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The majority of research in the Staphylococcus field has been dedicated to the

understanding of Staphylococcus aureus infections. In contrast, there is limited

information on infections by coagulase-negative Staphylococci (CoNS) and how the host

responds to them. S. epidermidis, a member of the coagulase-negative Staphylococci,

is an important commensal organism of the human skin and mucous membranes;

and there is emerging evidence of its benefit for human health in fighting off harmful

microorganisms. However, S. epidermidis can cause opportunistic infections, which

include particularly biofilm-associated infections on indwelling medical devices. These

often can disseminate into the bloodstream; and in fact, S. epidermidis is the most

frequent cause of nosocomial sepsis. The increasing use of medical implants and the

dramatic shift in the patient demographic population in recent years have contributed

significantly to the rise of S. epidermidis infections. Furthermore, treatment has been

complicated by the emergence of antibiotic-resistant strains. Today, S. epidermidis is a

major nosocomial pathogen posing significant medical and economic burdens. In this

review, we present the current understanding of mechanisms of host defense against

the prototypical CoNS species S. epidermidis as a commensal of the skin and mucous

membranes, and during biofilm-associated infection and sepsis.

Keywords: coagulase-negative staphylococci, Staphylococcus epidermidis, innate immunity, host defense,

sepsis, biofilms, biofilm-associated infection

INTRODUCTION

Coagulase-negative staphylococci (CoNS) are a heterogeneous group of staphylococcal species
classified clinically by the absence of the blood-clotting enzyme coagulase. This distinguishes them
from Staphylococcus aureus and a few clinically less important coagulase-positive species. Today,
CoNS are the most commonly isolated bacteria in clinical cultures and have emerged as major
nosocomial pathogens. Risk factors for CoNS infection include the presence of indwelling medical
implants, such as intravascular catheters, or immunosuppression due to cancer treatment or
HIV/AIDS. Treatment of CoNS infections is complicated by the emergence of antibiotic-resistant
strains (such as particularly MRSE, methicillin-resistant S. epidermidis) (Rogers et al., 2009).

CoNS are an integral part of the normal flora on the human skin and mucous
membranes, and preferentially colonize moist areas (Grice et al., 2009). S. epidermidis, the
most common CoNS species recovered from clinical cultures, colonizes the armpit, groin,
anterior nares, conjunctiva, toe webs, and perineal area (Kloos and Musselwhite, 1975).
While usually innocuous or even beneficial colonizers, once the host epithelial barrier
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is compromised, CoNS such as S. epidermidis can cause serious
infections. In fact, CoNS infections account for the majority
of bacterial sepsis and foreign body-related infections, with S.
epidermidis being the most significant species in that regard
(Rogers et al., 2009).

The host immune response to S. epidermidis, the mechanism
of immune tolerance, and the immune benefits that S. epidermidis
commensals can provide, are just beginning to be unraveled. This
review will provide the latest research on the host response to S.
epidermidis as commensals, and as opportunistic bacteria in the
context of biofilm and septic infections.

THE HOST IMMUNE RESPONSE TO
S. EPIDERMIDIS AS A COMMENSAL

There is increasing evidence that the skin microbiota in general
have an important impact on the immune system (Belkaid and
Tamoutounour, 2016). Despite CoNS being among the most
important skin colonizers, specific studies on the host immune
response to CoNS colonization and establishment have been
limited. Those that are available have focused on the immune
response to skin colonization by the prototypical CoNS species
S. epidermidis and the benefits such colonization provides to the
host.

For example, the Gallo group has described potentially
beneficial functions of S. epidermidis as a skin commensal.
Namely, Lai et al. reported that S. epidermidis lipoteichoic acid
(LTA) through a mechanism involving TLR (toll-like receptor) 2
reduces skin inflammation (Lai et al., 2009). The same authors
also later reported that S. epidermidis (but not other bacteria)
produces a not further characterized substance of less than 10 kD
that activates TLR2, and thereby induces antimicrobial peptide
production, which increased the capacity of cell lysates to inhibit
growth of group A Streptococcus and S. aureus (Lai et al., 2010)
(Figure 1A). While these results underline a beneficial function
of S. epidermidis on the skin, regarding the stimulating factor,
they have to be seen in light of the fact that the frequently
reported activation of TLR2 by LTA has been challenged: LTA
purification is extremely difficult and often contains TLR2-
stimulating lipopeptide contaminants, including in commercial
preparations (Hashimoto et al., 2006). These findings thus
certainly require further assessment using isogenic mutants of S.
epidermidis to verify the nature of the stimulating factor.

Scharschmidt et al. showed that colonization with S.
epidermidis triggered a local, as well as systemic, specific CD4+

T cell response as demonstrated by the enrichment of specific
CD4+ T cells in both the skin-draining lymph nodes and the
spleen (Scharschmidt et al., 2015). This group engineered the
S. epidermidis skin isolate, strain Tü3298, to express the peptide
antigen 2W (Epi-2W) linked to a fluorescent protein. To achieve
colonization, they applied 108–109 CFUs of the engineered Epi-
2W strain to the dorsal skin of C57BL/6 mice every 3 days
for a total of three applications. Using this model, the authors
illustrated that expansion of specifically CD4+ regulatory T
(Treg) cells plays a critical role in the immune tolerance to S.
epidermidis. Such tolerance, however, required early bacterial

FIGURE 1 | Model of the host response to S. epidermidis colonization

(A) S. epidermidis colonizes the skin epidermis, a highly organized structure

composed mainly of keratinocytes. In response to S. epidermidis colonization,

pattern recognition receptors (PRRs) such as TLR2 on keratinocytes bind to

poorly characterized factor(s) secreted by S. epidermidis to stimulate a

signaling cascade that results, for example, in the production of the

antimicrobial peptides β-defensin 2 (hBD2) and hBD3. These antimicrobial

peptides provide protection from cutaneous S. aureus and Group A

Streptococcus infections. (B) S. epidermidis colonization induces a specific

(Continued)
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FIGURE 1 | Continued

CD4+ FOXP3+ Treg response, which is essential for immune tolerance toward

S. epidermidis as a commensal. Immune tolerance is believed to be

established only during the neonatal period, as colonization in adult mice failed

to establish tolerance. (C) In a different model, based on results obtained in

adult mice, skin colonization by S. epidermidis triggers a specific IL-17A+

CD8+ T-cell response. Primed in the skin draining lymph node by CD103+

dendritic cells, these T cells enhance the innate antimicrobial defense and

prevent invasion by the fungus, C. albicans.

colonization during the neonatal stage, as colonization in adult
mice did not establish tolerance (Figure 1B). The work by
Scharschmidt et al. is especially intriguing as it provides the
scientific rationale for the modulation of the skin microbiota in
the neonatal period as a therapeutic option to treat inflammatory
skin diseases, and in particular, for atopic dermatitis (AD).

The skin of AD patients is often colonized by S. aureus
(Higaki et al., 1999). Several studies show that S. epidermidis is
the second most common microbe isolated from AD-affected
skin lesions (Hon et al., 2005, 2012, 2016). While this does not
directly implicate S. epidermidis in the pathogenesis of AD, due
to its normal and frequent abundance on the skin, in the most
recent of those studies, Hon et al. examined bacterial isolates
from 100 AD patients and found that S. epidermidis is present
in the most severely AD-affected skin lesions (Hon et al., 2016).
Thus, the previously suggested antagonistic relationship between
S. epidermidis and S. aureus (Cogen et al., 2010; Iwase et al., 2010),
did not translate to less disease in their study. Rather, the results
suggested that S. epidermidis colonization is associated with more
severe AD disease. Certainly, further studies are required to
evaluate the role of S. epidermidis in AD pathogenesis and the
nature of the relationship between S. aureus and S. epidermidis in
AD lesions.

Naik et al. demonstrated that S. epidermidis colonization
in adult mice induces a skin-specific T cell response (Naik
et al., 2015). In this study, the group applied ∼5 ml of
107–109 CFU per ml of S. epidermidis across the entire
mouse skin surface every other day for a total of four
applications, a procedure by which they reported to obtain
stable colonization. The T cells induced in this study, however,
were IL-17A+ CD8+ T cells rather than CD4+ T cells, as in
the Scharschmidt et al. study (Scharschmidt et al., 2015). The
authors showed that these IL-17A+ CD8+ T cells provided
immunity to cutaneous C. albicans infection (Figure 1C);
however, they did not examine whether this also provides
immunity to other pathogens, notably S. aureus (Naik et al.,
2015).

Both the Scharschmidt et al. and Naik et al. studies examined
the host immune response to S. epidermidis colonization, yet
their findings are quite different. These differences can be
attributed to the nuances in the setup of the mouse models or
possibly also the specific S. epidermidis strains used. Despite the
differences in the results, collectively, the two studies showed
that colonization with S. epidermidis induces an adaptive T cell
response inmice. It is unclear, however, if such immune signature
to S. epidermidis colonization is also observed in humans.

IMMUNITY AGAINST S. EPIDERMIDIS IN
BIOFILM-ASSOCIATED INFECTIONS

Very few studies have been performed to assess the immune
response to CoNS biofilm-associated infections, especially as
compared to S. aureus. Most of those studies have focused
on S. epidermidis. CoNS biofilm-associated infections often
occur in patients with medical implants, with S. epidermidis
being the most likely species to be recovered (Rogers et al.,
2009). Biofilms are complex, spatially diverse agglomerations
of bacterial cells enclosed within an amorphous, self-produced
extracellular matrix composed of extracellular DNA, proteins,
and polysaccharides (Otto, 2008). Biofilm-associated infections
are extremely resistant to antibiotic treatment for several reasons,
including reduced metabolism and hampered penetration
through the extracellular matrix (Mah and O’Toole, 2001).
Consequently, treatment often requires surgical removal of the
infected device or tissue. In the US alone, approximately $ 2
billion is spent annually for the treatment and management of
orthopedic implant-related infections (Darouiche, 2004; Parvizi
et al., 2010).

In general, the host immune response to an S. epidermidis
biofilm-associated infection is not protective or sufficient
to clear the infection. Hence, most S. epidermidis biofilm-
associated infections are chronic. Most studies conducted on
the subject thus far are in-vitro studies that have compared
biofilm-grown versus planktonic bacteria. Results from several
studies suggest that S. epidermidis biofilms induce attenuation
in phagocytic function and production of anti-inflammatory
cytokines when compared to their planktonic counterparts
(Figure 2). Conflicting findings have been reported on the
effects of S. epidermidis biofilms on phagocytic activity.
Two studies reported that adherence and phagocytosis by
human neutrophils and primary human monocyte-derived
macrophages were significantly enhanced when stimulated
with biofilm-grown bacteria (Heinzelmann et al., 1997;
Spiliopoulou et al., 2012), while others reported that the biofilm
exopolysaccharide, polysaccharide intercellular adhesin (PIA)
(Mack et al., 1996) plays an essential role in the attenuation
of phagocytic capacity of murine peritoneal macrophages
(Shiau and Wu, 1998), J774A.1 murine macrophages
(Schommer et al., 2011), and human PMNs. There is
consensus in the literature, however, with regard to the
effects of S. epidermidis biofilm on phagocytic killing. Killing
by human macrophages (Spiliopoulou et al., 2012) and
PMNs (Vuong et al., 2004; Kristian et al., 2008) as well as
antibody-mediated killing by leukocytes (Cerca et al., 2006)
are strongly attenuated in the presence of biofilm-grown
bacteria.

The role of complement in CoNS biofilm-associated infections
is quite unclear. While S. epidermidis biofilm-producing strains
elicit a stronger response in the activation and release of
complement components than their isogenic PIA-negative
and thus biofilm-negative counterparts (Kristian et al., 2008;
Fredheim et al., 2011), such complement release did not translate
to enhanced phagocytic killing. S. epidermidis PIA-positive
biofilms triggered C3a release, but protected S. epidermidis
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FIGURE 2 | Model of the host response to S. epidermidis infections. Breaching through the skin can result in S. epidermidis dissemination into the bloodstream

to cause bacteremia and acute cases of sepsis. Host immunity against septic infections heavily depends on neutrophils, complement, as well as activation of PRRs

including G-protein coupled receptors (GPCRs) such as TLR2 (green) and FPR2 (blue). Biofilm-associated infections on medical implants originate from

contaminations during device insertion or, in rare cases, from the bloodstream. Patients with medical implants are susceptible to S. epidermidis sepsis, as biofilm

bacteria can often disseminate into the bloodstream. The immune response to biofilm-associated infections is generally thought to be not effective, as biofilms inhibit

phagocytic killing by PMNs and macrophages. In addition, they skew the immune system toward enhanced production of anti-inflammatory cytokines such as IL-13

while limiting the secretion of pro-inflammatory cytokines, including IL1-beta, IL-12, and IFN-gamma.

from C3b and IgG opsonization and PMN-mediated killing
(Kristian et al., 2008). Notably—while some authors tried to
attribute specific effects to PIA, rather than biofilm formation, by
mechanically destroying aggregates (Vuong et al., 2004), in none
of these studies a clear distinction between the effects of biofilm
agglomerations and a direct effect of the exopolysaccharide PIA
can be made. As for the claimed pro-inflammatory properties
of PIA (Kristian et al., 2008; Fredheim et al., 2011; Ferreirinha
et al., 2016), the facts that PIA is a difficult-to-purify substance
and isogenic PIA-negative mutants have distinctly different cell
surface properties, makes it difficult to attribute observed effects
directly to the PIA molecule.

It has been reported that S. epidermidis biofilm-grown
strains elicit production of anti-inflammatory rather than
pro-inflammatory cytokines (Spiliopoulou et al., 2012). In
the respective study, primary human monocyte-derived
macrophages stimulated with live S. epidermidis from 24-h
biofilms produced lower levels of pro-inflammatory cytokines
(IL-1beta, IFN-gamma, IL-12) and elevated levels of the anti-
inflammatory cytokine IL-13 than planktonic cells grown
for 2 h. Obviously, in that comparison other factors, such as
most notably quorum-sensing-regulated pro-inflammatory
factors such as the phenol-soluble modulins (PSMs) (Cheung
et al., 2014) discussed below, may be made responsible for
the observed differences rather than biofilm formation itself.
However, comparing biofilm-positive with isogenic biofilm-
negative (PIA-negative, Embp, or Aap-negative) strains,

Schommer et al. also observed a reduced inflammatory
response in 774A.1 macrophages with reduced NF-kappaB
activation and reduced IL-1beta production (Schommer et al.,
2011).

Little is known about how the adaptive immune system
responds to biofilm-associated infections, in part, because it is
difficult to establish long-term S. epidermidis biofilm infection
models. Vuong et al. have developed a catheter-related murine
infectionmodel with a S. epidermidis bioluminescent strain called
SE Xen43, with which they were able to monitor in real-time the
progression of S. epidermidis biofilm-associated infection (Vuong
et al., 2008). Comparing the susceptibility of Nu/Nu (T cell-
deficient) and CBSCBG-MM (T/B cell-deficient) to S. epidermidis
biofilm-associated infection with immuno-competent wild-type
Balb/C mice, the authors found that in particular the Nu/Nu
mice were more susceptible to infection, indicating an important
role of T cell-mediated immunity against S. epidermidis biofilm-
associated infection.

IMMUNITY AGAINST S. EPIDERMIDIS

DURING SEPSIS

The presence of CoNS in the blood (bacteremia), often
originating from the dispersal of bacteria from biofilms on
indwelling medical devices, can cause acute sepsis (Figure 2).
CoNS bacteremia is associated with significant healthcare costs,
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morbidity, andmortality (Bearman andWenzel, 2005). Immune-
compromised and premature neonates are the most vulnerable to
CoNS sepsis with S. epidermidis being the most prevalent CoNS
species involved (Cheung and Otto, 2010).

In contrast to S. epidermidis biofilm-associated infections,
which are chronic, S. epidermidis sepsis is acute by nature.
Therefore, the host immune response to S. epidermidis
sepsis, which takes place largely in the bloodstream, is
quite different from that against tissue-residing S. epidermidis
biofilm associated-infections. Since neonates have increased
susceptibility to S. epidermidis sepsis, most of the studies on the
matter dealt with S. epidermidis neonatal sepsis. Therefore, the
following discussion will be focused on neonatal immunity in
response to S. epidermidis sepsis.

An important element in the innate immune response
are innate immune cells, among which neutrophils dominate
in number. Neutrophils recognize invading microbes via a
repertoire of host receptors (see below), ingest them, and
eliminate them within the phagosome by reactive oxygen species
and antimicrobial proteins released during a process called
degranulation (Malech et al., 2014). In addition, lysed neutrophils
can form neutrophil extracellular traps (NETs) to bind and kill
invading microbes (Brinkmann et al., 2004).

Several pattern recognition receptors (PRRs), which recognize
and bind to conserved microbial products (PAMPs, pathogen-
associated molecular patterns) and play an essential role in the
activation of the innate immune response, have been shown to be
critical in host immunity against S. epidermidis sepsis. TLR2 was
shown to be critical for clearance of S. epidermidis in a mouse
sepsis model (Strunk et al., 2010). In human neonates, there is
an increase in TLR2 expression over the course of S. epidermidis
sepsis (Viemann et al., 2005), however, a TLR-stimulated immune
system was reported to be less proficient in eliciting multiple
cytokine responses in neonates compared to adults (Kollmann
et al., 2009). S. epidermidis PIA (Stevens et al., 2009), PSMs
(Hajjar et al., 2001), and lipoteichoic acid (LTA) (Xia et al., 2016)
have been claimed to be effectors of TLR2. However, studies
with PIA and PSMs were not verified with isogenic mutants;
and as for LTA, there has been recent evidence indicating that
staphylococcal lipopeptides rather than LTA are the real immune-
stimulatory agents (Hashimoto et al., 2006). Furthermore, in S.
aureus it was shown that PSMs are not direct agonists of TLR2,
but lead to the release of lipopeptides from the cell surface and
thus have a secondary, TLR2-stimulatory effect (Hanzelmann
et al., 2016), an effect likely also present in S. epidermidis.

Based on the fact that the formyl peptide receptor 2
(FPR2) recognizes PSMs (Kretschmer et al., 2010), this G
protein-coupled chemoattractant receptor is another potentially
important host receptor in the response against S. epidermidis. As
shown in S. aureus, PSM-FPR2 activation induces chemotaxis,
granule exocytosis, and interleukin-8 (IL-8) release from PMNs
(Wang et al., 2007; Kretschmer et al., 2010). Studies on the
effects of PSMs of CoNS on the immune response have only
been performed with pure PSMs of S. epidermidis (Cheung et al.,
2010), and so far have been hampered by the multitude of genetic
psm loci in S. epidermidis and the general difficulty to produce
isogenic deletion mutants in CoNS. However, a recent study

attributed a crucial role to the mobile genetic-element-encoded,
highly produced PSM-mec of S. epidermidis in inflammation and
immune evasion, using isogenic psm-mec mutants (Qin et al.,
2017).

Complement also plays an important role in the immunity
against S. epidermidis sepsis. Deficiencies in complement factor
C3 and IgG are associated with a higher risk of neonatal
CoNS-associated sepsis (Lassiter et al., 1991). Furthermore, in a
study using an ex-vivo whole-blood sepsis model, S. epidermidis
induced significantly lower complement activation in neonatal
compared to adult blood (Granslo et al., 2013). This finding
suggests that there is a maturational deficiency in the neonatal
complement system, which, in part, may explain why neonates
are more susceptible to S. epidermidis septic infections than
adults. Moreover, this study highlights the importance of the
complement system in the host defense against S. epidermidis
sepsis.

Like complement, neutrophils of preterm neonates display
maturational deficiency. They show an impaired oxidative burst
compared to those isolated from term newborns when stimulated
with S. epidermidis (Björkqvist et al., 2004). This, in part, may
also explain the increased susceptibility in preterm neonates to
S. epidermidis sepsis. Interestingly enough, monocytes, another
cellular component in the innate immune response, are not
essential to the host defense against neonatal S. epidermidis sepsis
as both human neonatal and adult monocytes displayed similar
phagocytic and intracellular killing capacity (Strunk et al., 2007).
Taken together, this indicates that neutrophils play a particularly
important role in the immune response during S. epidermidis
sepsis.

While there are numerous studies dedicated to understanding
the role of the innate immune response during S. epidermidis
sepsis, research on the role of the adaptive immune response in S.
epidermidis septic infections remains limited. As these infections
are acute in nature, it is unlikely that the adaptive immune
response plays a significant role. Accordingly, intravenous
transfer of immunoglobulin from donors with high titers of
antibodies to S. epidermidis or S. aureus failed to protect from
sepsis in preterm newborns (Bloom et al., 2005; DeJonge et al.,
2007).

CONCLUSIONS

CoNS infections and in particular S. epidermidis pose a significant
medical and economic burden to public healthcare. Furthermore,
with the emergence of antibiotic resistance, treatment options
are becoming limited. However, the elimination of S. epidermidis
bacteria appears inappropriate, as they are an integral part of the
beneficial microbiota on the skin and mucous membranes.

The beneficial role of S. epidermidis colonization in the
prevention of pathogen overgrowth on the skin, based on results
in mice, has been attributed to stimulation of the immune
response. However, with the mouse skin model barely reflecting
the situation on human skin, it remains poorly understood
whether the findings are transferable to humans. Furthermore,
whether there is a role of potential direct bacterial interaction

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 March 2017 | Volume 7 | Article 90

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Nguyen et al. Host Defense against S. epidermidis

between S. epidermidis and pathogens on the skin remains to be
investigated.

The immune response to S. epidermidis during infection
possibly is even less well understood. In chronic, biofilm-
associated infection it is difficult to distinguish between effects
of shear agglomeration and those mediated by specific cell
surface components. During sepsis, the nature and role of
pro-inflammatory cytokines and inflammation pathways in
response to S. epidermidis remains equally poorly defined.
Elucidation of these mechanisms will also provide more
information on the question why neonates are particularly
susceptible to S. epidermidis infection. Progress that has been
made regarding molecular biology tools for S. epidermidis and
CoNS in general will be of great help in these endeavors
and especially assist in differentiating between direct and

secondary effects. Clearly, a deeper understanding of the
host immune response to these infections will be critical
to the development of S. epidermidis vaccines and novel
therapies.
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