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Endothelial dysfunction plays a role in several processes that contribute to cancer-associated mortality. The vessel wall serves as
a barrier for metastatic tumor cells, and the integrity and activation status of the endothelium serves as an important defense
mechanism against metastasis. In addition, leukocytes, such as cytotoxic T-cells, have to travel across the vessel wall to enter
the tumor tissue where they contribute to killing of cancer cells. Tumor cells can alter the characteristics of the endothelium by
recruitment of leukocytes such as neutrophils andmacrophages, which further stimulate inflammation and promote tumorigenesis.
Recent findings also suggest that leukocyte-mediated effects on vascular function are not limited to the primary tumor or tissues that
represent metastatic sites. Peripheral organs, such as kidney and heart, also display impaired vascular function in tumor-bearing
individuals, potentially contributing to organ failure. Here, we discuss how vascular function is altered in malignant tissue and
distant organs in individuals with cancer and how leukocytes function as potent mediators of these tumor-induced effects.

1. Introduction

During the last decades, it has become increasingly clear
that cancer is a complex disease with systemic effects, which
contribute significantly to the mortality. Indeed, the absolute
majority of cancer-related deaths is caused by tumor-induced
systemic events, such as metastasis and thrombosis. The
vasculature is central in these processes, since it is a transport
system that spans all organs of the individual. Via this route,
tumor-derived factors, as well as disseminating tumor cells,
can spread to distant organs, where they contribute to the
disease state directly by promoting formation of metastases
or indirectly, for example, by induction of thrombosis. In this
review, we discuss how endothelial function is affected in
individuals with cancer and how the primary tumor dictates
these alterations by activation and recruitment of leukocytes.
Furthermore, the consequences for tumor progression as well
as distant organ function and systemic inflammation in the
afflicted individual will be addressed. A summary of the
effects discussed in the text can be found in Figure 1.

Tumors stimulate and recruit leukocytes not only to
the local tumor microenvironment, but also to other sites
in an individual with cancer. For example, tumors express
cytokines and growth factors, such as G-CSF and VEGF,
which modulate leukocyte stimulation and trafficking over
the endothelium.The effects of these tumor-produced factors
are however not limited to the site of the primary tumor.
Tumor-derived cytokines and growth factors can spread
systemically by free transport in the blood or be distributed
by carriers such as platelets or microvesicles [1, 2]. Several of
these tumor-derived factors affect the integrity and function
of the endothelium, either directly or secondary to changes in
endothelial-leukocyte interactions.

2. Local Effects in the Tumor
Microenvironment

Compared to healthy vessels under physiological conditions,
the tumor vasculature is frequently poorly functional with
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Figure 1: Altered function of blood vessels in tumor tissue and distant organs in individuals with cancer. Vascular function is impaired both
at local tumor level and systemic level in an individual with cancer.The primary tumor secretes proangiogenic growth factors that contribute
to vascular abnormalization with enhanced permeability and anergic endothelial cells within the tumor. The poor vascular function leads
to hypoxia and subsequent recruitment of macrophages and neutrophils that further contribute to vascular permeability by secretion of
additional proangiogenic factors. Hypoxia stimulates tumor invasiveness by induction of EMT and contributes to impaired therapy response.
Effects on the vasculature are not limited to the actual tumor, but altered vascular function is also found in distant organs of tumor-bearing
individuals. Tumor cell-derived cytokines are spread throughout the body in plasma or as cargo in platelets ormicrovesicles and can contribute
to formation of pre- or antimetastatic niches in organs that exert sites for metastasis. These effects are mainly mediated by recruitment of
leukocytes to the metastatic sites, which prepare the microenvironment to facilitate metastatic colonization. Furthermore, tumor-derived
factors stimulate NETosis and thrombosis in distant organs leading to vascular occlusion and systemic inflammation also in organs that are
not sites for metastasis.
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permeable and leaky vessels, and the hierarchical organiza-
tion is often lost and replaced by a chaotic vascular system
with disturbed blood flow [3]. This typical characteristic
of the tumor vasculature has extensive impact on tumor
progression. Poor vascular function leads to intermittent
or chronic hypoxia, which affects the tumor phenotype
directly and contributes to increased tumor invasiveness and
metastasis by induction of Epithelial-Mesenchymal Tran-
sition (EMT) [4]. The vascular function also affects the
response to therapy, since good vascular perfusion is crucial
for delivery of therapeutic substances to the tumor, and
maintained oxygen tension andphysiological pHare required
for efficient killing of tumor cells by radiation and chemother-
apy. Importantly, the vasculature regulates recruitment of
leukocytes to the tumor, and the recruited leukocytes in turn
affect vascular function.

2.1. The Tumor Endothelial Barrier. During inflammation
and wound healing, proinflammatory cytokines stimulate
endothelial cells to upregulate adhesion molecules and
chemokines that together mediate the capture and extrava-
sation of leukocytes from the blood to the tissue. Tumor
endothelial cells are anergic in the sense that they respond
poorly to proinflammatory stimulation. This is at least in
part due to constant stimulation by proangiogenic fac-
tors, including FGF and VEGF, which inhibit TNF-𝛼-
induced upregulation of ICAM, VCAM, and chemokines
through interference with NF-kappaB-signaling pathways
[5–9]. Consequently, antiangiogenic therapy can restore
adhesion molecule expression in tumor endothelial cells and
induce leukocyte recruitment [8, 9]. The tumor vessels may
also block the activation of T-cells that are recruited to the
tumor tissue by expressing inhibitorymolecules such as PDL1
and IDO1 or directly induce T-cell apoptosis by expression
of death-receptor family members including TRAIL or FASL
[10, 11]. Thus, tumor endothelial gene expression may sig-
nificantly affect the quantity and activation of leukocytes
recruited to the tissue. Indeed, endothelial expression of
the Endothelin B receptor has been shown to inhibit T-cell
recruitment in ovarian cancer and decrease efficacy of cancer
immunotherapy [12]. The location and quantity of tumor-
promoting macrophages and tumor-inhibiting cytotoxic T-
cells are predictive of survival in many types of solid tumors
[13], and the success of cancer immunotherapy strictly
depends on efficient recruitment of tumor-targeting immune
cells [14]. Therefore, the endothelial barrier represents an
attractive target for treatment of cancer [15]. Importantly, the
recruited immune cells also affect tumor vessel quality and
gene expression, as delineated below.

2.2. Tumor-Promoting Effects. Cells of the innate immune
system, such asmacrophages and neutrophils, are crucial reg-
ulators of angiogenesis and vascular properties in the tumor
microenvironment. Macrophages are often classified into
two subpopulations: the proinflammatory M1 macrophages
with tumor-suppressing properties and the immunosup-
pressive M2 macrophages considered as tumor promoters.
However, it is now emerging that the division into two

distinct macrophage subpopulations is too simplified and
that macrophages likely display a spectrum of phenotypic
variation [16]. Macrophage recruitment is stimulated by
hypoxia and infiltration into hypoxic tumor areas is guided by
tumor-derived factors such as VEGF or CCL2 [17–19]. Upon
arrival, the hypoxic tumor microenvironment stimulates
macrophages to produce VEGF and MMPs, which promotes
angiogenesis and contributes to permeability of the tumor
vasculature. In addition, macrophages produce numerous
other growth factors (PlGF, FGF, PDGF, M-CSF, and TGF-𝛽)
and cytokines (IL-1, IL-8, and TNF-𝛼) that stimulates angio-
genesis and activates the endothelium [20, 21].

Similar tomacrophages, neutrophils are potent regulators
of tumor angiogenesis. Recruitment and transendothelial
migration of neutrophils are mediated via chemokine signal-
ing, and tumor-derived CXCL8 has been suggested to play
an important role in these processes [22, 23]. At the tumor
site, TNF-𝛼 can induce direct release of VEGF from the
neutrophils [24]. Furthermore, neutrophils secrete MMP-9,
which contribute to increased release of VEGF bound to the
extracellular matrix and further promote angiogenesis and
vessel permeability [25, 26]. Innate immune cells such as
macrophages and neutrophils hence contribute significantly
to the permeable and leaky vascular phenotype observed in
tumors, mainly by increasing the concentration of bioavail-
able VEGF in the microenvironment.

Another cell type that has been shown to maintain the
endothelial barrier and increase tumor growth is the platelet.
In tumor vessels, platelets play an important role in protecting
tumor vessels from hemorrhage [27–29]. Depleting mice
with established tumors from platelets results in bleeding
specifically in the tumor tissues [27]. Furthermore, it has
been demonstrated that inflammation and associated leuko-
cyte infiltration are causing the tumor hemorrhage during
thrombocytopenia [27, 30]. If neutrophil infiltration into the
tumor tissue is reduced by genetic deletion of beta2-integrin
(CD18−/−), tumor hemorrhage is suppressed after platelet
depletion [28, 30]. A role for macrophages in tumor-induced
bleeding during thrombocytopenia was also described [28].
Recently, the importance of leukocytes was further supported
by a study showing that diapedesis of neutrophils through
the endothelium is crucial for hemorrhage during thrombo-
cytopenia in several mouse models of inflammatory disease
[31]. It was further demonstrated that the vessel-protective
effect of platelets is mediated by secretion of platelet granules
rather than platelet adhesion to the endothelium [27]. Platelet
granule secretion was suggested to provide factors that
suppress permeability, such as serotonin and angiopoetin-1,
and hence balance the permeability promoting effect of
VEGF. It has also been demonstrated that platelets contribute
to integrity and function of the tumor vasculature by affecting
pericyte coverage [32]. Platelet depletion of transgenic RIP1-
Tag2mice with insulinoma resulted in significantly decreased
pericyte coverage of the tumor vasculature and severely
impaired perfusion. How platelets support pericyte coverage
of the vasculature in a tumor remains to be explored.
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2.3. Tumor-Suppressing Effects. Infiltration of innate immune
cells may not only play a tumor-promoting role but can
also under certain conditions and in some types of cancers
exert tumor-suppressing effects. While a high number of
tumor infiltrating neutrophils correlate with poor survival
in a variety of different tumors types [33–37], the oppo-
site has been demonstrated, for example, in patients with
gastric cancer [38]. Furthermore, tumor suppressive effects
of infiltrating neutrophils have also been demonstrated in
various experimental models of breast cancer. Using an in
vitro approach, it was shown that neutrophil-derived elastase
(NE) was taken up by breast cancer cells and contributed
to T lymphocyte-mediated tumor cell lysis [39]. In an
orthotopic mouse model of breast cancer, neutrophils were
further found to suppressmetastasis by preventingmetastatic
seeding in the lungs [40]. In addition to the more promi-
nent proangiogenic role of neutrophils described earlier,
they also contain antiangiogenic mediators such as NE that
can suppress VEGF-mediated angiogenesis and leakage and
hence support integrity of the tumor vasculature [41–43].The
high number of tumor infiltrating macrophages correlates in
the majority of tumor types with poor prognosis, reflecting
the fact that macrophages mainly exert tumor-promoting
effects. Some reports however suggest a correlation between
high level of macrophage infiltration and positive prognosis
in patients with osteosarcoma and gastric cancer [44, 45].
The tumor-suppressing effects are mediated by proinflam-
matory macrophages, often referred to as M1 macrophages.
Macrophages of the proinflammatory phenotype, induced,
for example, by IFN-𝛾, produce Reactive Oxygen Species
(ROS) and proinflammatory cytokines such as IL-1𝛽 and IL-
6 that contributes to activation of the endothelium [46]. This
further promotes recruitment of cytotoxic T-lymphocytes to
the tumor microenvironment, which can suppress growth of
the tumor.

The adaptive immune system has mainly been attributed
a tumor-suppressive role. However, B-lymphocytes may sup-
port inflammation-associated epithelial carcinogenesis [47]
and regulatory T-lymphocytes are frequently induced in the
tumor microenvironment and suppress the antitumorigenic
activity of cytotoxic T-lymphocytes [48]. Classifying tumors
according to the “immunoscore,” which takes into account
the location and prevalence of different leukocyte subsets
in the tumor microenvironment, can be used to predict
patient survival for several solid tumor types [49]. Immune
checkpoint therapy, involving reactivation of cytotoxic T-cells
with antibodies targeting CTLA4 or PDL1/PD1, has recently
gained success in the clinical treatment of cancer [50].

3. Systemic Effects on Peripheral
Vasculature and Organ Function in
Individuals with Cancer

Leukocyte-mediated effects on vascular function are not
limited to the local tumor microenvironment but appear
to reach far beyond the actual tumor. Altered endothelial
integrity and recruited immune cells can affect malignant
progression directly by altering the milieu in organs that

represent sites for metastasis—even before the tumor cells
arrive. Furthermore, recent data show that vascular function
is impaired in distant organs not directly affected by either the
primary tumor or metastases in mice with cancer.

3.1. Tumor-Induced Effects on Organs that Represent
Metastatic Sites. Metastasis, responsible for the absolute
majority of cancer-related deaths, is a complex and chal-
lenging process for the tumor cells. Indeed, only a small
fraction of the disseminating tumor cells will eventually
succeed in establishing a secondary tumor in a distant organ.

It has however been demonstrated that the primary
tumor can facilitate metastatic colonization by orchestrating
systemic processes that prepare the distant organ before the
metastatic tumor cells arrive, that is, creating a premetastatic
niche. This was first suggested more than a decade ago,
when several studies showed that tumor-derived VEGF-
A, PlGF, TGF-𝛽, and TNF-𝛼 contribute to recruitment of
CD11b+ myeloid cells to the lungs in tumor-bearing mice
before tumor dissemination and that this results in enhanced
recruitment ofmetastatic cells to the lung [51–53]. Since then,
additional tumor-derived factors (LOX, CCL2, and VCAN)
have been shown to stimulate recruitment of bone-marrow-
derived cells (BMDCs) and hence contribute to formation
of the premetastatic niche in a similar manner [54–56].
Besides a few exceptions [56–58], these studies focus on
lung tissue, and whether the described effects occur also in
other organs with metastatic growth, or even throughout the
body, has not been firmly established. Some lines of evidence
do support that this is a general phenomenon. A few years
ago, a study revealed that systemic inflammation, induced by
arthritis, enhanced metastasis in a transgenic mouse model
of mammary carcinoma [59]. This effect was observed not
only in lung but also in bonemarrow, indicating that systemic
inflammation may be a general promoter of metastasis. This
hypothesis was recently confirmed by data from Coffelt and
colleagues demonstrating that systemic neutrophil expansion
and accumulation in multiple organs occurs in a mouse
mammary tumor model with spontaneous lung metastases
[60].These tumor-induced neutrophils suppressed the ability
of CD8+ cytotoxic T-cells to kill tumor cells, thus resulting
in an increased metastatic burden. Another recent paper
also reports on systemic accumulation of neutrophils in
peripheral organs in mice with distinct tumor types such
as mammary carcinoma and insulinoma [61]. Furthermore,
upregulation of leukocyte adhesion markers as well as proin-
flammatory cytokines such as IL-1𝛽, IL-6, and CXCL1 was
detected in the kidney tissue, indeed supporting an ongoing
systemic inflammation in individuals with cancer [61].

While the factors responsible for formation of the preme-
tastatic niche may be distributed freely in the circulation,
they were recently also reported to spread as cargo in tumor-
derived exosomes. This mechanism was first described in
mousemodels ofmelanoma [62, 63] but was recently demon-
strated also in mice with pancreatic ductal adenocarcinoma
(PDAC) [64]. Costa-Silva and colleagues showed that pri-
mary tumor-derived exosomes promote enhancedmetastatic
burden in the liver. This effect was mediated by increased
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macrophage recruitment from the bone marrow, induced by
macrophage migration inhibitory factor (MIF) expressed in
the exosomes [64].

In contrast to the situations discussed above, some reports
suggest that tumor-derived factors can stimulate leukocytes
to function as metastatic suppressors and as such contribute
to formation of antimetastatic niches. It was, for example,
demonstrated a few years ago that tumor-entrained neu-
trophils (TENs), upon stimulation by tumor-derived G-CSF
and CCL2, prevent lung metastasis [40].

3.2. Tumor-Induced Effects on Organs that Do not Represent
Sites for Metastases. While a vast amount of research has
focused on organs that represent sites for metastasis, less is
known about cancer-induced effects in distant organs that are
not affected by either primary or secondary tumor growth.
However, one recently published paper demonstrate that
mice with cancer display significantly impaired function of
the vasculature in heart and kidney, organs that are not targets
for metastasis in the tumor models used [61]. Furthermore,
it was shown that the reduced peripheral vascular function
was caused by formation of Neutrophil Extracellular Traps
(NETs), which occlude peripheral vessels in tumor-bearing
mice [61]. NET formation (NETosis) was first described in
2004 as a novel mechanism used by neutrophils to fight
bacterial infections [65]. DuringNETosis, neutrophils secrete
their chromatin together with proteases such as Myeloper-
oxidase (MPO) and Neutrophil Elastase (NE). However,
NETs are also highly prothrombotic, mainly due to the
negatively charged chromatin and associated histones. In
this way, neutrophils undergoing NETosis may also stimulate
thrombosis, leading to further vascular occlusions [66, 67].
Removal of the intravascular NETs by DNase treatment
restored functionality of the peripheral vessels in tumor-
bearing mice [61]. In addition to occluding the vessels, NETs
may damage the vasculature in other ways. It was previously
shown that NETs have cytotoxic effects on the endothelium
and that they directly induce endothelial damage in other
pathological conditions [68–70].

Organ failure in general, and acute renal failure (ARF)
in particular, is a cause of substantial morbidity in cancer
patients and is characterized by hypoperfusion of the kidney
vasculature [71]. The mechanisms behind tumor-induced
organ failure are however poorly studied. Systemic intravas-
cular NET formation offers a potential explanation for how
these fatal effects occur.

A link between cancer and NETosis was first demon-
strated in 2012, when Demers and colleagues showed that
cancer is a predisposing factor for NETosis in mice and
that this subsequently contributes to thrombosis [72]. For-
mation of NETs can also directly contribute to malignant
progression. In mice with liver tumors exposed to sepsis,
NETs that formed due to the infection were reported to
sequester circulating tumor cells and promote metastasis
[73]. These data imply that an infection is a potential risk
factor for metastasis. It is also possible that NETs facili-
tate metastasis by inducing inflammation and upregulation
of adhesion molecules in peripheral vessels [61], thereby
offering a route for extravasation in a secondary organ. It

has, for example, been shown that VCAM-1 can be used by
tumor cells to adhere to the endothelium and hence facilitates
transendothelial migration [74]. Furthermore, tumor cell
expression of E-selectin binding ligands such as Sialyl Lewis
(a) has been correlated to malignancy and prognosis in the
clinic [75, 76]. Whether NETs really promote extravasation
remains to be explored.

4. Conclusion and Perspective

Endothelial activation and vascular integrity are crucial
regulators of tumor progression and related systemic effects
(see summary in Figure 1). Serving as a barrier for infiltrating
leukocytes and metastasizing tumor cells, the endothelium
plays an important role in protecting us from the fatal pro-
cesses responsible for cancer-related deaths. When designing
new cancer therapies, it is therefore of utmost importance
to consider potential effects on the vasculature in the local
tumor microenvironment, as well as in peripheral organs.
For immunotherapeutic approaches it would be benefi-
cial to enhance endothelial transmigration of cytotoxic T-
lymphocytes into the tumor, to improve the killing of tumor
cells. On the systemic level, inflammation and endothelial
activation should probably be kept as low as possible, to avoid
tumor extravasation into secondary tissues.
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