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Basic Research Article

Introduction

The mobility and quality of life of elderly people is often 
impaired by chondrodegenerative diseases. Among them, 
osteoarthritis (OA) is the most prevalent joint disease, 
which places a heavy burden on public health systems 
worldwide.1,2 OA leads to destruction of native articular 
cartilage, and in severe cases, finally results in replacement 
with artificial joints, which are inferior to the original artic-
ular cartilage in terms of function, and also have problems 
such as the possible need for revision and the risk of com-
plications such as infection. To prevent destruction of 
articular cartilage, changes to the molecular mechanism 
underlying OA are ideal, and basic research to elucidate the 
pathophysiology of OA progression has been eagerly per-
formed worldwide.3 Animal models are often used to ana-
lyze the mechanisms of OA in vivo,4 and mice are often the 
targets of OA model introduction because of their low 

experimental cost and ease of performing experiments 
involving genetic modification.5 In mouse OA models, car-
tilage degeneration is introduced by several methods, such 
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Abstract
Objective. Although mouse osteoarthritis (OA) models are widely used, their histological analysis may be susceptible to 
arbitrariness and inter-examiner variability in conventional methods. Therefore, a method for the unbiased scoring of OA 
histology is needed. In this study, as the first step for establishing this system, we developed a computer-vision algorithm 
that automatically detects the medial and lateral compartments of mouse knee sections in a rigorous and unbiased manner. 
Design. A total of 706 images of coronal sections of mouse knee joints stained by hematoxylin and eosin, safranin O, 
or toluidine blue were randomly divided into training and validation images at a ratio of 80:20. A model to detect both 
compartments automatically was built by machine learning using a single-shot multibox detector (SSD) algorithm with 
training images. The model was tested to determine whether it could accurately detect both compartments by analyzing 
the validation images and 52 images of sections stained with Picrosirius red, a method not used for the training images. 
Results. The trained model accurately detected both medial and lateral compartments of all 140 validation images regardless 
of the staining method employed, severity of articular cartilage defects, and the anatomical positions and conditions of the 
sections. Our model also correctly detected both compartments of 50 of 52 Picrosirius red–stained images. Conclusions. 
By applying deep learning based on the SSD algorithm, we successfully developed a model that detects the locations of the 
medial and lateral compartments of tissue sections of mouse knee joints with high accuracy.
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as surgery,6,7 drugs,8,9 or aging.10,11 Degeneration induced 
by these methods is usually assessed by preparing histologi-
cal sections and staining them with safranin O (SO) or other 
dyes. Several histological scoring methods have been 
developed to quantitatively or semi-quantitatively evaluate 
the severity of degeneration.7,12,13 The most widely used of 
these is the OARSI scoring system, which classifies carti-
lage degeneration from 0 (normal cartilage) to 6 (damage to 
the calcified cartilage extends >75% of the articular sur-
face) by microscopic examination.14 Although this method 
is convenient, there is a risk of making arbitrary evalua-
tions. There is also the problem that different examiners 
may conclude different results for the same sample.

To avoid problems caused by relying on examiners’ sub-
jective perceptions, many attempts have been made in 
recent years to automatically perform histological evalua-
tion by computer.15-17 In automatic computerized analysis, 
digital images are processed to extract feature values by 
which the image is classified, objects in the image are 
detected, or specific areas in the image are extracted. Until 
recently, these methods were not easy to perform because 
they required explicit programming of what features to 
extract and how to extract them. In machine learning meth-
ods, including deep learning, which has been developing 
rapidly in recent years, the computer automatically learns 
how to extract features, making programming much easier 
than before. When adapting deep learning to medical 
images where only a specific region of the image is needed 
for evaluation, a 2-step approach, which first detects the 
region of interest, and then performs the classification on 
the detected region, is increasingly being used for accurate 
evaluation.18-20 We thought that cartilage degeneration scor-
ing for the image of a histological section of the knee joint 
would benefit from this 2-step approach because the evalu-
ation is mostly limited to the medial and lateral compart-
ments, except when there is a special need to detect lesions 
outside of these compartments. Automating the first detec-
tion step ensures that the examiner does not arbitrarily 
exclude areas with strong or weak degeneration when set-
ting the regions to be used for scoring. Therefore, as a first 
step in the development of a system for automatic OA scor-
ing, we decided to develop a system for automatically 
detecting the medial and lateral compartments of coronal 
sections of mouse knee joints from histological images.

A single-shot multibox detector (SSD) is a state-of-the-
art algorithm based on deep learning technology for detect-
ing objects from images.21 The SSD algorithm was 
originally developed to detect a range of objects of multiple 
classes from a single image (object detection). In the system 
that we attempt to develop, we needed to detect only one 
medial and one lateral compartment from an image (object 
localization), which is clearly an easier task than object 
detection, so the SSD algorithm seemed capable for the 
task. The SSD network is based on VGG16, a standard 

convolutional neural network (CNN) architecture used for 
high-quality image classification,22 with 6 additional con-
volution layers added. A total of 8,732 rectangular default 
boxes with 6 different sizes and 4 or 6 different aspect ratios 
were set up using the outputs from 6 locations in the latter 
part of the network. For each of these default boxes, the 
offset to the ground truth boxes and the confidence of the 
teaching labels were calculated. As the machine learning 
process iterates, the offset and label estimates become 
closer to the ground truth. With this SSD algorithm, in this 
study, we developed a system to automatically detect the 
medial and lateral compartments from images of histologi-
cal sections of the knee and examined the performance of 
the trained model. We also examined whether the system 
could be adapted to sections stained using a method that 
was not used for the training set.

Materials and Methods

Dataset Preparation

We performed the following procedures under the Google 
Colaboratory pro environment, using Ubuntu version 
18.04.5 LTS as the operating system. We wrote the code 
used in this study in Python version 3.7.10 with PyTorch 
version 1.9.0 as a library for machine learning. Other 
major libraries used were CUDA version 10.2, OpenCV 
version 4.1.2, NumPy version 1.19.5, scikit-learn version 
0.22.2.post1, and Matplotlib version 3.2.2.

For training and validation, we collected 706 color digi-
tal images of coronal sections of mouse knee joints, which 
included both the medial and lateral compartments. The age 
of the mice ranged from 5 weeks to 18 months, and the 
genotypes included both wild type and genetically modi-
fied. Knees were operated for OA induction,6,7 operated on 
in a sham surgery, or not surgically treated. Detailed demo-
graphic characteristics are shown in Table 1. The knee 
joints were embedded to prepare coronal sections following 
instructions as previously reported.14 The sections were cut 
with respect to anatomical landmarks such as the flattened 
tibial plateau for the posterior position, the crossing of the 
cruciate ligaments as the middle position, and the presence 
of synovial tissue in the joint space, the flattening of the 
femur, and loss of cartilage on the tibia as the anterior mar-
gin. The sections were mainly mid-coronal, but to increase 
robustness, some off-center sections were also used. All 
sections used for this study contain both the femur and tibia 
around the knee joint, and the soft and hard tissue. Sections 
were stained with hematoxylin and eosin (HE), SO, or tolu-
idine blue (TB). These images were then randomly split into 
training and validation images at a ratio of 80:20. LabelImg23 
was then used to set the ground truth boxes and teaching 
labels corresponding to the regions of the medial and lateral 
compartments. These boxes for the compartments were set 
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to include the entire width of the articular cartilage of the 
femur and tibia, except for non-load-bearing surfaces at the 
outer edges, in addition to the subchondral plates.

Network Architecture

We implemented the SSD network in the same way as in the 
original paper.21 We used the pretrained VGG16 network 
(https://s3.amazonaws.com/amdegroot-models/vgg16_
reducedfc.pth) for the early layers of our own. The training 
and validation steps described below were repeated in this 
order for 200 epochs.

Training Step

We resized the training images to 300 × 300 pixels to match 
the input size of the SSD network. We then standardized the 
images by calculating the average pixel values for the red, 
green, and blue channels for all training images and 

subtracting them from the corresponding values for each 
image. To increase the amount of training data and to pro-
vide resilience to data variations, we randomly scaled, color 
transformed, cropped, and horizontally flipped the images 
before inputting them to the model for each epoch (data aug-
mentation). After these pre-processing steps, we set the 
batch size (the number of images loaded at one time) to 30 
and passed each batch into the SSD network, one at a time. 
By processing the data in the network, we obtained outputs 
consisting of the predicted location of the bounding box and 
the predicted value of the label. We then computed the loss 
functions for the predicted bounding box and ground truth 
box locations (localization loss, loss_l) and for the confi-
dence of the label (confidence loss, loss_c) in the same way 
as in the original literature.21 We then used the stochastic 
gradient descent (SGD) method with a learning rate of 1e-3, 
a momentum of 0.9, and a weight decay of 5e-4 to update the 
model parameters so that the sum of loss_l and loss_c (total_
loss) was minimized. We repeated the above process for all 
batches of training images. We then calculated the average 
values of loss_l and loss_c for all batches and defined them 
as such for the training step of the epoch. At the end of each 
epoch, we saved the model parameters for further analysis.

Validation Step

As in the training step, we resized and standardized each 
validation image. We did not perform data augmentation on 
the validation images. Then, we inputted a batch of 30 vali-
dation images into the SSD network, which had just been 
updated in the previous training step. We calculated the 
loss_l and loss_c from the output without updating the 
parameters. After all the batches were processed, we calcu-
lated the average values of loss_l and loss_c in the same 
way as in the training step and used these values as the 
losses for the validation step of the epoch.

Detection of Medial and Lateral Compartments

The obtained output contained 8,732 bounding boxes, 
which were sorted in descending order of confidence for the 
medial and lateral compartments. As there is only one 
medial and one lateral compartment in the knee joint images 
used in this study, we selected only the bounding box cor-
responding to each compartment that had the maximum 
confidence. If the selected bounding boxes of both compart-
ments overlapped, we changed the bounding box of the 
compartment with the lower confidence value of the two to 
the one with the next highest confidence value for that com-
partment which did not overlap.

Evaluation of the Trained Model

The intersection over union (IoU) is a value between 0 and 
1 obtained by dividing the intersection of 2 regions by the 

Table 1.  Demographic Characteristics of 706 Images Used for 
Training and Validation.

Staining Method HE 270

SO 316
  TB 120
Sex Male 460
  Female 246
Age 5 w 5
  8 w 117
  12 w 171
  16 w 135
  18 w 6
  20 w 230
  18 m 42
Operation performed Postoperative period  
  OA induction 8 w 78
  10 w 6
  12 w 188
  Total 272
  Sham 8 w 57
  12 w 42
  Total 99
  Not operated 335
Genotype WT 261
  flox 41
  OX 14
  KO 390

Operation performed indicates whether the knee had undergone 
surgery to induce osteoarthritis (OA induction), sham surgery (sham), 
or no operative treatment was performed (not operated). Postoperative 
period indicates the time between surgery and harvesting of the knee. 
Genotype indicates whether the genotype is wild type (WT), flox genes 
are inserted (flox), some gene(s) is/are overexpressed (OX), or some 
gene(s) is/are knocked out (KO).
HE = hematoxylin and eosin, SO = safranin O, TB = toluidine blue,  
w = weeks, m = months.

https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth


4	 Cartilage ﻿

union of the same 2 regions, with higher values indicating 
greater overlap between them. We calculated the IoU 
between the regions of the medial and lateral compartments 
estimated by the model and the teaching bounding box. We 
considered a compartment to be correctly detected if both of 
the following 2 criteria were met:

1.	 IoU > 0.5 (the cutoff value used in a previous 
paper).19

2.	 The predicted bounding box contained both the 
articular cartilage and subchondral plate of the load-
ing surfaces of both the femur and tibia.

Validation Using Images of Sections Stained with 
a Different Method

We tested whether we could accurately detect the medial 
and lateral compartments in images with staining methods 
other than HE, SO, or TB, which had been performed on the 
sections used in the training step. For this validation, we 
used 52 images of mouse knee joint sections stained with 
Picrosirius red. Similar to the validation step described 
above, we inputted these images into the trained SSD net-
work and evaluated whether both compartments were cor-
rectly detected.

Statistical Analysis

All data are expressed as means ± standard deviations.

Results

Demographics of the Images Used for Training 
and Validation

Within the 706 images used for training and validation 
steps, there was one image in which the lateral condyle of 
the femur had detached from the slide glass so extensively 
that it was difficult to set up a ground truth box for the lat-
eral compartment, and one image in which the knee joint 
was only partially included. We excluded these 2 images 
from both training and validation. As a result, the final num-
ber of images used was 564 (218 HE, 253 SO, and 93 TB) 
for training and 140 (52 HE, 62 SO, and 26 TB) for 
validation.

Learning Process

Figure 1. shows the change in loss_l, loss_c, and total_
loss for the training and validation steps as the learning 
progressed. All the losses for both steps tended to decrease 
gradually as expected, but as the learning process 
approached epoch 200, the losses for the training step 
tended to be lower than those of the validation step. This 

suggested that the model was overfitting to the training 
images. Since there was no such trend around epoch 100 
(Fig. 1C), and the total_loss showed a local minimum value 
at the end of epoch 105 (Fig. 1D), we decided to use the 
model at the end of epoch 105 for further analysis. The 
parameters of this model are available at https://github.
com/mori-y-lab/KneeLocalization/releases/download/
v1.0.0/knee-ssd.model.

Performance of the Developed Model

By processing 140 validation images with the trained 
network, we were able to correctly detect the medial and 
lateral compartments for all images (Fig. 2A). We obtained 
excellent confidence values of 0.993 ± 0.018 for the 
medial compartment and 0.996 ± 0.006 for the lateral 
compartment (Fig. 2B). IoUs were sufficiently high 
values of 0.86 ± 0.06 for the medial compartment and 
0.87 ± 0.06 for the lateral compartment (Fig. 2C). We 
were able to accurately detect both compartments regard-
less of whether the sections were stained with HE, SO, or 
TB (Fig. 2D-F). In addition, we were able to detect com-
partments from sections that were cut at the more anterior 
part of the knee joint (Fig. 2G). The 140 validation images 
included one with a maximum OARSI score of 6 for the 4 
articular cartilage surfaces, 5 with 5, 3 with 4, and 5 with 3. 
Even for all the images with greatly defected cartilage due 
to advanced OA, we were able to detect both compartments 
correctly (Fig. 2H). Moreover, even when the sections 
were in poor condition, such as blurred, bubbled, or par-
tially detached, we were able to detect the compartments 
correctly (Fig. 2I-K).

Validation with Images of Sections Stained with 
Picrosirius Red

Since training of the model was performed on sections 
stained by 3 different methods, we thought that the trained 
model might potentially detect both compartments based 
not on features specific to any of the 3 staining methods, 
but rather on universal features that could be recognized 
regardless of the staining method. We assessed this possi-
bility using images of sections stained with Picrosirius red, 
which was not used for the training images. We passed 52 
images of sections stained with Picrosirius red into the 
trained model. The demographic characteristics of these 
images are shown in Supplementary Table S1. Of the 52 
images tested, our model correctly detected the medial, lat-
eral, and both compartments in 52 (100.0%), 50 (96.2%), 
and 50 (96.2%) images, respectively (Fig. 3A). A represen-
tative result is shown in Fig. 3B. The confidence values 
were 0.877 ± 0.198 for the medial compartment and 0.835 
± 0.168 for the lateral compartment (Fig. 3C). IoUs were 
0.78 ± 0.09 and 0.75 ± 0.11 for the medial compartment 

https://github.com/mori-y-lab/KneeLocalization/releases/download/v1.0.0/knee-ssd.model
https://github.com/mori-y-lab/KneeLocalization/releases/download/v1.0.0/knee-ssd.model
https://github.com/mori-y-lab/KneeLocalization/releases/download/v1.0.0/knee-ssd.model
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and lateral compartment, respectively (Fig. 3D). These val-
ues are lower than those for the images of sections stained 
by HE, SO, and TB, but are still high enough to indicate 
that our model is effective for images of sections stained by 
Picrosirius red as well. This suggests that the model learnt 
to exploit features that are universal regardless of the type 
of staining performed.

Discussion

In this study, we developed a model for detecting the medial 
and lateral compartments of the mouse knee joint using 
machine learning with the SSD algorithm from images of 
sections stained by HE, SO, and TB. Through validation 

using images of sections stained by these methods, used for 
the training data, and one not, we confirmed that the devel-
oped model was capable of detecting both compartments 
with high accuracy and was resilient against variations in 
staining methods, anatomical position of the sections, pres-
ence or absence of articular cartilage defects, and the condi-
tions of the sections. To the best of our knowledge, this is 
the first report on the development of a deep-learning-based 
system that automatically detects the compartments from 
images of tissue sections of mouse knee joints.

In recent years, many attempts have been made to apply 
deep learning to various medical images, such as plain 
x-ray films, MRI, and ultrasound images.24 In the field of 
musculoskeletal diseases, several successful attempts to 

Figure 1.  Changes in losses for training and validation over the course of the learning process. (A) Changes in localization loss 
(loss_l). (B) Changes in confidence loss (loss_c). (C) Changes in total_loss (loss_l + loss_c). (D) Magnified image of the total_loss for 
epochs 190 to 210 (indicated by a red box in C).
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automatically detect and classify fractures or OA from plain 
x-ray films have been reported recently.20,25-27 On the con-
trary, although there have been many attempts to automati-
cally analyze histological sections using deep learning,28,29 
only a few reports have analyzed musculoskeletal tissue 
sections, including cartilage.30 The fact that we were able to 
detect anatomical locations from tissue sections of the knee 
joint with high accuracy might suggest a use for deep learn-
ing in histological analysis of articular cartilage.

Our final goal is to build a 2-step system that first detects 
the compartments and then scores cartilage degeneration 
for each compartment. In this study, we developed our 
model as the first detection step of this system, which was 

able to correctly detect not only articular cartilage with nor-
mal thickness and shape, but also compartments containing 
greatly defective articular cartilage. Since we were able to 
detect equivalent regions regardless of the degree of articu-
lar cartilage destruction, we think that the regions cropped 
by this model could be useful for downstream analysis of 
cartilage degeneration. By performing further deep learning 
on both detected compartments, it will be possible to not 
only calculate semi-quantitative OARSI scores, but also to 
establish a new system that can automatically detect quanti-
tative indicators, such as the extent of articular cartilage 
destruction, changes in the number of cells, cell hypertro-
phy, and osteophyte formation. In addition, the involvement 

Figure 2. A ssessment of performance of the developed model using the 140 validation images. (A) Summary of whether or not the 
140 images correctly detected the medial and lateral compartments. (B) Box and whisker plot of confidence values for the estimation 
of the medial and lateral compartments. (C) Box and whisker plot of intersection over union (IoU) between the regions estimated 
by the trained network and the teaching bounding box for the medial and lateral compartments. In B and C, the center lines 
indicate the median, the ends of the boxes represent lower and upper quartile, “×” is the average, and dots are the outliers. (D-K) 
Representative result of detection for knee images in various conditions: hematoxylin and eosin stained (D), safranin O stained (E), 
toluidine blue stained (F), cut at anterior position rather than other sections (G), articular cartilage is extensively lost (H), blurred 
(I), bubbled (J), partially detatched (K). White dotted line: ground truth box for the medial compartment, red solid line: region 
detected as the medial compartment, black dotted line: ground truth box for the lateral compartment, and orange solid line: region 
detected as the lateral compartment. The confidence values are shown on the solid lines.
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of subchondral bone in the pathogenesis of OA has been 
extensively studied in recent years.31-33 Since both compart-
ments detected by our model contain subchondral plates, 
they could be used to create a system to analyze the state of 
the subchondral bone.

A recent report showed that CNNs tend to make deci-
sions based on fine textures rather than morphology.34 In 
this study, we trained the model using images of sections 
that had been processed by multiple staining methods. 
Based on the aforementioned report, it is presumed that dif-
ferent staining methods would result in alteration of tex-
tures and so this training should be a difficult task. Despite 
that, however, our trained model could accurately detect the 
anatomical locations. One possible explanation is that the 

model might be trained to use features from anatomical 
structures that are independent of the staining method, 
rather than from texture, which is assumed to not be. 
Alternatively, the difference in staining methods might not 
have significantly changed the features that the model 
emphasized when making decisions. Further studies are 
needed to elucidate the detailed mechanisms, but in any 
case, the results of this experiment, which showed that 
machine learning using sections with different staining 
methods enabled accurate detection of anatomical struc-
tures, will provide useful information for future attempts to 
apply deep learning to histological analysis. For example, 
using deep learning on a data set composed of consecutive 
sections processed by multiple staining methods might be a 

Figure 3. A ssessment of performance of the developed model using sections stained with Picrosirius red. (A) Summary of whether 
the images correctly detected the medial and/or lateral compartments. (B) Representative result of detection for knee image of 
section stained with Picrosirius red. White dotted line: ground truth box for the medial compartment, red solid line: region detected 
as the medial compartment, black dotted line: ground truth box for the lateral compartment, orange solid line: region detected 
as the lateral compartment. The confidence values are shown on the solid lines. (C) Box and whisker plot of confidence value for 
the estimation of the medial and lateral compartments. (D) Box and whisker plot of intersection over union between the regions 
estimated by the trained network and the teaching bounding box for the medial and lateral compartments. In C and D, the center 
lines indicate the median, the ends of the boxes represent lower and upper quartile, “×” is the average, and dots are the outliers. 
IoU = intersection over union.
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promising strategy to create a model that makes decisions 
based on shape rather than texture.

Our model was also able to accurately detect both com-
partments from images with various forms of damage. This 
means that even if sections are processed not completely 
uniformly, the model can robustly detect the equivalent 
regions in them. Staining of tissue sections is a sequential 
process that consists of many, generally manual steps, 
which inevitably causes some heterogeneity among sam-
ples. This robustness might be beneficial to reduce errors 
during analysis.

This study has several limitations. First, although the 
model was able to detect both compartments with high 
accuracy for the images used for validation, the number of 
sections used for this purpose was only 190 (140 HE, SO, 
TB stained, and 52 Picrosirius red stained), so the accuracy 
may not have been calculated precisely, and the characteris-
tics of the model as to what types of images are poorly han-
dled are not fully understood. Processing more images in 
future research will reveal a more precise accuracy and 
detailed characteristics of this model. Second, we only used 
the fact that the 2 compartments do not overlap as anatomi-
cal information for the model to make decisions. However, 
for example, the area ratios between the whole image and 
the bounding box for the compartments, or the area ratio of 
the bounding boxes of the 2 compartments is generally 
constant; thus, it might be possible to make a more effi-
cient model by restricting the size of the default boxes and 
reducing their number. We will incorporate this additional 
information into the model when the need to improve its 
performance arises in future research.

Conclusion

By applying deep learning based on the SSD algorithm to 
images of tissue sections of mouse knee joints, we success-
fully developed a model that detects the location of the 
medial and lateral compartments from images of sections 
stained by various methods and under various conditions 
with high accuracy. To the best of our knowledge, this study 
is the first step in creating an automatic evaluation system 
for OA. In future research, we will further adapt deep learn-
ing to the regions cropped by the model that we have devel-
oped. Through this research, we demonstrated some of the 
usefulness of deep learning for analyzing images of histo-
logical sections.
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