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Abstract: The Hippo pathway is pervasively activated and has been well recognized to play critical
roles in human cancer. The deregulation of Hippo signaling involved in cancer development,
progression, and resistance to cancer treatment have been confirmed in several human cancers. Its
biological significance and deregulation in cancer have drawn increasing interest in the past few
years. A fundamental understanding of the complexity of the Hippo pathway in cancer is crucial for
improving future clinical interventions and therapy for cancers. In this review, we try to clarify the
complex regulation and function of the Hippo signaling network in cancer development, including its
role in signal transduction, metabolic regulation, and tumor development, as well as tumor therapies
targeting the Hippo pathway.
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1. Introduction

During tumor development, cancer cells are exposed to dynamic changes in the tumor
microenvironment and availability of nutrients [1–3]. Hence, cancer cells need to adapt
their physiological processes and metabolism to these changes so as to maintain, survive,
proliferate, and even undergo behavioral changes such as invasion and metastasis [4,5].
This is a complex signaling cascade, including cellular perception and transduction of
stimuli in the microenvironment, as well as intracellular metabolic reprogramming to
support the high demand for energy and building blocks [6]. The involved signaling
cascades are affected by some transcription factors and associated pathways. One such
pathway is the Hippo signaling pathway, which regulates gene expression in response to
changes in extracellular and intracellular cues, leading to changes in cell behavior [7].

The Hippo pathway is a unique signaling module that regulates cell-specific transcrip-
tional responses and responds to a wide range of intrinsic and extrinsic cues [8–10]. Based
on the ability of the yes-associated protein/transcriptional coactivator with a PDZ-binding
motif (YAP/TAZ) to regulate signal transduction, metabolism adaptation, and phenotypic
changes, it is expected that the Hippo signaling pathway will function as a central hub for
cancer development. In this review, we will introduce the regulatory role of the Hippo
pathway in tumor development, signal transduction, and metabolism, and discuss possible
cancer treatment strategies targeting the Hippo pathway.

2. Role of Hippo Signaling in the Development of Cancer

Hippo signaling, first discovered in Drosophila, has been implicated as a key reg-
ulator of organ size based on its important roles in regulating cell proliferation and
apoptosis [11–13], and in regulating tissue-specific stem cells. The Drosophila Homolog of
YAP, Yorkie (Yki), was found to act as a critical target of the Wts/Lats protein kinase as
well as a potential oncogene, and the Hippo signaling pathway coordinately regulates cell
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proliferation and apoptosis by inactivating Yki [14]. Evidence also demonstrates the critical
role of the Hippo pathway in cancer stem cell biology, including EMT, drug resistance,
self-renewal, and differentiation [15,16]. The role of the Hippo pathway in inhibiting cell
growth, proliferation, promoting apoptosis, and regulating stem cell biology is the key to
tumor inhibition [17].

Excessive activation or deletion of the Hippo signaling pathway will lead to abnormal
cell growth and dysregulation of tissue and organ homeostasis, which will further lead
to abnormal tissue and organ development, and impaired regeneration or tumorigene-
sis [18–21]. In fact, studies have demonstrated the important role of the Hippo pathway
in the development of many kinds of cancer [22,23]. Numerous correlations between
aberrant Hippo pathway protein expression and the cancer’s clinical stage (evaluated
comprehensively according to tumor size, lymph node status, and distant metastasis) have
been reported (as reviewed in [24]). Consistently, studies have reported that inhibition of
the Hippo pathway promoted cell proliferation, migration, invasion, and the development
of hepatocellular carcinoma [25,26]. As reviewed recently, the high expression of YAP/TAZ
could promote breast cancer metastasis, and targeted therapy against YAP/TAZ can effec-
tively block breast cancer metastasis [27]. These results establish a clear role for the Hippo
signaling pathway in cancer progression.

As profiled by The Cancer Genome Atlas (TCGA), Hippo pathway genes such as large
tumor suppressor1/2 (LATS1/2) and YAP were somatically mutated in 10% of 9125 tumors
across 33 cancers [28]. The defect of mammalian sterile 20 like1/2 (MST1/2), an impor-
tant component of the Hippo pathway, would lead to YAP activation, sustained liver
overgrowth, and the eventual development of hepatocellular carcinoma and cholangio-
carcinoma [29]. Studies have focused on how upstream inputs affect the activity of the
Hippo signaling pathway, how it functions, and the contribution of its dysregulation to
cancer development. Research on the mechanism of the Hippo regulatory network in
cancer development has made some achievements, and its role in signal transduction and
metabolism regulation is the most understood at present.

3. Role of Hippo Signaling in Mechanotransduction

During tumorigenesis or metastasis, cells are in a complex microenvironment and
constantly respond to biochemical cues and mechanical stress from the microenvironment.
These biochemical and mechanical signals are converted into intracellular signals through
signal transduction to regulate the biological behavior of cells [30]. In recent years, stud-
ies have shown that during tumor development and growth, Hippo signaling plays an
important role in signal transduction, particularly in mechanotransduction [31]. The key
components of the Hippo cascade, including MST1/2, LATS1/2, and YAP/TAZ, constitute
a phosphokinase axis, which regulate the downstream effectors to maintain homeostasis
and prevent tumor growth [32].

As reported by Sansores-Garcia, the Hippo pathway was first linked to the cytoskele-
ton, as the activity of Yap is modulated by changes in F-actin [33]. Since then, cytoskeletal
rearrangement and intracellular signal transduction have attracted extensive attention in
the study of the mechanisms of cell regulation by mechanical factors [34]. According to
previous research, mechanical forces from the microenvironment are transmitted through
membrane receptors, actin cytoskeleton, and the nuclear membrane, and then affect gene
transcription in the nucleus [35,36], ultimately determining cell fate and influencing tumor
progression. Mechanical stimuli such as extracellular matrix (ECM) stiffness, cell morphol-
ogy, and cell density would cause changes in cell geometry and cytoskeleton tension [37,38].
Studies have shown that changes in the activity or state of the cytoskeleton are involved
in the regulation of the Hippo signaling pathway; knocking down or interfering with the
distribution of the cytoskeleton leads to Hippo changes, thus revealing the relationship
between Hippo signaling and the cytoskeleton [39–42]. At present, it is still controversial
whether mechanical factors regulate YAP/TAZ through the non-classical Hippo pathway
(actin cytoskeleton -YAP) or the classical Hippo pathway (MST- Lats -YAP) [43,44]. Earlier
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studies have found that the mechanotransduction mediated by YAP/TAZ required Rho
GTPase activity and tension of the actomyosin cytoskeleton but was independent of the
Hippo-LATS cascade [38]. In addition, it was reported that the depletion of LATS1/2
did not rescue YAP/TAZ inhibition through a physically soft environment [33,45]. These
studies demonstrated that mechanical cues can affect YAP/TAZ activity independent of
LATS (non-classical Hippo pathway). Inconsistently, the LATS1/2-dependent regulation of
YAP/TAZ activity by stress fiber (F-actin) formation has been reported [46], demonstrating
that mechanical cues can also affect YAP/TAZ activity in a LATS-dependent way (classical
Hippo pathway). In addition, when cells are exposed to energy stress or certain biochemical
stimuli, the signal transduction pattern is similar. These research results unraveled how
external environmental signals control related gene expression through classical and actin
cytoskeleton-regulated Hippo signaling, helping to more clearly depict the mechanism of
Hippo pathway mediated signal transduction (Figure 1).

Cells 2021, 10, x FOR PEER REVIEW 3 of 11 
 

 

pathway (actin cytoskeleton -YAP) or the classical Hippo pathway (MST- Lats -YAP) 
[43,44]. Earlier studies have found that the mechanotransduction mediated by YAP/TAZ 
required Rho GTPase activity and tension of the actomyosin cytoskeleton but was inde-
pendent of the Hippo-LATS cascade [38]. In addition, it was reported that the depletion 
of LATS1/2 did not rescue YAP/TAZ inhibition through a physically soft environment 
[33,45]. These studies demonstrated that mechanical cues can affect YAP/TAZ activity in-
dependent of LATS (non-classical Hippo pathway). Inconsistently, the LATS1/2-depend-
ent regulation of YAP/TAZ activity by stress fiber (F-actin) formation has been reported 
[46], demonstrating that mechanical cues can also affect YAP/TAZ activity in a LATS-de-
pendent way (classical Hippo pathway). In addition, when cells are exposed to energy 
stress or certain biochemical stimuli, the signal transduction pattern is similar. These re-
search results unraveled how external environmental signals control related gene expres-
sion through classical and actin cytoskeleton-regulated Hippo signaling, helping to more 
clearly depict the mechanism of Hippo pathway mediated signal transduction (Figure 1). 

 
Figure 1. Signal transduction network of Hippo pathway. Cells respond to mechanical forces, cell 
polarity, and adhesion signals by adjusting their tensional state and actin dynamics to regulate the 
activity of Hippo pathway components. When a cell adheres to a larger area or grows on a harder 
ECM, causes the activation of integrin signaling, and promotes the assembly of FAK/Src complex, 
which inactivate LATS1/2 and facilitate the polymerization of F-actin cytoskeleton via Rho-GTPases, 
F-actin then induces the dephosphorylation and guides the nuclear translocation of YAP/TAZ. 
GPCR signaling responds to a variety of activators (energy, proteins, lipids, sugars), and performs 
the same function by acting on RHO-GTPases. Hypo-phosphorylated YAP and TAZ accumulate in 
the nucleus where they can bind to various TFs, most notably the TEAD family, to direct gene ex-
pression changes that control a range of biological events. Pointed and blunt arrowheads indicate 
activating and inhibitory interactions, respectively. FAK, Focal adhesion kinase; GPCRs, G-protein-
coupled receptors; LATS, Large tumor suppressor; MST, Mammalian sterile 20 like; Src, steroid re-
ceptor coactivator; TEAD, TEA domain protein; TFs, transcription factors; YAP/TAZ, yes-associated 
protein/transcriptional coactivator with PDZ-binding motif. 

Figure 1. Signal transduction network of Hippo pathway. Cells respond to mechanical forces, cell
polarity, and adhesion signals by adjusting their tensional state and actin dynamics to regulate
the activity of Hippo pathway components. When a cell adheres to a larger area or grows on a
harder ECM, causes the activation of integrin signaling, and promotes the assembly of FAK/Src
complex, which inactivate LATS1/2 and facilitate the polymerization of F-actin cytoskeleton via
Rho-GTPases, F-actin then induces the dephosphorylation and guides the nuclear translocation
of YAP/TAZ. GPCR signaling responds to a variety of activators (energy, proteins, lipids, sugars),
and performs the same function by acting on RHO-GTPases. Hypo-phosphorylated YAP and TAZ
accumulate in the nucleus where they can bind to various TFs, most notably the TEAD family,
to direct gene expression changes that control a range of biological events. Pointed and blunt
arrowheads indicate activating and inhibitory interactions, respectively. FAK, Focal adhesion kinase;
GPCRs, G-protein-coupled receptors; LATS, Large tumor suppressor; MST, Mammalian sterile 20 like;
Src, steroid receptor coactivator; TEAD, TEA domain protein; TFs, transcription factors; YAP/TAZ,
yes-associated protein/transcriptional coactivator with PDZ-binding motif.

4. Hippo Signaling in Cancer Metabolic Reprogramming

Metabolism is a fundamental function of cells that can be reprogrammed to meet
the energy and material needs of cells through the regulation of signaling pathways. In
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turn, metabolic pathways or metabolites can modulate a network of signaling pathways,
allowing cells to coordinate their metabolism and behavior in an integrated manner [47].
In the past several years, increasing studies have provided appreciation and understanding
of how Hippo signaling controls cellular and organismal metabolism, and the diverse
mechanisms through which metabolites and metabolic signals, in turn, influence Hippo
signaling [8,47]. The Hippo signaling pathway is a highly conserved tumor suppressor
pathway, which was identified as emerging nodes in the coordination of nutrient availabil-
ity with cancer development and tissue homeostasis (Table 1).

Table 1. Integration of Hippo-YAP signaling with metabolism.

Substrates Targets Effect References

Metabolic Functions Regulated by Hippo signaling Pathway

MST1/2 and LATS1/2 unknown increase glucose uptake
and glycolysis [48]

YAP GLUT3 Inhibit glucose metabolism [49]

YAP GLUT1 and GLUT2 inhibit glucose metabolism [50]

YAP GLUT1, HK2 and LDHA glucose uptake and glycolysis [51]

YAP/TAZ
GLUT3, HK2, HK1, PFKFB4,

PFKP, GAPDH, PGK1, PGAM1,
LDHA, PDHA1 and PDHB

glycolysis [52,53]

LATS1 or YAP SREBPs lipogenesis [54]

MST1, LAST2 and YAP SREBPs lipogenesis and cholesterol synthesis [8]

YAP/TAZ SLC38A1 and SLC7A5 amino acid metabolism [6]

YAP/TAZ GLS1 and SLC1A5 amino acid metabolism [55]

Metabolic Cues that Control Hippo signaling

PFK1 TEADs increases YAP/TAZ
transcriptional activity [56]

glucose YAP YAP phosphorylation and
subcellular localisation [49]

SCD1 YAP/TAZ downregulates YAP/TAZ expression,
nuclear localization, and activity [57]

sterols and fatty acids Mevalonate Pathway regulate YAP/TAZ activity [58,59]

amino acids,
nucleotides, and lipid

molecules
GPCRs modulate the activity of YAP/TAZ [47]

4.1. Regulation of Metabolism by Hippo Signaling

The development and growth of tumors increase the demands for energy and macro-
molecules and is often accompanied by the activation of Hippo signaling. Consistent with
this, the Hippo signaling pathway and its downstream effectors, YAP and TAZ, have been
identified as important regulators of many cellular metabolic pathways of tumor cells, in-
cluding glucose metabolism, lipid metabolism, amino acid metabolism, and mitochondrial
homeostasis [8,60]. The Hippo signaling pathway regulates multiple metabolic pathways
(Figure 2), which enables it to coordinate the availability of energy and metabolites to
regulate cancer development.
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Figure 2. A proposed model for Hippo pathway regulation by metabolism and Hippo pathway
targets for metabolism. Metabolism can regulate or be regulated by the Hippo pathway through
different mechanisms. In a nutrient-rich environment, glucose through glycolysis and mitochondrial
OXPHOS inactivates AMPK by increasing the ATP:AMP ratio; in an energy stress environment,
active AMPK inhibits YAP/TAZ by direct phosphorylation and/or activating LATS1/2. Amino
acids induce the activation of mTOR, which also activates YAP/TAZ through various mechanisms.
Fatty acids increase the expression of JCAD, which inhibits LATS2. Hippo core kinases MST and
LATS regulate lipogenesis, as LATS2 can directly bind to SREBP precursors (SREBPs) and inhibit
its processing to mature cleaved SREBP (SREBP-C), thus blocking its transcriptional activity. One
possible mode of the Hippo pathway regulating metabolism is as follows: Hypo-phosphorylated
YAP and TAZ accumulate in the nucleus, where they can bind to various TFs (such as HIF1α and
SREBP) or TEAD family, to direct transcription and expression of enzymes involved in complex
metabolic pathways. AMPK, AMP-activated protein kinase; JCAD, junctional protein associated with
coronary artery disease; LATS, large tumor suppressor; MST, mammalian sterile 20 like; OXPHOS,
oxidative phosphorylation; SREBP, sterol regulatory element-binding protein; TEAD, TEA domain
protein; TFs, transcription factors; YAP/TAZ, yes-associated protein/transcriptional coactivator with
PDZ-binding motif.

Researchers found that the knockout of MST1/2 and LATS1/2 cells lead to the decrease
of glucose levels in the culture medium and the increase of medium acidity, suggesting
the increase of glucose uptake and the glycolysis rate, which is consistent with the result
of increased YAP/TAZ transcriptional activity [48]. Although there are still limitations
at the cellular level, the Hippo signaling pathway has gradually shown its potential
as a regulator of intracellular glucose metabolism. As transcriptional coactivators of
Hippo signaling, YAP/TAZ were proved to promote glucose uptake and glycolysis by
upregulating the expression of glucose transporters and glycolytic enzymes. Studies
have identified glucose transporter 3 (GLUT3) and GLUT1 as targets of YAP, with their
expression and glucose uptake being regulated by YAP [49,50]. Moreover, our recent
study indicated that the activation of YAP promoted the expression of GLUT1 and the
glucose uptake of hepatocellular carcinoma (HCC) cells [51]. These studies demonstrate
that YAP can promote glucose uptake and glycolysis by upregulating the expression of the
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glucose transporter. Concurrently, emerging evidences have shown that Hippo signaling
regulates glycolysis by regulating the expression of the key enzymes of this pathway [61].
Studies have reported that the deletion of YAP/TAZ in cancer cells could downregulate
the expression of a variety of key enzymes involved in glycolysis, including HK1, HK2,
PFKFB4, PFKP, GAPDH, PGK1, PGAM1, LDHA, PDHA1, and PDHB, leading to the
inhibition of glycolysis activity [52,53]. Consistently, our study also indicated that the
knockdown of YAP/TAZ downregulated the transcription and expression of HK2 and
LDHA, leading to the decrease of glycolysis activity in HCC cells [51]. In addition to direct
transcriptional and expression regulation, YAP/TAZ can also regulate the expression of
key glycolysis enzymes by interacting with transcription factors. Hypoxia-inducible factor
1α (HIF1α) and c-Myc as the main transcription factors regulating glycolysis [62,63] were
also found to be associated with YAP and to regulate the expression of key glycolysis
enzymes and glycolysis. As studies reported, YAP binds to these transcription factors
in the nucleus and regulates cell glycolysis [62,64–66]. Altogether, Hippo signaling can
regulate cell glucose metabolism in a variety of ways.

In addition to glucose metabolism, lipid metabolism and amino acid metabolism are
also dysregulated in cancer and can be regulated by Hippo signaling. Sterol regulatory
element binding protein (SREBP) is a transcription factor that mainly regulates the biosyn-
thesis of cholesterol, fatty acids, and triacylglycerol, and is involved in the regulation of the
expression of key genes in lipid synthesis and absorption [67,68]. It has been demonstrated
that YAP is a co-factor of SREBP, and the activation of LATS1 or the inhibition of YAP
reduce hepatocyte lipogenesis by inhibiting the function of YAP–SREBP complexes [54].
In addition, as reviewed by Ibar et al., multiple Hippo signaling components (including
MST1, LAST2, and YAP) are involved in regulating the activity of SREBPs, thereby con-
trolling lipogenesis and cholesterol synthesis in hepatocyte [8]. Bile acid is an important
component of bile and plays an important role in lipid metabolism. A study reported
that the activation of Hippo signaling suppressed bile acid metabolism, liver overgrowth,
and tumorigenesis [69], suggesting it is involved in the regulation of lipid metabolism.
Studies have shown that YAP/TAZ upregulates the expression of amino acid transporter
carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5),
resulting in increased amino acid uptake and the regulation of amino acid metabolism in
HCC [6]. In addition, the expression of amino acid transporters SLC1A5 and glutaminase1
(GLS1) was also reported to be positively correlated with the expression of YAP/TAZ in
human breast cancer samples [55]. Therefore, Hippo signaling is involved in regulating the
metabolic network of tumors, but the regulatory mechanism in cancer cells remains to be
further explored.

4.2. Metabolic Cues That Control Hippo Signaling

It is easy to accept that metabolism is regulated by Hippo signaling, and in fact, studies
have made a strong case that Hippo signaling can in turn be regulated by metabolites or
metabolic pathways (Figure 2) [70,71]. It is well known that the metabolic reprogramming
of cancer cells tends to enhance aerobic glycolysis, and glucose is one of the major sources
of cancer cell metabolism. Studies have reported that Hippo signaling is regulated by
aerobic glycolysis, and the reduction of glycolysis leads to the inhibition of YAP/TAZ
transcriptional activity [8,60,72]. A 2-DG (a glycolysis inhibitor) treatment downregulates
the overall levels of the YAP/TAZ gene signature in MCF10A and MDA-MB-231 mammary
cells, illustrating that glycolysis regulates YAP/TAZ transcriptional activity [56]. In the
absence of glucose, the AMP-activated protein kinase (AMPK) pathway is activated, and
AMPK acts as a regulator of the Hippo pathway in response to energy stress, leading to
phosphorylation of YAP and promoting its inactivation [49]. These results suggest that
glucose and glycolysis are involved in the regulation of the Hippo pathway.

In addition to glucose and glycolysis mentioned above, some other metabolic path-
ways were also found involved in regulating the activity of Hippo signaling, such as lipids,
hormones, and other metabolites [60,73]. As reviewed, alterations on lipid metabolism
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contribute to the activation of several important oncogenic signaling pathways, including
Hippo signaling [73,74]. Research findings have indicated that YAP/TAZ activity is regu-
lated by the SREBP/mevalonate pathway in many cancer cells [54,58]. Oncogenic mutant
p53, acting as a positive transcriptional cofactor for SREBPs, leads to increased mevalonic
acid and promotes YAP activity in tumor cells [58]. The mevalonate pathway, involved in
the synthesis of cholesterol, bile acids, steroid hormones, and statins used to inhibit this
pathway, was found to efficiently suppress YAP/TAZ nuclear translocation [58]. Palmitic
acid is a common saturated fatty acid in organisms. It has been reported that palmitic acid
inhibits YAP by upregulating MST1, thereby inhibiting endothelial cell proliferation, mi-
gration, and angiogenesis [75]. These results reveal a tight connection between YAP/TAZ
activity and metabolic substances and pathways.

5. Target the Hippo Signaling Pathway for Cancer Therapy

As mentioned above, the Hippo pathway is a major signaling pathway that is respon-
sible for human cancer development. The Hippo pathway’s contribution to cancer has
sparked interest in the development of potential therapeutics [76]. Given the association
of elevated and hyperactive YAP/TAZ with many cancers, the anti-cancer therapeutic
strategies targeting the Hippo pathway would aim at inhibiting the activities and functions
of YAP and TAZ directly or indirectly [77]. Several Hippo pathway-targeted strategies
have been reviewed, such as development of drugs targeting MST and LATS activation,
YAP/TAZ activation or YAP/TAZ–TEAD interaction [78–80]. The study indicated that
YAP activates the DNA damage response pathway, and by targeting YAP, dasatinib acts as
a chemosensitizer for a subset of molecular targeted drugs [81]. Apigenin was reported
to decrease the expression of YAP/TAZ and disrupt the YAP/TAZ–TEAD interaction
in TNBC cells, suggesting a promising therapeutic agent for the treatment of TNBC pa-
tients [82]. In addition, statins were identified as potent YAP inhibitors, verteporfin and
vestigial like family member 4 (VGLL4) were identified as inhibitors of the YAP–TEAD
interaction (as reviewed in [23]). Therefore, some progress has been made in inhibiting
upstream Hippo kinase as a strategy for inhibiting tumor progression. However, due to
the ambiguous regulatory mechanism of the Hippo pathway, tumor therapies targeting the
Hippo pathway still face great challenges.

There are many signal pathways involved in the regulation of cancer development.
The regulation of the Hippo pathway by the tumor-related signal pathways is not sur-
prising given its important role in tumorigenesis [83]. The powerful pluripotency of the
Hippo pathway in the development of cancer is inseparable from its interaction with a
variety of tumor-related signal pathways [84]. Some tumor-related signals, including the
Wnt pathway, Notch pathway, Src signal, p53 signal, PI3K/Akt, RAS signaling pathway,
TGFβ signaling, among others, were reported to interact with the Hippo pathway and
synergistically promote cancer development [83,85–90]. They can affect YAP/TAZ depen-
dently/independently of the Hippo pathway, which in turn affects the biological behavior
of cancer cells and cancer development. This suggests that the study of the effect of the
Hippo pathway on cancer development needs to shift from the concept of the simple linear
pathway to the perspective of a network connection composed of multiple signaling path-
ways. In addition to the direct targeting of Hippo pathway components, pharmacologically
regulated signal pathways that interact with the Hippo pathway or combined therapies
that inhibit YAP/TAZ target genes may be promising approaches for targeting the Hippo
pathway in cancer cells.

6. Conclusions

Extensive research studies have provided tremendous insight into the regulation and
role of Hippo signaling in cancer development. In response to tissue-level mechanical forces
and a variety of biochemical factors, F-actin cytoskeleton acts as the main determinant of
the regulation of Hippo–YAP/TAZ activity; through feedback and crosstalk mechanisms,
YAP/TAZ influences a variety of cellular events, from metabolism to biological behaviors.
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At present, some progress has been made in the study of the molecular mechanism by
which the cytoskeleton regulates the Hippo signaling pathway, but some key questions
remain unanswered [42,91]. The Hippo pathway regulatory network is complex and
diverse, and its regulatory mechanism is still poorly understood. A key challenge for the
future will be to explore the mechanisms by which the Hippo signaling pathway plays
regulatory roles in different environments, and to develop targeted cancer treatments. We
believe that targeting the Hippo pathway will lead to fruitful therapies in the near future.
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Abbreviations

AMPK AMP-activated protein kinase
ECM Extracellular matrix
FAK Focal adhesion kinase
GLUT3 Glucose transporter 3
GPCRs G-protein-coupled receptors
HCC Hepatocellular carcinoma
HIF1α Hypoxia-inducible factor 1α
LATS Large tumor suppressor
MST Mammalian sterile 20 like
PFK1 Phosphofructokinase 1
SCD1 Stearoyl-CoA-desaturase 1
SLC38A1 Solute carrier family 38 member 1
SLC7A5 Solute carrier family 7 member 5
Src Steroid receptor coactivator
SREBP Sterol regulatory element binding protein
TCGA The Cancer Genome Atlas
TEAD TEA domain protein
TFs Transcription factors
VGLL4 Vestigial like family member 4
YAP Yes-associated protein
TAZ Transcriptional coactivator with PDZ-binding motif
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