SARS-CoV-2

Antibody Detection Kit from Vazyme (B) or Innovita (C). (D) Adult sera
collected at month 1 or day 5 post the third round of vaccination were

examined with SARS-CoV-2 Antibody Detection Kit from Wondfo. (E-F)
Children’s sera collected at different time points after vaccination and

unimmunized children’s sera were examined with SARS-CoV-2 Antibody

Detection Kit from Wondfo. Further details were provided in
Supplementary Table 1.
SUPPLEMENTARY FIGURE 2

Identification of pre-coated recombinant RBDs by anti-His tag antibody.

Recombinant RBDs were examined by ELISA assays with anti-His tag
antibody, vaccine serum (participant ID: 31-1), and unimmunized sera

(UC-sera, participant ID: 62-1), or PBS.
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