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DNA-associated proteins (DAPs) classically regulate gene expression by binding to regulatory loci such as enhancers or pro-

moters. As expanding catalogs of genome-wide DAP binding maps reveal thousands of loci that, unlike the majority of con-

ventional enhancers and promoters, associate with dozens of different DAPs with apparently little regard for motif

preference, an understanding of DAP association and coordination at such regulatory loci is essential to deciphering

how these regions contribute to normal development and disease. In this study, we aggregated publicly available ChIP-

seq data from 469 human DAPs assayed in three cell lines and integrated these data with an orthogonal data set of 352 non-

redundant, in vitro–derived motifs mapped to the genome within DNase I hypersensitivity footprints to characterize re-

gions with high numbers of DAP associations. We establish a generalizable definition for high occupancy target (HOT)

loci and identify putative driver DAPmotifs in HepG2 cells, including HNF4A, SP1, SP5, and ETV4, that are highly prevalent

and show sequence conservation at HOT loci. The number of different DAPs associated with an element is positively asso-

ciated with evidence of regulatory activity, and by systematically mutating 245 HOT loci with a massively parallel muta-

genesis assay, we localized regulatory activity to a central core region that depends on the motif sequences of our

previously nominated driver DAPs. In sum, this work leverages the increasingly large number of DAP motif and ChIP-

seq data publicly available to explore how DAP associations contribute to genome-wide transcriptional regulation.

[Supplemental material is available for this article.]

Gene expression networks underlie many cellular processes (Spitz
and Furlong 2012). These expression networks are controlled in cis
by DNA regulatory elements, such as promoters and enhancers,
which can be proximal, can be distal, or can be within their target
genes in a given expression network. Extensive mapping of epige-
netic modifications and 3D chromatin structure has provided an
increasingly rich set of clues to the locations and physical connec-
tions among such elements. Nevertheless, these biochemical sig-
natures cannot yet accurately predict the presence or amount of
regulatory activity encoded in underlying DNA. There are many
known and suspected reasons for this difficulty, including the rel-
ative strength, number of interacting partners, and redundancy of
each element, each of which may modulate a locus’ contribution
to the native expression level(s) of its respective target gene(s) in
a manner difficult to predict without direct experimentation
(The ENCODE Project Consortium 2007, 2012; Sanyal et al.
2012; Roadmap Epigenomics Consortium et al. 2015). In this pa-
per, we present evidence that the total number of DNA-associated
proteins (DAPs) that associate with a locus can act as a quantitative
predictor of the locus’ regulatory activity and that the activities of

loci with large numbers of DAP associations can be disrupted in a
predictable manner by altering subsets of putative “driver motifs.”

Classically, regulatory loci are thought to be discriminately
bound by a small subset of expressed transcription factors (i.e.,
fewer than 10) in a manner governed by each factor’s DNA se-
quence preference, and additional proteins are recruited through
specific protein–protein interactions (Mitchell and Tjian 1989).
However, this model is becoming incongruent with observed
DAP associations as catalogs of genome-wide DAP binding maps
continue to expand (Foley and Sidow 2013). Specifically, the dis-
criminatory nature by which regulatory regions recruit DAPs is un-
clear at thousands of loci that have been shown to associate with
dozens of different DAPs with seemingly no regard for motif pref-
erences (Teytelman et al. 2013; Jain et al. 2015; Ramaker et al.
2017; Wreczycka et al. 2019). These loci, which have associations
with dozens of DAPs, have been inconsistently defined but are
broadly referred to as high occupancy target (HOT) sites. This phe-
nomenon has been at least partly attributed to technical artifacts
of chromatin immunoprecipitation sequencing (ChIP-seq), a com-
mon assay used to map DNA–protein interactions in vivo, result-
ing in a small number of blacklisted loci (Johnson et al. 2007;
Landt et al. 2012; Carroll et al. 2014). These artifacts have largely
been localized to regions of the genome for which it is difficult

4These authors contributed equally to this work.
Corresponding author: rmyers@hudsonalpha.org
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.260463.119.
Freely available online through the Genome Research Open Access option.

© 2020 Ramaker et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution-NonCommercial 4.0 Interna-
tional), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Research

30:939–950 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/20; www.genome.org Genome Research 939
www.genome.org

mailto:rmyers@hudsonalpha.org
http://www.genome.org/cgi/doi/10.1101/gr.260463.119
http://www.genome.org/cgi/doi/10.1101/gr.260463.119
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


to confidently align sequencing reads, such as repetitive elements
(Landt et al. 2012; Carroll et al. 2014). Others found potentially
misleading or nonspecific ChIP-seq signal more broadly at GC-
rich promoters of highly expressed genes (Wreczycka et al.
2019). These findings providemotivation for proceedingwith cau-
tion when analyzing DAP coassociations, particularly at HOT loci.
In our analysis of these genomic regions, we present an extensive
examination of potentially confounding characteristics of HOT
loci, used conservative peak calling thresholds standardized by
The ENCODE Consortium, and rely heavily on orthogonal, non-
ChIP-seq-based data sets to define DAP associations. Despite this
conservative approach, we find complex DAP coassociations to
be pervasive throughout the genome, and the increasing com-
pleteness of our catalog of DAP occupancy maps, generated by
ChIP-seq and other orthogonal approaches, invites a systematic
investigation of the prevalence and significance of DAP coassocia-
tions and of the classicmodel for howDAPs interact with regulato-
ry elements.

Previous work has investigated HOT loci using a combination
of genome-wide transcription factor motif scanning and ChIP-seq
experiments (Foley and Sidow 2013; Li et al. 2015, 2016). These
studies have found thousands of loci harboring dozens of motif
or ChIP-seq peak-based DAP associations throughout the genome
andhave labeled these regions asHOT loci. HOT loci were found to
be enriched for markers of regulatory activity, such as initiating
POLR2 binding, DNase I hypersensitivity, active histone marks,
and strong activity in enhancer reporter assays conducted in trans-
genicmouse embryos. These studies also showed that context-spe-
cific HOT loci are generated in association with cell differentiation
and oncogenesis at locations enriched for disease-risk variants.
However, these studies were largely limited to experimental data
from fewer than 100 transcription factors derived from several dif-
ferent cell lines. Previous studies also have not incorporated ge-
nome-wide 3D chromatin structure data, such as chromatin
interaction analysis by paired-end tag sequencing (ChIA-PET)
and promoter capture Hi-C experiments, which have been per-
formed on an increasing number of cell lines.Massively parallel re-
porter assay (MPRA) data that probes the regulatory activity at
thousands of loci across the genome are also now available to as-
sess for quantitative correlation with DAP associations.
Furthermore, few studies have performed experimental perturba-
tions on HOT loci to quantify their vulnerability to single-base-
pairmutations and to probe the key sequence features driving their
activity.

In this paper, we aim to (1) detail the prevalence and cell type
specificity of regulatory element DAP coassociations using the ex-
tensive amount of publicly available ChIP-seq and DAPmotif data
currently available, (2) assess the utility of coassociations as a
marker of regulatory activity, (3) perform a high-resolution dissec-
tion of key sequences driving activity at regions with large num-
bers of DAPs by using a massively parallel mutagenesis assay,
and (4) explore potential factors influencing observed DAP coasso-
ciations, such as 3D chromatin interactions, sequence content,
and copy number variation (CNV).

Results

HOT loci are prevalent in the genome

We used two orthogonal methods to infer DAP associations across
the genome. The first involved analysis of ENCODE ChIP-seq
peaks (208, 129, 312 DAPs in the HepG2, GM12878, K562 cell

lines) (Supplemental Table S1). A subset of DAPs was further clas-
sified into sequence-specific transcription factors (ssTFs; N=117)
and non-sequence-specific DAPs (nssDAPs; N=85). ssTFs were
conservatively defined as those that had an in vitro–derived motif
in the Cis-BP database (Weirauch et al. 2014), and nssDAPs were
defined asDAPswithout in vitro–derivedmotifs that had previous-
ly been characterized as non-sequence-specific chromatin regula-
tors or transcription cofactors (Lambert et al. 2018; Partridge et
al. 2020). As a second method to assess transcription factor associ-
ations, we used the protein interaction quantitation (PIQ) algo-
rithm and in vitro–derived (SELEX, protein binding microarray,
or B1H) motifs from 555 TFs in the Cis-BP database to identify
DAP footprints that were present in ENCODE DNase I hypersensi-
tivity (DHS) footprints (Supplemental Table S2; Sherwood et al.
2014). To quantify DAP coassociations, we binned the genome
into a minimal set of nonoverlapping 2-kb loci that encompassed
either every ChIP-seq peak or every distinct DHS footprint and
counted the number of unique DAP peaks or footprinted motifs
contained within each locus (Supplemental Tables S3–S6). We fo-
cused onHepG2 as the primary cell line in our analysis, and the fig-
ures in this paper contain HepG2-derived data unless otherwise
specified.

To ensure that our definition of a “HOT” locus was general-
izable across cell lines and data sets, we defined HOT regions as
those associated with at least 25% of DAPs assayed. This definition
requires 52 of 208 DAPs assayed with ChIP-seq in the HepG2 cell
line to have a peak at a given locus to reach the HOT threshold.
Nearly 6% of loci (13,792 out of 244,904) met this HOT threshold
in HepG2, and we found this result to be consistent after varying
the number of DAPs incorporated into our analysis via random
sampling (Fig. 1A; Supplemental Fig. S1A–C). We found our
25% threshold to be preferable to other HOT thresholds based
on the stability of number of loci detected and recall performance
of the full data set in a series of random down-samples
(Supplemental Fig. S1B,C). This threshold also performed similar-
ly in the K562 and GM12878 cell lines (Supplemental Fig. S1D–F).
The distribution of observed DAP coassociations was different
than that observed after randomly scrambling DAPs across all
loci (K-S test P<5×10−16), with no locus reaching our HOT
threshold by random chance (Supplemental Fig. S1G). A subset
of our HOT loci fall under a previously established definition of
super enhancers (Whyte et al. 2013); however, no HOT promoters
and the vast majority (97.1%) of HOT enhancers are not encom-
passed by this definition (Supplemental Table S7; Supplemental
Fig. S1H,I). The observed pattern of DAP coassociations was rela-
tively consistent when restricting to ssTFs or nssDAPs (Fig 1B;
Supplemental Fig. S1A), although a slightly larger proportion of
ssTF peaks were found at a locus alone (44.0% vs. 34.4%) or
with a relatively small number of coassociated ssTFs. No locus
had ≥25% of the 352 nonredundant HepG2 DHS-footprinted mo-
tifs (DFMs) analyzed, suggesting the number of possible motifs at
a locus is constrained in a manner not observed for ChIP-seq
peaks. However, the number of DFMs was positively correlated
with the number of gross DAP peaks across loci (rho=0.494, P<
5×10−16) despite a minority (∼10%) of ssTFs with ChIP-seq peaks
present at any given HOT site possessing a corresponding DFM at
the same locus (Fig. 1C). These data suggest that, although the
presence of DFMs is a strong indicator of HOT loci, a majority of
DAP associations at HOT loci likely represent non-sequence-
specific or indirect interactions.

AlthoughHOT sites represent a small minority of DAP-associ-
ated loci, because of the massive number of DAPs that localize to
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these sites, they account for 55% of any individual DAP’s ChIP-seq
peaks on average, potentially complicating the interpretation of
any individual ChIP-seq data set. We observed a wide range in
the rate of participation in HOT loci within previously defined
DAP classes, but DAPs with a methyl-binding domain (MBD), a
Myb/SANT domain, or a homeodomain show the highest rates
of HOT site participation (Fig. 1D). These classes have been previ-
ously described as having an affinity for large multiprotein com-
plex membership, such as the NuRD complex, and are plausible
candidates to be indirectly recruited to HOT loci (Underhill et al.
2000; Basta andRauchman2015). A small number of ssTFs, includ-
ing SP1 and SP5, which bind GC-rich sequences; HNF4A, a key
driver of liver cell differentiation; GABPA and ETV4, which belong
to the ETS family of ssTFs; and KLF16 had DFMs at an exceptional
number of HOT sites (Fig. 1E; Tan and Khachigian 2009; Wei et al.
2010; DeLaForest et al. 2011).Manyof these ssTFs have been impli-
cated as drivers of liver expression programs and thus can be rea-
sonably nominated as putative “drivers” of HOT sites in HepG2,
a liver cancer–derived cell line (DeLaForest et al. 2011). Despite
rampant coassociations of DFMs, we observed little evidence for
specific cooperation among these driver ssTFs as HOT loci were
roughly three times more likely to have only one of the HNF4A,

GABPA, or SP1 DFMs present rather than any combination of
the three (Supplemental Fig. S1J).

HOT loci are enriched for promoter and enhancer regions near

highly expressed genes

After establishing the prevalence of HOT loci, we investigated the
biological significance of loci with a large number of DAPs. By in-
tersecting these loci with previously assigned HepG2 genomic an-
notations, we found a continuous relationship between the
number of DAPs, identified as ChIP-seq peaks or DFMs, and en-
hancer or promoter designation from the IDEAS genome segmen-
tationalgorithm (Fig. 2A; Supplemental Fig S2A; Zhanget al. 2016).
Loci containing a large number ofDFMswere particularly enriched
for promoters over other annotations (Supplemental Fig. S2A).
Roughly half of all IDEAS promoters and likely enhancers in
HepG2 met our HOT loci threshold, whereas genomic regions
with other annotations rarely met this threshold (Supplemental
Fig. S2B). Less than2%of lociwithout an enhancer or promoter an-
notation met our HOT threshold (Supplemental Fig. S2B).

To assess the regulatory activity of loci as a function of the
number of unique DAPs, we used a variety of publicly available
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Figure 1. HOT loci are prevalent throughout the genome. (A) Number of loci reaching “HOT” threshold of 25% of unique ChIP-seq peaks after perform-
ing random down-sampling (from the original 208) of the number of DAPs included. Each data point represents the result of a random sampling of a spec-
ified number of DAPs. The color indicates the recall performance or the percentage of true HOT sites, as defined by >25% of DAPs bound in the full data set,
detectedwith current sample of DAPs. The black line represents themedian result of 100 random samples of each number of DAPs as specified by the x-axis.
(B) Cumulative distribution function (CDF) showing the proportion of loci containing at least a given number of unique DAP ChIP-seq peaks in HepG2. The
green line shows data for all 208DAPs; the red dashed line, data for nssDAPs; and the yellow dashed line, data for ssTFs. (C) Boxplots showing the number of
ChIP-defined DAPs with a corresponding DFM present at the same locus at various levels of DAP coassociation. (D) Barplots indicating the fraction of ChIP
peaks for eachDAP that fall within HOT loci. Bars are grouped by previously defined DAP classes. The dashed red line indicates the average fraction (55%) of
ChIP peaks that fall within a HOT locus across all DAPs. (E) Scatter plot showing the fraction of HOT sites that contain a ssTF ChIP-seq peak and a DFM. ssTFs
highlighted in the top right are putative driver TFs present at high proportion of HOT sites.

A comprehensive examination of HOT loci
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gene expression and reporter activity data sets. By using ENCODE
HepG2 RNA-sequencing data, we found a positive association be-
tween the number of uniqueDAPs at a locus and themaximumex-
pression level of nearby genes, particularly in loci proximal (<5 kb,
rho= 0.436, P< 5×10−16) to a transcription start site (TSS) (Fig. 2B,
C; Supplemental Fig. S2C–F). Specifically, 55% of genes whose TSS
were <5 kb from a HOT locus were expressed at a level of ≥10
FPKM, whereas only 16% of genes near a locus with fewer than
10 DAPs bound showed a similar expression level. Highly ex-
pressed genes, with FPKMs greater than 100, were also three times
more likely to have multiple HOT loci within 50 kb of their TSS
than genes with FPKMs less than five (chi-square P<5×10−16)
(Supplemental Fig. S2G). Loci distal to a TSS showed a significantly

weaker correlation (Fisher r-to-Z transformation=67.87, P<5×
10−16) (Fig. 2B). Both ChIP-seq and DHS motif-defined (Fig. 2D)
DAP associations positively correlated with activity in previous
high-throughput reporter assays of approximately 2000 selected
loci in HepG2 and in ATAC-seq fragments in GM12878 (rho=
0.230 and 0.207, P< 5×10−16) (Supplemental Fig. S2H; Inoue
et al. 2017; Wang et al. 2018). For both reporter assay data sets,
the number of DAPs represents a specific, quantitative marker of
regulatory activity that compares favorably to commonly used
markers of promoter or enhancer activity (Fig. 2D; Supplemental
Fig. S2H).

A smallnumberofDFMsshowedapreference for loci distal (>5
kb) or proximal (<5 kb) to a TSS (Fig. 2E; Supplemental Fig. S3A–C).
Specifically, for HepG2, HNF4A, NR2F6, JDP2, and FOX, family
motifs showed a twofold preference for distal, enhancer HOT
loci, andETS andSP familymotifshada threefoldbias for proximal,
promoterHOT loci. These findings agreewith previous studies that
have found HNF4A occupancy at enhancers to be essential for ac-
tivity in mouse hepatocytes (Thakur et al. 2019) and a strong pro-
moter bias for the ETS family of motifs (Hollenhorst et al. 2007).
The level of sequence conservation of driver TF motifs was higher
in HOT loci (Supplemental Fig. S3D), and the degree of both TSS-
distal and TSS-proximalmotif conservationwas correlatedwith to-
tal number of DAPs at a locus (Supplemental Fig. S3E,F). This corre-
lationwas not observed for theCTCFmotif (Supplemental Fig. S3E,
F). In sum, these data suggest a dose-dependent relationship be-
tween the number of DAPs and the regulatory activity of a locus.
This relationship is relatively unchanged after restricting analyses
to ssTFs or nssDAPs, although nssDAPs tended to be slightly
more predictive of activity than did ssTFs (Supplemental Table S8).

High-throughput mutagenesis of HOT loci reveals motifs driving

activity and possible mutational buffering

After establishing that HOT loci show strong regulatory activity in
a variety of reporter assays, we next sought to explore the key se-
quence features driving this activity by performing experimental
perturbations of the sequence content of several loci. A naive hy-
pothesis for how sequence motifs contribute to activity at HOT
loci is an additive one, in which the regulatory activity of a locus
is simply the sum of each constituent motif’s contribution. In
this scenario, ablation of a motif would have a roughly equivalent
effect across loci regardless of neighboring sequence content. A
more sophisticated model allows for interactions between constit-
uent motifs with synergistic or redundant relationships. If motif
synergy is a prominent feature, one would expect individual motif
disruptions to have a greater effect on activity in loci containing
large numbers ofmotifs, whereas the opposite would be true ifmo-
tif redundancy was the predominant relationship between motifs.
Alternatively, it is possible regulatory activity at HOT loci is not
wholly dependent upon individual motifs and is substantially de-
rived from other features. In that situation, the most disruptive
mutations would not map to known TF motifs.

To begin to resolve these competing models and to identify
the sequence elements most important in controlling regulatory
activity at HOT loci, we performed a self-transcribing active regula-
tory region sequencing (STARR-seq)–based mutagenesis assay on
245 genomic loci that had previously shown activity in massively
parallel or single-locus reporter assays (Supplemental Table S9).
Assayed loci contained a range of unique ChIP-seq peaks (one to
150 unique DAP peaks), although roughly two-thirds of the tested
elements met our HOT loci threshold by containing called peaks
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Figure 2. HOT loci are enriched for promoter and enhancer regions near
highly expressed genes. (A) IDEAS annotations of loci binned by ChIP-de-
fined DAP associations. Promoter, strong enhancer, and weak enhancer
annotations represent 0.27%, 0.35%, and 0.22% of the HepG2 genome,
whereas the remaining 99.16% of the genome (largely consisting of qui-
escent and repressed annotations) was used for the “other” annotation.
(B,C) The expression level of the maximally expressed gene neighboring
each locus binned by the number of ChIP-defined DAP associations.
Plots show loci either distal (>5 kb; B) or proximal (<5 kb; C) to their nearest
gene. The sample size of each bin is as follows: 1–9 (N=194,028), 10–19
(N=17,148), 20–29 (N=8685), 30–39 (N=5876), 40–49 (N=4578),
50–69 (N=6532), 70–99 (N=5351), 100+ (N=2706). (D) ChIP- and
DFM-defined coassociation correlates with activity in a previous high-
throughput reporter assay conducted on approximately 2000 selected en-
hancer regions in HepG2. (E) Scatter plots showing the fraction of distal
(>5 kb from a TSS) and proximal (<5 kb from a TSS) HOT sites that contain
a DFM for each ssTF in HepG2.
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for 52 or more DAPs. Within each 2-kb locus, we designed oligos
centered around a 390-bp region of maximal ChIP-seq signal in-
tensity across all DAP peaks (Fig. 3A). We found a majority of
ChIP-seq peaks and DFMs localized to a few hundred base pairs
within each HOT loci bin (Supplemental Fig. S4A), and thus, we
reasoned this approach would capture a majority of active ele-
ments within each locus and allow us to assay several different
loci. Each 130-bp oligo represented a left, right, or central window
of the 390-bp core region. For the positive strand, we synthesized
reference sequence for each window in addition to tiled 5-bp

(AAAAA or TTTTT, depending on maximal disruption from refer-
ence sequence) mutations. For the central 130-bp window, we
also included oligonucleotides with tiled single-base-pair muta-
tions at each position in addition to the tiled 5-bp mutations for
both the positive and reverse strand. Control sequences consisting
of oligonucleotides matched for GC content and repeat length,
and previously tested null sequences were also included in our
library.

We cloned oligonucleotides into the STARR-seq reporter vec-
tor and transfected the plasmids into HepG2 cells. We subse-
quently collected RNA from transfected cells to assess the relative
abundance (and thus activity) of each test element compared
with DNA library input. We detected >90% of individual elements
post-transfection (Supplemental Fig. S4B,C) and observed that
poorly represented elements were evenly distributed in position
across each locus and thus were likely not a product of alignment
efficiency (Supplemental Fig. S4D). With the exception of a subset
of mutated sequences, RNA and DNA counts were highly correlat-
ed across our element library (rho=0.955, P<5×10−16) (Supple-
mental Fig. S4E–H). RNA/DNA ratios were also highly correlated
across sequencing replicates at our conservative minimum repre-
sentation threshold of twoDNA counts permillion (CPM) (Supple-
mental Fig. S4I,J). As expected, elements from the central window
were significantly more active (higher RNA/DNA ratio) than those
on the border of regions of ChIP-seq signal (Fig. 3B; Supplemental
Fig. S4E). Elementswith single-base-pairmutations showed rough-
ly equivalent activity to those with reference sequence on average
but displayed a greater range in activity (Supplemental Fig. S5A).
This suggests that, except for a small subset, most single-base mu-
tations did not significantly affect activity. Elements with 5-bp
mutations showed slightly less activity than reference sequence el-
ements on average (Wilcoxon P<5×10−16) (Supplemental Fig.
S5A). We found the effects on activity of most mutations were
highly correlated between strands (rho= 0.45, P<5 ×10−16) (Sup-
plemental Fig. S5B,C), and transversions tended to have more im-
pact than transitions, as previously reported (Supplemental Fig.
S5D; Guo et al. 2017). Furthermore, we successfully validated 14
high-impact mutations (including one gain-of-activity mutation)
and 14 adjacent low-impact control mutations with individual lu-
ciferase reporter experiments using two different plasmids that
place the test element either upstream of or downstream from
the reporter (Supplemental Figs. S6, 7E; Supplemental Table S10).

Mutations that affect previously defined DFMs showed the
greatest effect on test element activity (Fig. 3C; Supplemental
Fig. S5E), and the magnitude of mutation effects was strongly cor-
relatedwith that predicted by LS-GKM, an algorithmdeveloped for
predicting mutation effects on TF motifs (rho=0.304, P<5×
10−16) (Supplemental Fig. S5F; Lee 2016). Thus, activity at loci
with large numbers of DAPs associated seem to be controlled by
conventional recognitionmotifs that can be disrupted in a predict-
able manner. A motif’s predilection for impactful mutations was
associated, albeit weakly, with its overall enrichment at HOT loci
(rho=0.320, P=0.022) (Fig. 3D). Of particular interest are ETV4,
SP1, SP5, and HNF4A, each of which is highly prevalent across
all HOT loci and enriched for high impact SNVs, providing further
evidence that these ssTFs may be important drivers of activity at
HOT loci (Fig. 3D). Broadening our enrichment analysis to include
all Cis-BP motifs of ssTFs expressed in HepG2, not just those as-
sayed by ChIP-seq, reveals several additional ssTF motifs strongly
enriched for high-impactmutations such as the AP-1 and FOXA se-
quences (Supplemental Table S11). The resolution of ourmutagen-
esis assay allows us to identify the most important base pairs
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Figure 3. High-throughput mutagenesis of HOT loci reveals motifs driv-
ing activity. (A) Example locus depicting mutagenesis schema. The red re-
gion indicates a 130-bp core, centered upon the maximum number of
unique ChIP-seq peaks and DFMs, in which we performed tiled single-
bp and 5-bp mutagenesis in both the forward and reverse orientation.
The flanking green regions represent 130-bp sequences flanking the
core region in which we performed tiled 5-bp mutagenesis in the forward
orientation only. (B) Boxplots indicating activity (as represented by the
RNA/DNA ratio) was largely concentrated in the WT core loci in both
the forward and reverse orientations and not in flanking regions or null re-
gions (Wilcoxon P<510× −16). (C ) Plot indicating the proportion of muta-
tions imposing a change of activity at a variety of thresholds for 5-bp
mutations. Green points indicate data for mutations falling within DHS
footprints. Red points indicate data for mutations falling outside of DHS
footprints. An asterisk indicates Fisher’s P<0.05. (D) Scatter plot showing
the fraction of HOT sites that contain an ssTF ChIP peak and DFM. TFs
highlighted in the top right are putative direct binding TFs associated
with a high proportion of HOT sites. The size of each point corresponds
to an ssTFs DFM enrichment for high-impact mutations in our mutagene-
sis assay. (E) Barplot showing the cumulative differential activity (locus
mean –mutation) across all positions in the HNF4A motif. (F ) Scatterplot
showing the number of nonredundant DFMs at a locus is inversely corre-
lated with its vulnerability to mutation (expressed as the sum of all muta-
tion delta activity scores).
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governing activity in each of these motif sequences (Fig. 3E;
Supplemental Fig. S5G,H).We also found evidence of partialmotif
redundancy, as loci with high numbers of motifs were generally
less vulnerable to single-nucleotide variation (rho=−0.271, P=
4.1 × 10−5) (Fig. 3F). This suggests that someHOT loci are potential-
ly buffered frommotif-disrupting mutations that could complete-
ly ablate other loci with fewermotifs. Independent support for this
hypothesis comes from the observation that the effect sizes of sig-
nificant eQTL SNPs mapping to HOT loci tend to be significantly
lower (rho=−0.175, P<5×10−16) (Supplemental Fig. S8;
Varshney et al. 2019).

HOT loci dichotomize into cell type–specific or ubiquitous

groups

Integrating data frommultiple cell lines allowed us to examine the
cell type specificity of HOT loci and corresponding DAP associa-
tions. Loci containing an increasing number of unique ChIP-seq
peaks in HepG2 were more likely to be present in both K562 and
GM12878 than were loci with fewer ChIP-seq peaks (Supplemen-
tal Fig. S9A,B). HOT sites across each cell line tended to fall within
two groups: one in which HOT sites were present in only one cell
line, and a smaller group inwhich siteswere present in all three cell

lines (Fig. 4A). Relatively few loci were present in only two of three
cell lines.

We found DFMs that were biased toward distal HOT loci in
Figure 2E (HNF4A, NR2F6, and FOXA family) were also biased to-
ward cell type–specific HOT loci and, conversely, that DFMs
strongly associated with proximal HOT loci (ETS and SP family)
were biased toward ubiquitously expressed genes (Fig. 4B;
Supplemental Fig. S9C–E; Supplemental Table S12). The distal,
cell type–specific class of DFMs differed among cell types with
the GATA, NFE2, and TBX1 family of DFMs prominent in K562
cells and IRF8 and SPI1 DFMs prominent in GM12878 cells
(Supplemental Fig. S9F,G). These distal, cell type–specific DFMs
have nearly all been implicated in the regulation and differentia-
tion of their corresponding cell lineage (Ferreira et al. 2005;
Iwasaki et al. 2005; Wang et al. 2008; Davies 2013; Alder et al.
2014; Di Tullio et al. 2017). HOT loci that were common to all
three cell lines were enriched for close proximity to housekeeping
genes involved in cellular metabolism of organic compounds
(Supplemental Table S13). Conversely, cell type–specific, HOT
loci tended to neighbor corresponding cell type–specific genes
(Supplemental Fig. S9H–J). In general, we found cell type–specific
genes were more likely (49% vs. 16%, chi-square P<5 ×10−16) to
contain multiple, cell type–specific HOT loci within 50 kb of their

E

BA C

D

–

Figure 4. HOT loci dichotomize into cell type–specific or ubiquitous groups. (A) The number of HOT loci present in all possible combinations of each cell
line. (B) Scatter plot showing the association between cell type–specific HOT loci enrichment and distal, HOT loci enrichment in HepG2. Cell type specificity
enrichment value is computed by subtracting the fraction of HepG2-specific HOT loci (N=7692) in which a DFM is present from the fraction of non-
HepG2-specific HOT loci (N=6100) in which a DFM is present. The distal locus enrichment is computed by subtracting the fraction of HOT loci >5 kb
from the nearest TSS (N=6445) in which a DFM is present from the fraction of HOT loci <5 kb from the nearest TSS in which a DFM is present (N=
7347). (C ) Stacked bar plots displaying the proportion of cell type–specific or expression level–matched, non-cell type–specific genes that possess a spec-
ified number of neighboring cell type–specific or non-cell type–specific HOT loci at a specified distance to TSS threshold. Cell type–specific genes were
computed by randomly sampling 500 genes that were expressed at least fourfold higher in the cell line of interest than the other two cell lines and had
an FPKM of at least five in the cell line of interest. Non-cell type–specific genes were a cell type–specific gene expression level–matched sample of 500 genes
with an FPKM of at least five in HepG2, K562, and GM12878. (D,E) Proposed model of how HOT loci relate to cell type–specific (D) and non-cell type–
specific housekeeper gene (E) expression.

Ramaker et al.

944 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260463.119/-/DC1


TSS, whereas ubiquitously expressed genes were more likely
(59% vs. 9%, chi-square P< 5×10−16) to have a ubiquitously
HOT promoter (Fig. 4C). These data support a model of multiple,
cell type–specific HOT loci bound by cell type–specific, driver
DAPs regulating cell type–specific gene expression (Fig. 4D), and
ubiquitously expressed housekeeping genes regulated by an ubi-
quitously HOT promoter bound by common ETS or SP family
DAPs (Fig. 4E).

CNV, 3D chromatin structure, and GC content associate

with HOT loci

To further explore mechanisms underlying the formation of HOT
loci, we examined a variety of genomic characteristics linked to
sites with high densities of DAPs. In agreementwith previous stud-
ies of TF motifs and flanking regions (Dror et al. 2015), we found
HOT loci to be enriched for elevated GC content (rho=0.387, P<
5× 10−16) (Fig. 5A). In addition to being a byproduct of increased
motif content, previous studies have proposed that elevated GC
content, particularly in promoter regions, may lead to the forma-
tion of secondary DNA structures that induce indirect or nonspe-
cific DAP associations (Wreczycka et al. 2019). This hypothesis
was difficult to test directly as bothDAP recruitment and promoter
GC content were associated with neighboring gene expression

(rho=0.051, P<5×10−16) (Supplemental Fig. S10). However, we
found gene expression levels to be an independent predictor of
the number of promoter DAPs after correcting for promoter GC
content (regression F-statistic P<5×10−16) and found little varia-
tion in the strength of the correlation between gene expression
level and number of promoter DAPs based on promoter GC con-
tent (Fig. 5B; Supplemental Table S14), which disfavors the idea
that elevatedGC content artificially drives the number of DAPs be-
yond gene expression–based expectations. There was no associa-
tion between total repeat masked sequence, repetitive element
composition, or locus mappability and the number of DAPs
(Supplemental Fig. S10B–D).

Another potential mechanism driving ChIP-seq signal infla-
tion is chromosomal ploidy differences or smaller-scale CNV. In-
creasing the number of available DAP binding sites by copy
number amplification could provide greater opportunities for
DAP recruitment, resulting in a proportionally greater number of
DNA fragments as input to the ChIP-seq assay and improved sen-
sitivity for DAPs that may be incompletely accounted for with ge-
nomic background controls (Zhang et al. 2008). A gross assessment
of the chromosomal distribution of HOT loci in HepG2 suggests
this is an important variable to consider (Supplemental Fig.
S11A–C). Increased ploidy of Chromosome 20 and partial chromo-
somal amplifications of Chromosomes 16 and 17 have been
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Figure 5. Copy number variation, 3D chromatin structure, and GC content associate with HOT loci. (A) Violin plots showing the GC content of loci with
increasing numbers of DAP ChIP-seq peaks. Width of each violin indicates the relative fraction of data contained. Boxes represent the median of each bin
and whiskers are drawn to the 25th and 75th percentiles. (B) Scatter plot showing the association between gene expression and DAP ChIP peaks in each
genes promoter. Points and trend lines are colored based on promoter GC content. Promoters with GC content in the upper 50th percentile of GC content
(high) are colored green, and those in the lower 50th percentile of GC content (low) are colored red. (C ) Stacked bar plots showing proportion of loci with
various levels of ChIP-derived DAP associations in genomic regions with heterozygous deletions, amplifications, or normal copy number. (D) Violin plots
showing the correlation between the number of ChIP-defined DAP associations and the number of Promoter Capture-C interactions. Boxes represent the
median of each bin, and whiskers are drawn to the 90th percentile. P-value reported is derived from Spearman’s rho correlation of the entire data set. The
sample size for each violin from left to right is 194,028, 37,084, and 13,792. (E) Boxplots showing the fraction of DAPs in common between interacting loci
andmatched noninteracting loci for HepG2 Promoter Capture-C. (F ) Line plot indicating the relative fraction (cell type–specific/ubiquitously expressed) of
gene promoters with at least the specified number of Promoter Capture-C interactions with other HOT loci. Interactions with cell type–specific loci are
shown in green and interactions with loci that are HOT in all three cell lines are shown in red. The gray shaded area represents the 95% confidence,
null interval of randomly shuffled loci interactions between cell type–specific and ubiquitously expressed promoters. The 500 cell type–specific and expres-
sion-matched ubiquitously expressed genes were identical to those selected in Figure 4.
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previously described in HepG2, and we observed that Chromo-
somes 16, 17, and 20 harboredmore HOT loci than expected based
on their size and gene density (López-Terrada et al. 2009). Howev-
er, we did not observe a higher rate of HOT loci onChromosomes 2
and 14, which have also been described as having increased ploidy
in HepG2, arguing that ploidy alone does not drive extreme num-
bers of DAP associations. Moreover, the K562 and GM12878 cell
lines had much smaller chromosomal deviations in rates of HOT
loci, despite having an equivalent number of total HOT loci (Sup-
plemental Fig. S11B,C). Intersecting ENCODECNVarray datawith
ourmerged ChIP-seq peak loci, we found a significant depletion in
DAP associations at loci with a heterozygous deletion compared to
loci with diploid copy number (0.7% vs. 5.4%, chi-squared P<5×
10−16) (Fig. 5C). There was only a minor enrichment for HOT loci
in amplified regions relative to normal copy number regions (5.4%
vs. 6.9%, chi-squared P<5×10−16), and ≤20% of loci at any DAP-
association threshold were found in amplified regions (Supple-
mental Fig. S11D). Thus, locus copy number appears to be a statis-
tically significant yet relatively minor contributor to the observed
DAP association patterns.

3D chromatin structuremight also contribute to the observed
pattern of DAP coassociations. The importance of 3D chromatin
structure is becoming increasingly recognized, and much of this
structure is thought to be driven by large protein complex interac-
tions with DNA (Quinodoz et al. 2018). Protein complexes that
bring together multiple loci on a chromosome could give the ap-
pearance of indirect ChIP-seq binding at each locus involved in a
given network. Analysis of Promoter Capture-C and chromatin in-
teraction analysis with paired-end tag (ChIA-PET) data recently
generated in HepG2 cells revealed a weak positive correlation be-
tween the number of DAPs and the number of 3D interactions de-
tected across loci (rho=0.236, P<5×10−16) (Fig. 5D; Supplemental
Fig. S12A; Chesi et al. 2019). Interacting loci did share a signifi-
cantly higher proportion of DAPs than noninteracting loci (Fig.
5E). In agreement with the model proposed in Figure 4, D and E,
cell type–specific promoters were significantly more likely to
show distal Capture-C interactions with other cell type–specific
HOT loci than were promoters of ubiquitously expressed house-
keeping genes (Fig. 5F). These association trends were also found
by ChIA-PET and chromatin capture available for the K562 and
GM12878 cell lines (Supplemental Fig. S12B–E), and restricting
these analyses to ssTFs or nssDAPs did not alter the strength of
these correlations (Supplemental Table S8; Mifsud et al. 2015).
Overall, we found the association between 3D chromatin interac-
tions and DAP density to be weak but consistent across cell lines,
and it is possible that 3D interactions are exceptionally abundant
at a minority of HOT loci. However, HOT loci generally tend to
cluster near each other relative to loci with low numbers of DAPs
(Supplemental Fig. S12F), leading us to expect that these associa-
tions will likely strengthen as experimental approaches for exam-
ining 3D chromatin mature.

Discussion

We have performed an extensive analysis of DAPs across three cell
lines. In each cell line, we found around 15,000 loci that harbored
ChIP-seq peaks for >25%ofDAPs assayed. The number of HOT loci
defined by this criterion is consistent regardless of the number of
DAPs incorporated into our analysis. Thus, we believe this result
will be generalizable to future analyses that will incorporate in-
creasingly comprehensive databases of genome-wide DAP associa-
tions. However, until all expressed DAPs have been assayed in a

given cell line, it will be difficult to appreciate the total number
of DAPs capable of associating with a single locus. As the preva-
lence of ChIP-seq peaks was only loosely correlated with their cor-
responding DFMs at HOT loci, a substantial proportion of signal at
HOT loci is likely to be driven by indirect binding not constrained
by the presence of specific motifs.

HOT loci identified in our analysis are distinct from previous-
ly blacklisted regions shown to be common high-signal artifacts in
sequencing assays and are present at amajority of active enhancers
and promoters in the cell lines we analyzed. Although it is ex-
tremely difficult to differentiate indirect DAP binding from non-
specific or artifactual ChIP-seq signal previously proposed to
contribute to HOT loci (Wreczycka et al. 2019), the pervasiveness
of complex DAP coassociations in non–ChIP-seq–dependent
DFMs and the predictable nature of regulatory activitymodulation
by mutation of constituent motifs suggests these observations are
likely not purely owing to ChIP artifacts. Furthermore, regardless
of underlying mechanism, we find the number of DAP coassocia-
tions to be a useful marker of active regulatory elements. Rather
than being a rare event capable of being filtered from future exper-
iments, these loci appear to be a defining mark of neighboring
transcription.

We do not yet know the mechanism(s) driving the HOT DAP
association pattern, in part because of technical limitations of the
ChIP-seq assay. Most critically, robust ChIP-seq requires a popula-
tion of cells as input. Thus, it is impossible to conclude from these
data what proportion of DAPs simultaneously coassociates in the
same cell. Single-cell ChIP-seq is still in its infancy, but as it ma-
tures, it may provide important clues to assist in answering this
question (Rotem et al. 2015). Furthermore, the allele specificity
of DAPs was not considered by our analysis. Few allele-specific
analyses have been conducted on a large number of DAPs in the
same cell line or tissue, but some evidence exists that DAPsmay fa-
vor a single allele in the context of allelic sequence variation
(Reddy et al. 2012; Ramaker et al. 2017). We found the correlation
between 3D chromatin interactions and observed DAP coassocia-
tions to be particularly intriguing.HOT loci are enriched for greater
numbers of 3D interactions, and a greater number of shared DAPs
are observed between equivalently bound interacting loci than
noninteracting loci. These data coupled with the tendency of at
least a subset of HOT loci to cluster near one another in the ge-
nome support a previously described long-range “flexible bill-
board” model of enhancer function (Arnosti and Kulkarni 2005;
Vockley et al. 2017). This model proposes that enhancer output
is largely dictated by the aggregate sum of interacting motif and
“tethered,” non-motif-driven DAPs, which have been shown to
colocalize in high concentrations via phase-separated condensates
(Shrinivas et al. 2019), rather than rigidly organized, enhanceo-
some structures.

HOT loci tend to naturally dichotomize into cell type–specific
or cell type–ubiquitous groups. Cell type–specific genes tend to
possess multiple, distal, neighboring cell type–specific HOT loci
that typically contain cell type–specific “driver” motifs such as
HNF4A or GATA. Conversely, universally expressed housekeeping
genes generally had a ubiquitously HOT promoter containing SP
or ETS family motifs. Thus, loci that play a role in regulating cell
maintenance and differentiation seem to be readily identifiable
by high densities of DAPs and can be readily segregated based on
their constituent motifs. Because DAPs tend to aggregate at HOT
loci in a partially cell type–specific manner, it may be difficult to
fully impute the locations of HOT loci in other cell lines that
have not been as extensively assayed as the core ENCODE cell lines
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included in this study. However, we found DFM-defined HOT loci
overlapped heavily with ChIP-defined HOT loci, which may obvi-
ate the need to perform extensive numbers of ChIP-seq experi-
ments in every cell and tissue type to predict the presence of a
HOT locus.

Lastly, our STARR-seq results provide high-resolution data on
the most important sequence elements governing activity of hun-
dreds ofHOT loci. An important observation fromour data is that a
majority of regulatory activity can be localized to a central 130-bp
region of maximal ChIP-seq peak signal at a given locus and that
equivalently sized flanking regions showed activity roughly equiv-
alent to our null sequences. Activity at HOT loci can be altered in a
predictable manner by some single-base-pair mutations. HOT loci
are most vulnerable to SNVs in previously identified, highly con-
served portions of their constitutive motifs. In particular, a subset
of ssTFmotifs, including HNF4A, SP1, SP5, ETV4, FOXA, and JUN/
AP-1 motifs, are highly prevalent at HepG2 HOT loci and are par-
ticularly enriched for high-impact SNVs in our mutagenesis assay.
We believe that this provides sufficient evidence to nominate
these ssTFs as putative drivers of regulatory activity at HOT loci
in this cell line and that future experiments specifically modulat-
ing the activity of these ssTFs or their motifs at HOT loci will be in-
formative. We also found evidence that the total number of DFMs
at a locus can reduce its overall vulnerability to SNVs, suggesting
that at least someHOT locimay be buffered from the effects of oth-
erwise harmful mutations. This phenomenon is also apparent in
the reduced effect size of GTEx eQTL SNPs that map to HOT loci.
Similar mutagenesis experiments would need to be performed
on roughly an order of magnitude greater number of loci to defin-
itively test this hypothesis; however, our results justify further ex-
ploration as this buffering effect potentially complicates the
interpretation of noncoding variation that is naïve to the presence
of neighboring DAPs.

Future investigation and interpretation of ChIP-seq and relat-
ed data types, especially when performed on a single DAP or a
small number of DAPs, will hopefully benefit from the knowledge
that extensive DAP coassociations at a significant number of func-
tionally pertinent putative binding sitesmaybe present.We inten-
tionally structured our analysis within a framework that is
generalizable and can act as a resource for nominating potentially
interesting loci for future experiments.

Methods

All data analyzed in this study were aligned to hg19 genome to im-
prove integrationwith pre-existing, publically available data; how-
ever, the conclusions made in this paper are not specific to a
genome version. Detailed methods can be found in the
Supplemental Methods

ChIP-seq data processing

BED files containing ChIP-seq peak information for the K562 and
GM12878 cell lines were obtained directly from the ENCODE data
portal (https://www.encodeproject.org) via the file accessionnum-
ber listed in Supplemental Table S1. BED files containing ChIP-seq
peak information for the HepG2 cell line were generated by the
Rick Myers and Eric Mendenhall laboratories under a consistent
protocol in accordance with ENCODE standards and can be ob-
tained from the NCBI Gene Expression Omnibus (GEO) database
under the GSE104247 accession. We collapsed all neighboring
peaks into a minimal set of nonoverlapping 2-kb loci and defined
all peaks within a bin as “coassociated.” The resulting set of 2-kb

loci can be found in Supplemental Tables S3, S5, and S6 for
HepG2, GM12878, and K562, respectively. DAPs were assigned
to classes based on previous definitions (Lambert et al. 2018).
This BED file binning method can be reproduced using the
“SMART_BED_MERGE” repository available in the Supplemen-
tal Material and at GitHub (https://github.com/rramaker/
GenomeTools2020/).

Motif footprint processing

All DAPmotif position weight matrices (PWMs) were downloaded
from the Cis-BP database (http://cisbp.ccbr.utoronto.ca/bulk.php)
on 04/02/2018 (Weirauch et al. 2014). Onlymotifs derived from in
vitro methods (SELEX, protein binding microarray, or B1H) were
included in further analysis. Motifs assigned to DAPs that were un-
expressed (zero reads aligned) in each cell line were excluded from
further analysis. ENCODEDNase-seq raw FASTQs (accession num-
bers ENCFF002EQ-G,H,I,J,M,N,O,P) were downloaded from the
ENCODE portal and processed using the Kundaje laboratory, EN-
CODE DNase-seq standard pipeline. High-confidence DHS foot-
prints were binned into a minimal set of nonoverlapping 2-kb
loci. The resultant set of 2-kb loci can be found in Supplemental
Table S4. DAP motif pairs that possessed a significant (FDR<
0.05) TomTom similarity score or that shared significant similarity
to another motif were treated as one motif capable of recruiting
multiple DAPs as specified (Gupta et al. 2007).

Intersecting with annotations of interest

ChIP-seq peak and DHS footprint loci were intersected with a vari-
ety of other genome annotations using the BEDTools intersect and
map functions (Quinlan 2014). A source BED file containing IDEAS
regulatory annotations was obtained from https://main.genome-
browser.bx.psu.edu (Zhang et al. 2016). Gene coordinates
were obtained from the Ensembl genome browser (http://useast
.ensembl.org/index.html) gene transfer format grch37.75 file.
Gene expression data were obtained in the form of raw count
data from the ENCODE data portal (HepG2 accession numbers
ENCFF139ZPW, ENCFF255HPM, GM12878; accession num-
bers ENCFF790RDA, ENCFF809AKQ; K562 accession numbers
ENCFF764ZIV, ENCFF489VUK). Cell type–specific genes were de-
fined as those having a fourfold greater FPKM in a given cell line
of interest than either of the other two cell lines and having a
FPKM value of at least two in the cell line of interest. Cell type–
ubiquitous genes were defined as those with an FPKM greater
than five in HepG2, K562, and GM12878. HepG2 reporter assay
data were obtained from previously published work hosted at the
GEO accession GSE83894 in the file GSE83894_ActivityRatios.tsv
(Inoue et al. 2017). GM12878 high-resolution dissection of regula-
tory assay (HiDRA) data were obtained from previously published
work hosted at the GEO accession GSE104001 in the file
GSE104001_HiDRA_counts_per_fragmentgroup.txt (Wang et al.
2018). Significant liver GTEx eQTL SNPs were downloaded with
permission from GTEx download portal. Specifically, we obtained
the “Liver_Analysis.snpgenes” file from the V6 data release that
contains significant eQTL SNPs derived from liver tissue expres-
sion data. GERP scores were obtained from the Genome Browser
under the “comparative genomics” group. CNV data were ob-
tained from the ENCODE data portal under the file accession
ENCFF074XLG. Deletions and amplifications were assigned as
designated in the fourth column. Promoter Capture-C data for
HepG2 was obtained from previously published work hosted in
the Array Express database (https://www.ebi.ac.uk/arrayexpress/
experiments/) under the accession E-MTAB-7144 (Chesi et al.
2019). POLR2A ChIA-PET BED files containing significant 3D
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interactions for K562 were obtained from the ENCODE data portal
under the file accessions ENCFF001THW and ENCFF001TIC. Pro-
moter capture Hi-C BED files for GM12878 were obtained from
previously published work hosted in the Array Express database
(https://www.ebi.ac.uk/arrayexpress/experiments/) under the ac-
cession E-MTAB-2323 (Mifsud et al. 2015). BED files containing re-
petitive element alignment scores were obtained from the UCSC
Table Browser “RepeatMasker” track under the “Repeats” group.
BED files containing DUKE 35mer mappability scores were ob-
tained from the UCSC Table Browser “mappability” track under
the “mapping and sequencing” group. All P-values reported in
themanuscript were capped at P<5×10−16 to improve readability.

STARR-seq library design and cloning

STARR-seq library consisted of 90,581 sequences representing 390
bp within 245 unique loci in both the forward and reverse orienta-
tion with tiled single-base-pair or 5-mer mutations. We selected
loci that had previously shown activity in the HepG2 cell line by
Inoue et al. (2017), becausewe reasoned a baseline level of reporter
assay activity is required to see differential activity uponmutation
(Supplemental Table S9; Inoue et al. 2017). Alternate bases were
randomly signed for single-base-pair mutations. 5-mer mutations
were AAAAA or TTTTT, depending on which was most divergent
from the reference sequence. Previously shown reporter activity
in the top quartile of Inoue et al. (2017) or in-house data sets
was the primary inclusion criteria (Inoue et al. 2017). GC-matched
negative control sequences were generated using the nullseq_gen-
erate executable from the kmersvm website (http://beerlab.org/
kmersvm/) on the provided hg19 genome indices (Fletez-Brant
et al. 2013). Our complete oligonucleotide library is included in
Supplemental_Table_S15.

Library oligonucleotides were synthesized by CustomArray as
single-stranded 170-bp sequences corresponding to 130-bp test el-
ements (from either the 130-bp activity core, 130-bp left or 130-bp
right flanking sequence for each locus) with 20-bp Illumina se-
quencing primer binding site tails. This library was amplified
and cloned into the hSTARR-seq (Addgene 99292) vector with
InFusion cloning. InFusion products were transformed into
Lucigen Endura electrocompetent cells pooled and grown over-
night at 37°C in 2 L of LB ampicillin media at 200 RPM. The full
plasmid library DNA was extracted from this culture using the
Qiagen EndoFree gigaprep kit.

STARR-seq library transfection, RNA isolation, and library

preparation

The STARR-seq library was transfected into HepG2 cells in 30-cm2

plates (25million cells per plate). Twenty-four hours after transfec-
tion, transfected cells were lysed on plate in RLT buffer (Qiagen)
and stored at −80°C. Total RNA was then isolated using the
Norgen total RNA purification kit using the manufacturer’s in-
structions. STARR-seq libraries were prepared as previously de-
scribed (Gaulton et al. 2013) and sequenced on an Illumina
NextSeq with 150-bp paired-end reads using standard protocols.
All primers used in array amplification, cloning, and library prep-
aration are listed in Supplemental Table S16.

STARR-seq data processing and analysis

FASTQ files were adapter trimmed using cutadapt version 1.2.1 be-
fore alignment (Martin 2011). Trimmed reads were mapped to our
oligo library using Bowtie 2 version 2.2.5 (Langmead and Salzberg
2013). A custom Bowtie index was generated with our oligo library
(Supplemental Table S15) in FASTA format. Trimmed FASTQ
files were subsequently aligned to our custom index in a manner

that required a perfect sequence match only in the correct orienta-
tion. This alignment procedure can be reproduced with the
STARR_SEQ_Mutagenesis folder at GitHub (https://github.com/
rramaker/GenomeTools2020).

Oligo activity was defined as replicate median log10(RNA
CPM/DNA CPM). The differential activity of a mutation contain-
ing oligo, or the effect of a mutation on a locus, was computed
as the difference in the mean activity of all oligos associated with
a locus from the activity of a given mutated oligo of interest. In
all cases, the oligos containing forward-strand sequence were ana-
lyzed separately from oligos containing reverse-strand sequence
for each locus. Raw count data and processed activity levels are
available in Supplemental Tables S17 and S18. Predicted mutation
effects were determined using the lsgkm analysis suite in amanner
previously described (Lee 2016; Ramaker et al. 2017). Individual el-
ements tested individually validate our results are included in
Supplemental Table S19.

Data access

All raw and processed sequencing data generated in this studyhave
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under the accession number
GSE142566.
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