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ABSTRACT: G protein-coupled receptors (GPCRs) are highly
dynamic and often denature when extracted in detergents.
Deriving thermostable mutants has been a successful strategy to
stabilize GPCRs in detergents, but this process is experimentally
tedious. We have developed a computational method to predict
the position of the thermostabilizing mutations for a given GPCR
sequence. We have validated the method against experimentally
measured thermostability data for single mutants of the β1-
adrenergic receptor (β1AR), adenosine A2A receptor (A2AR) and
neurotensin receptor 1 (NTSR1). To make these predictions we
started from homology models of these receptors of varying
accuracies and generated an ensemble of conformations by
sampling the rigid body degrees of freedom of transmembrane
helices. Then, an all-atom force field function was used to
calculate the enthalpy gain, known as the “stability score” upon mutation of every residue, in these receptor structures, to alanine.
For all three receptors, β1AR, A2AR, and NTSR1, we observed that mutations of hydrophobic residues in the transmembrane
domain to alanine that have high stability scores correlate with high experimental thermostability. The prediction using the
stability score improves when using an ensemble of receptor conformations compared to a single structure, showing that receptor
flexibility is important. We also find that our previously developed LITiCon method for generating conformation ensembles is
similar in performance to predictions using ensembles obtained from microseconds of molecular dynamics simulations (which is
computationally hundred times slower than LITiCon). We improved the thermostability prediction by including other properties
such as residue-based stress and the extent of allosteric communication by each residue in the stability score. Our method is the
first step toward a computational method for rapid prediction of thermostable mutants of GPCRs.

■ INTRODUCTION

G protein-coupled receptors (GPCRs) are seven helical
transmembrane (TM) proteins that form the largest class of
drug targets. Therefore, knowledge of the three-dimensional
structure and dynamics of GPCRs will greatly aid drug
discovery. However, crystallization of GPCRs has been a
challenging process, since these receptors are dynamic and exist
in multiple conformations and are often not stable in detergents
that are needed for solubilization.1

One of the two main strategies to crystallize GPCRs is to
increase the hydrophilic area of the receptor by either making
fusions in cytoplasmic loop 3 to stable soluble proteins such as
T4 lysozyme (T4L)2 or apo-cytochrome b (BRIL),3 or by
binding a receptor-specific heavy chain antibody (nanobody) to
the intracellular surface of the receptor.4 Receptor-T4L and

receptor-BRIL fusions have similar stabilities to the wild type
receptor and therefore require the binding of a high affinity
ligand to both stabilize the receptor and lock it in a single
conformational state. In contrast, nanobodies that bind
specifically to the activated state of the receptor impart
considerable thermostability and also lock the receptor in a
single conformation. The alternative strategy to the use of
receptor-fusion protein technology to crystallize GPCRs, is to
derive thermostabilized mutant receptors by introducing
specific point mutations into the wild type receptor sequence.5

The thermostabilized receptor shows increased stability and is
preferentially in a single conformational state, and it can
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therefore be crystallized bound to ligands that bind even with
low affinity. So far several GPCRs have been crystallized using
this strategy, including receptors in class A,6,5b,7,8 class B,9 and
class C.10 Although deriving thermostable mutants is a proven
approach for the structure determination of GPCRs, it remains
a challenging task since the mutations are not transferable
between receptors unless there is considerable homology
between the receptors.11

The original experimental procedure for thermostabilization
was based on Ala/Leu scanning mutagenesis where every
residue was mutated to Ala (except for Ala residues that were
mutated to Leu), each mutant was expressed and its
thermostability was determined relative to the wild type
receptor.5 Once thermostabilizing mutations were identified,
they were mutated to other amino acid residues to check if
further improvements in thermostability were obtained. The
best thermostabilizing mutations were then combined to give
the optimally stable mutant. This is a time-consuming process,
so if we can understand the structural and kinetic basis for why
the mutations were thermostabilizing,12 then it might be
possible to predict which residues in a model of a GPCR
structure are thermostabilizing, thus facilitating an accelerated
route to thermostabilization and structure determination.13

Computational approaches in designing thermostable
mutants for several proteins are based on bioinformatics
techniques to structure based methods involving statistical14

and semiempirical potentials.15 Knowledge based potential
functions were used to predict thermostable mutations for
enzymes.14b,a,c In these works, the energy functions used in
determining mutant stabilities were originally developed for
globular protein design. Alchemical free energy calculations in
conjunction with molecular dynamics (MD) simulations were
used to design thermostable mutants for the bacterial blue light
photoreceptor.15 These methods do not take into account the
effects of the membrane environment and are computationally
slow. GPCRs are dynamic and they exist in multiple
conformations in the absence of agonists and antagonists.
Thus, computational methods to predict thermostability need
to incorporate protein flexibility in the algorithm. Also, due to
the relatively sparse number of GPCR crystal structures,
knowledge based potentials are not robust for predicting
thermostable GPCR mutants. Recently, Chen et al. used
bioinformatics and three-dimensional structural information to
design thermostable mutants of the β1AR.

16 They targeted
nonconserved polar residues that lack hydrogen bond contacts,
and hydrophobic residues with packing defects, and mutated
these residues for increased stability. Their method works well
for mutations that convert a small amino acid to a larger one.
However, given that most experimental strategies for GPCR
thermostabilization rely on Ala/Leu scanning mutagenesis, it is
unclear whether the above method could predict such
mutations.
We have developed a rapid screening computational method,

LITiConDesign (by extending the computational method
LITiCon for GPCR conformational sampling17), for predicting
single point alanine mutations to thermostabilize GPCRs.
Systematic computational alanine scanning on the TM residues
was performed on an ensemble of receptor conformations
generated using a structural model of the receptor. The stability
of the mutant was scored using the sum of torsional energy and
van der Waals (vdW) packing energy calculated using an all-
atom force field energy function. The preliminary version of
this method and validation was published previously (Balara-

man et al. 2010). The computations can be distributed over a
computing cluster and scanning the entire sequence of a given
receptor takes a few hours. We have tested and validated our
method using homology models of varying accuracy for about
400 mutations in three GPCRs: β1AR, A2AR, and NTSR1. Our
method shows the best predictions for homology models of the
target GPCR sequence derived using high homologous
template structures. The method identified the most stable
thermostable mutants in the top 35% of the predicted mutants.

■ METHODS

Thermostability Score Calculation for Single Point
Mutants. The thermostability scores for the single point
mutants in the LITiConDesign were calculated as the difference
in the total potential energy of the mutant and the wild type
receptor. The thermostability score for each mutant was
calculated as (EWT−Emut), where EWT is the sum of vdW energy
and torsional energy components of the potential energy of the
wild type receptor and Emut is the same for the mutant. The
potential energy was calculated either for a single structure of
the wild type and the mutant receptors or for an ensemble of
conformations generated independently for both the wild type
and the mutant receptors. The ensemble of receptor
conformations was generated using the computational method
LITiCon (Ligand Induced Transmembrane Conformational
Change). The details of the LITiCon method have been
published elsewhere.17,18 We describe the method briefly as
applied here. Starting from an initial receptor structure, all the
seven TM helices were simultaneously rotated about the helical
axis between ±5° in 10° increment, thus generating 27 = 128
conformations. Next, in each of the 128 conformations thus
obtained, every hydrophobic amino acid in the transmembrane
(TM) region was mutated to alanine (except alanine, which was
mutated to leucine), thus generating 128N conformations (N =
number of mutations tested). Side chains of each conformation
of each mutant were then optimized using the SCWRL4 side
chain optimization program,19 followed by potential energy
minimization in the CHARMM27 all-atom force field20 for
2000 steps. The minimization and the energy calculation were
performed using the program NAMD.21 The thermostability
score used just the vdW energy and the torsional energy
components of the total energy. We calculated the thermo-
stability scores for residues in the human adenosine A2A
receptor (A2AR), avian β1 adrenergic receptor (β1AR), and
rat neurotensin receptor 1 (NTSR1) for which there are
experimental stability scores available.5c,22 We calculated the
thermostability scores for the single point mutants of the
hydrophobic residues to alanine in the TM regions for these
three receptors starting from their respective crystal structures.
We also performed the thermostability score calculations
starting from the homology models of these receptors, as in
the real case scenario one would need to make these
predictions from homology models prior to experiments.

Molecular Dynamics Simulations of GPCR Crystal
Structures. To understand the effect of lipid packing on the
thermostability predictions, we performed molecular dynamics
(MD) simulations on the crystal structures and homology
models of the wild type of each of β1AR, A2AR, and NTSR1.
The thermostability calculations were performed using the last
conformation of the MD trajectory as well as from the most
populated cluster obtained from clustering analysis of the MD
trajectories as detailed below.
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The starting conformations of β1AR, A2AR, and NTSR1 were
obtained from the crystal structures of thermostabilized β1AR
(PDB ID: 2VT4),6b A2AR (PDB ID: 3PWH),8 and NTSR1
(PDB ID: 4GRV).7 Since the crystal structures are those of
thermostabilized mutants, the receptor structures were mutated
to the corresponding wild type sequences and solvated in
explicit palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid,
water, and ions. The packing of the lipid molecules was
performed using the inf lategro package in GROMACS.23 Each
system was equilibrated by performing 200 ps of MD at 310 K
using a NVT ensemble followed by 5 ns of MD under NPT
conditions at a pressure of 1 bar. The protein and ligand were
kept in place during these equilibration steps using position
restraints. After equilibration to the expected temperature and
pressure, a total of 10 production simulations of up to 100 ns
were performed for each initial conformation with different
initial velocities using the NVT ensemble. The MD simulations
were performed with the GROMOS96 force field24 using the
software package GROMACS, using a 2 fs time step. A cutoff
distance of 12 Å for nonbond interactions was introduced, and
PME (particle mesh Ewald) method25 was used for long-range
vdW interactions. Principal coordinate analysis (PCA) was
performed on each MD trajectory using only the backbone
atoms of TM helix 2 through 7. The loops as well as TM1 were
found to be highly flexible in the MD simulations and were thus
excluded from the PCA. We used the g_covar module of
GROMACS to perform the PCA. The receptor conformations
from the MD trajectories were then clustered in the principal
coordinate space using k-means clustering. The conformation
corresponding to the cluster center of the most populated
cluster from each trajectory was used to perform thermo-
stability calculations.
The GPCR homology models were equilibrated in an explicit

lipid environment using the software package NAMD.21 The
receptor structures were solvated in explicit POPC lipid, water,
and ions using the VMD software. Each system was
equilibrated for 10 ns at 310 K in a NVT ensemble. The
thermostability calculations were performed starting from the
last frame of the MD trajectories and using LITiCon
subsequently to generate the conformational ensemble.
Calculation of Residue Based Stress. To improve the

thermostabile mutant predictions, we further analyzed factors
other than the enthalpy gain that could contribute to the
thermostability of the mutants. From our extensive MD
simulation studies to understand the structural basis of
thermostability,12 we identified that residue based stress and
the involvement of each residue in allosteric communication
pathways of the ligand binding to G protein coupling site to be
important. The residue-based stress (forces) is the net force
(from both the bonded and nonbonded forces) exerted on each
residue from the neighboring residues that are within 3 Å
except those residues that are directly bonded. The force
computation was performed using the GROMOS96 force field
following the procedure described by Stacklies et al.26 The
average stress is the average residue-based stress over the entire
MD trajectory for the wild type receptor of β1AR, A2AR, and
NTSR1. The procedure is discussed in detail in Niesen et al.
2013.27

Calculation of Allosteric Hub Score. Previously, we have
developed computational method to calculate the allosteric
pathways of communication from the extracellular loops to the
ligand binding site to the intracellular G protein coupling
regions of the receptor.28 Using the MD simulation trajectories

of the wild type β1AR, A2AR, and NTSR1, we calculated the
correlated movement in torsion angles between pairs of distant
residues within each receptor. The metric that we used to
calculate the dynamic correlation is mutual information (MI) in
torsion angles, using 35 bins for the torsion angle
distributions.27 The choice of the number of bins was based
on convergence of the entropy values as discussed in Niesen et
al.27

Using graph theoretic methods (Bhattacharya et al. 2014),
we calculated allosteric pathways between each pair of residues
that showed an above average MI (MI > MIavg) and were
farther than 10 Å apart in the receptor structure. We first
constructed an undirected graph using inter-residue contacts,
where the residues formed nodes and the inter-residue contacts
formed the edges of the network. An inter-residue contact was
identified if the Cα atoms of the residue pair were within 10 Å
of one another. The edge weights were calculated as MImax −
MIab, where MImax is the maximum MI among all residue pairs
in the receptor and MIab is the MI between the terminal
residues of the edge. Moreover, to avoid selecting pathways
with weak MI, weights of all edges with MI < MIavg were set to
zero. For a given residue pair, the allosteric pathway is defined
to be the connecting route between the two residues, which
minimizes the number of intermediate nodes and maximizes
the sum of edge MIs of the connecting route. The allosteric
pathways were calculated using the shortest path algorithm by
Dijkstra,29 as implemented in the Bioinformatics ToolBox in
MATLAB. Residues that mediate multiple allosteric pathways
were identified as allosteric hubs, where the number of
mediated pathways is defined as the “allosteric hub score”.
The greater the allosteric hub score of a given residue, the
higher is the involvement of that residue in the activity of the
receptor, and therefore, mutation of this residue to Ala could be
detrimental to receptor activity. Based on this hypothesis, we
have analyzed the effect of mutating an allosteric hub on the
thermostability.

Receptor Structures Tested for Thermostability
Prediction. For β1AR and A2AR, we tested the following
GPCR structures for thermostability prediction. (A) Single
conformation from the crystal structure, (B) conformational
ensemble generated from crystal structure using LITiCon, (C)
conformational ensemble generated from crystal structure using
MD, (D) single homology model, (E) conformational
ensemble generated from homology model using LITiCon.
For NTSR1, we tested (A) single conformation from the crystal
structure, (B) conformational ensemble generated from crystal
structure using LITiCon, (C) single homology model, (D)
conformational ensemble generated from homology model
using LITiCon.

■ RESULTS
We have compared the stability score calculated for each
alanine mutant to the experimental thermostability measured
for single point alanine mutants for β1AR,

5c A2AR,
22a and

NTSR1.22b There are a total of 434 single point mutants for the
hydrophobic residues in the TM regions for the three receptors
for which we have performed the calculations. The list of the
residues tested is given in the Supporting Information Table S1.
The experimental thermostability was measured by heating the
detergent-solubilized mutant to an elevated temperature
(∼28−32 °C), cooling to 0 °C, and the amount of correctly
folded receptor was determined by a radioligand (either an
agonist or antagonist or both) binding assay. In this work,
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mutants that showed 130% or higher ligand binding compared
to the wild type receptor are defined as thermostable. For the
β1AR and A2AR receptors, the mutants were heated without any
ligand present. In the case of NTSR1, two types of experiments
were performed, one where the mutants were heated in the
presence of the agonist neurotensin, and the other experiment
heated the receptor in the absence of neurotensin. The former
assay is termed as +NT and the latter −NT. Under the +NT
conditions, NTSR1 is assumed to be in a conformation similar
to the structure determined by X-ray crystallography, that is, an
active-like state. The −NT thermostable mutants are probably

stabilized in an inactive state as wild-type NTSR1 shows no
appreciable constitutive activity.7,30

Thermostabilities of Single Alanine Mutants Correlate
with Enthalpy. Figure 1 shows the performance of the
calculated thermostability scores starting from the crystal
structures of β1AR, A2AR, and NTSR1 (PDB ID: 2VT4,
3EML, 4GRV, respectively). We have compared the predict-
ability of thermostable mutants starting from the crystal
structure (single conformation) to the predictability calculated
from an ensemble of conformations generated using the crystal
structure in Figure 1. As a measure of predictability of

Figure 1. ROC curves for thermostability prediction using an ensemble of receptor structures compared to single receptor structure. (a) β1AR
(Ensemble AUC: 0.67. Single structure AUC: 0.56); (c) A2AR (Ensemble AUC: 0.64. Single structure AUC: 0.62); (e) NTSR1 (Ensemble AUC:
0.64. Single structure AUC: 0.59). Enrichment as a function of cutoff using (b) β1AR crystal structure; (d) A2AR crystal structure; (f) NTSR1 crystal
structure. The mutants in the order of their measured experimental stability are shown in colored dots. Red, high thermostability; yellow, medium
thermostability; and empty circles, weak thermostability.
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thermostability using the calculated stability score, we
constructed the Receiver Operational Characteristic (ROC)
curves by plotting the true positive rate against the false positive
rate for different cutoffs of the calculated stability score. Parts a,
c, and e of Figure 1 show the ROC curves for β1AR, A2AR, and
NTSR1, respectively, starting from crystal structures (single
conformation) and from ensemble generated starting from the
crystal structure using LITiCon. The straight lines in these
figures, also termed the “random line”, represent the ROC
curve for zero predictability. For all the receptors, the ROC
curves are well above the random line, and the predictability
improves when using an ensemble of conformations generated

by LITiCon compared to using single conformation from
crystal structure. This indicates that small variations in
conformation upon single point mutations are important for
more accurate thermostability prediction compared to using the
crystal structures alone. To assess the number of single point
mutation experiments that can be reduced by using these
predictions, we plotted the enrichment factor as a function of
cutoff in the number of mutations for β1AR, A2AR, and NTSR1
in Figure 1b, d, and f, respectively. We have also highlighted the
individual thermostable mutations at the cut-offs where they
were identified. The range of thermostability values used for
defining strong, medium, and weak thermostable mutants for

Figure 2. Comparison of ROC curves for thermostability prediction using protein structural ensemble generated from (1) LITiCon ensemble
generated starting from crystal structure and (2) representative conformations from MD of crystal structure; (a) β1AR (LITiCon AUC: 0.67. MD
ensemble AUC: 0.64); (b) A2AR (LITiCon AUC: 0.64. MD ensemble AUC: 0.62).

Figure 3. Enrichment as a function of cutoff using (a) homology models of β1AR based on β2AR crystal structure as template; (b) β1AR model based
on D3DR crystal structure as template; (c) β1AR model based on A2AR crystal structure as template; (d) β1AR model based on CXCR4 crystal
structure as template; (e) A2AR model based on β1AR; (f) NTSR1 model based on β2AR structure as template. The experimentally determined
thermostable mutants are highlighted as colored dots: red, high thermostability; yellow, medium thermostability; blue open circles, weak
thermostability.
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the three receptors are shown in Table S2 of the Supporting
Information. The cutoff values are different for each receptor,
due to the difference in thermostability of the wild type
receptor under the experimental assay conditions. For all three
receptors, the left side of the enrichment plots (Figure 1b, d,
and f) shows a higher concentration of red and yellow
mutations. Six out of nine experimentally known medium and
strong thermostable mutants will be recovered within top 50
predicted thermostable mutants for β1AR, five out of seven for
A2A receptor and three out of four for NTSR1. This suggests
that in the LITiConDesign method of thermostability
prediction, the strong thermostable mutations are selectively
enriched over the weaker mutations. However, the method also
missed several strong thermostabilizing mutations for each
receptor (the red and yellow dots on the right side of Figures
1b, d, and f). These mutations were missed in all receptor
models including the crystal structures and homology models.
We have analyzed the reasons for missing these mutations in
the discussion section.
The LITiCon method used for generating conformation

ensemble takes one-hundredth of the computational time
required for MD simulations. To evaluate the effectiveness of
the conformation ensemble generated from LITiCon in
predicting thermostable mutations, in comparison to the
ensemble obtained from long time scale MD simulations, we
compared the predictions using the stability scores calculated
using two different schemes; (1) the ensemble generated by
LITiCon starting from the crystal structures and (2) structural
ensemble generated using MD simulations starting from the
crystal structure. For details on selecting the MD conforma-
tions, please refer to the Methods section. Parts a and b of
Figure 2 show a comparison of the ROC curves from the
LITiCon ensemble to that from structural ensembles from MD
simulations for β1AR and A2AR. For β1AR, the LITiCon using
the most populated MD conformation performed the best,
whereas both the crystal structure LITiCon and structural
ensembles from MD simulation showed similar performance. In
the case of A2AR, LITiCon using the crystal structure performed
the best, whereas the MD ensemble showed the worst
predictability. Overall, these results indicate that the structural
ensembles generated by LITiCon perform equally or better
than conformational ensembles generated using computation-
ally expensive MD simulations.
Performance of GPCR Homology Models in Predict-

ing Thermostable Alanine Mutations. In the last section,
we showed that the LITiConDesign method showed good
predictability for thermostable mutations starting from GPCR
crystal structures. However, the real case scenario is that the
crystal structure of the GPCR to be thermostabilized will not be
known. In this section, we discuss the thermostability
prediction results derived using homology models for β1AR,
A2AR, and NTSR1 without using any crystal structure
information on these receptors. Figure 3 shows a comparison
of the enrichment as a function of number of mutants for
several homology models of β1AR, A2AR, and NTSR1. To
observe how the accuracy of the homology model affects the
predictability of thermostability, we selected several template
structures of varying sequence similarity to β1AR, namely β2AR,
dopamine receptor D3DR (67% and 40% sequence similarity),
A2AR (33% sequence similarity), and CXCR4 (24% sequence
similarity). For A2AR and NTSR1, we evaluated one homology
model each, using β1AR and β2AR as templates, respectively.
Unlike β1AR, A2AR and NTSR1 have no close template crystal

structures. Therefore, we wanted to test how generic templates
such as β1AR or β2AR perform in thermostability prediction.
Since the NTSR1 homology model was based on the inactive
state of β2AR, we evaluated its predictability using the −NT
data. In contrast, for evaluating thermostability prediction using
the NTSR1 crystal structure, we had used the +NT data, since
the crystal structure shows active state characteristics. We also
plotted the enrichments corresponding to 50% cutoff for each
model against the Cα RMSD in the coordinates of the
homology models from the respective crystal structures in
Figure 4. While the β1AR models based on β2AR (RMSD of the

β1AR to its crystal structure is 1.6 Å) and D3DR (RMSD 2.5 Å)
performed the best among homology models, the CXCR4
based model (RMSD of the β1AR model to its crystal structure
is 3.1 Å) performed the worst because of its distant sequence
and structural homology with β1AR. For A2AR, the performance
of the β1AR based homology model is worse compared to the
A2AR crystal structure (65% vs 70%). Unlike β1AR, there are no
other templates that are closer in sequence similarity to A2AR,
for which crystal structures are available (e.g., adenosine
receptors other than A2AR). Therefore, we could not test the
effect of template closeness on prediction performance for
A2AR. The RMSD in coordinates of the various homology
models from their respective crystal structures and their
percentage recovery of the thermostable mutants are tabulated
in Table S3 of the Supporting Information. Overall, we find
that for homology models that are within 2.5 Å (RMSD of the
Cα atoms in the TM region) to their respective crystal
structures, there is little change in performance of the
thermostability predictions. The performance of the thermo-
stability prediction is worse if the homology model has RMSD
above 3 Å to its crystal structure.
For each homology model, we have compared the perform-

ance of using LITiCon ensembles of receptor conformations to
that using single receptor structures. For each receptor model,
we have calculated the area under the ROC curve (AUC) for
the thermostability predictions using LITiCon as well as single
receptor structure. AUC is directly proportional to the
predictability of the computation scheme, and for computation
schemes with zero predictability, the AUC is close to 0.5.
Figure 5 shows the comparison of AUC for LITiCon generated
ensembles versus single receptor structure for each homology

Figure 4. Comparison of enrichments for different receptor models.
The nomenclatures are as follows: β1AR homo-D3DR implies β1AR
homology model using D3DR as template; A2AR homo-β1AR implies
A2AR homology model based on β1AR as template; the other models
are named accordingly. The RMSD of the homology models from
their respective crystal structures are tabulated in Supporting
Information Table S3.
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model of β1AR, A2AR, and NTSR1. Similar to the crystal
structures, most of the homology models show moderate to
large improvement in predictability by using ensembles of
receptor conformations compared to single receptor structures.
The improvement in performance is more prominent in the
high accuracy β1AR models that were derived using close
homologue template structures such as β2AR and D3DR. For

homology models of β1AR derived using distant templates such
as A2AR and CXCR4, the performance advantage of LITiCon
over single receptor structure is negligible.
For A2AR, the performance gain by using LITiCon ensembles

as opposed to single crystal structure is subtle when comparing
the area under the curve, although the enrichment of true
positives is higher for the ensembles as seen in Figure 1c. The

Figure 5. Comparison of thermostability prediction using different receptor structures. For performance comparison, the metric AUC (area under
ROC curve) is used. For positive predictability, the AUC varies between 0.5 and 1. The higher the AUC, the greater is the predictability. The darker
color bars are the AUC calculated using the LITiCon ensemble of structures, and the lighter colored bars have been calculated using single
conformation either from crystal structures or homology models as indicated on the x-axis below each set of bars. In the x-axis, “crystal structure”
refers to the crystal structure of the corresponding receptor. The blue bars that are labeled “homology β2AR” refers to the homology model of β1AR
derived from the β2AR inactive state crystal structure as template.

Figure 6. Allosteric hub score and local stress are plotted against thermostability for each residue position in (a, b) β1AR and (c, d) A2AR. Residues
on the right side of the dotted vertical line are considered thermostable. Residues that have high allosteric hub score or stress and poor
thermostability are highlighted in red. The overall inverse correlation between stress and thermostability is shown by the regression lines in b and d.
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performance gain is modest in using the LITiCon ensemble for
A2AR homology model based on β1AR as template.
For NTSR1, the homology model based on β2AR showed a

large improvement in predictability using the LITiCon
ensemble method, as compared to using a single homology
model structure. The AUC values for each structural model of
the three receptors are given in Supporting Information Table
S4. We have also tested the predictions for NTSR1 against both
sets of experimental thermostability, the −NT and the +NT
data. While using the crystal structure of NTSR1 showed better
predictability for the +NT data, the homology model of
NTSR1 based on the inactive state β2AR structure as template
showed better predictability for the −NT data than the +NT
data. This can be explained by the fact that the crystal structure
of NTSR1 with neurotensin bound is in an active-like state, and
hence agrees better with the +NT data. The inactive homology
model agrees better with the −NT data, since the mutants that
were thermostabilized under the −NT conditions were more
likely to stabilize the inactive state.
Other Receptor Properties That Improve the Thermo-

stability Scores. We examined the properties other than
enthalpy that can be used to improve the prediction of
thermostability scores. Our previous results from extensive MD
simulations on crystal structures of thermostable mutants and
their respective wild type receptor structures of β1AR, and
A2AR

12 have shown two important properties that are different
in the wild type receptor compared to the thermostable
mutants.
In our earlier studies, we observed that the net stress (or

force) on each residue played an important role in the function
of the receptor as well as its thermostability. We have also
calculated the allosteric communication pipelines in GPCRs
that communicate the ligand binding to the G protein coupling
region using mutual information on torsion angles.28 We
observed that many residues in the TM regions of the receptor
mediate multiple allosteric communication pathways, and we
define the number of allosteric communication pathways going
through a given residue as its allosteric hub score.
In this paper, besides the enthalpy, we have investigated the

effect of using the net stress or force on each residue and
allosteric hub score in thermostability predictions. Parts a and c
of Figure 6 show the correlation between the allosteric hub
scores for each residue in β1AR and A2AR crystal structures and
the experimental thermostability score of the corresponding
alanine mutant. We observe an inverse correlation between the
allosteric hub score and the thermostability. Residues that are
the strongest allosteric hubs (allosteric hub score >40,

highlighted in red) show poor thermostability scores upon
mutation.
Parts b and d of Figure 6 show plots of the stress on each

residue versus the measured thermostability score for β1AR and
A2AR, respectively. Residues with strong internal stress are
highlighted in red. All of these residues show weak thermo-
stability (less than that of wild type) when mutated to alanine.
Mutating a residue with high stress to alanine reduces the
thermostability of the mutant receptor. Our earlier MD
simulation studies on multiple mutant thermostable receptors
of β1AR, A2AR, and NTSR1 showed that the stress on each
residue is reduced in the thermostable mutant compared to
their respective wild type receptors. This, however, resulted
from multiple mutations made on low stress residue positions
in the wild type receptor. Parts b and d of Figure 6 show the
Pearson’s correlation coefficient for β1AR and A2AR for stress vs
thermostability score that showed a weak inverse correlation
between residue stress and thermostability. For both cases, the
correlation coefficient is negative, indicating the inverse
relationship. The trend line obtained using least-squares fitting
is also shown in the same figures.

Combining Allosteric Communication and Stress
Information with Enthalpy Score Improves Thermo-
stability Prediction. To study the feasibility of using stress or
allosteric communication in predicting thermostability, we
plotted the normal distance from the random line (ndis) as a
function of allosteric hub score and stress cut-offs, as shown in
Supporting Information Figure S2. The normal distance, ndis,
is a measure of predictability of thermostable mutants and is
explained in Text S1 and Figure S1 of Supporting Information.
Parts a and b of Figure S2 show the predictability when no
enthalpy score cutoff is used. Parts c and d of Figure S2 show
the predictability among mutants that have enthalpy scores
above a cutoff of −1 kcal/mol (optimal cutoff for both
receptors for maximizing TPR and minimizing FPR). The black
and dark blue regions in Supporting Information Figure S2
show no predictability, whereas the yellow and red areas show
the highest predictability. For both β1AR and A2AR, an allosteric
hub score of 40 and internal stress of 7000 pN were found to
be the optimal cut-offs for predicting thermostability, as
indicated by the maxima in Figure S2 (red circle). Thus,
combining stress and allosteric hub score with the stability
score from enthalpy improves thermostability prediction as
shown by the increased red region in Figure S2b and d. For
A2AR, the improvement observed by adding allosteric hub and
stress information over enthalpy score was more significant
than for β1AR. We calculated the enrichments for different

Figure 7. Comparison of thermostability prediction using only enthalpy based score and by combining with allosteric hub score and residue based
stress for (a) β1AR and (b) A2AR. The percent recovery of thermostable positives by screening different cut-offs of residue mutations are compared.
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percent cutoffs using enthalpy score alone and including
allosteric hub and stress information for both β1AR and A2AR,
as shown in Figure 7. For all three metrics, the optimal score
cut-offs were used as mentioned before. For both β1AR and
A2AR, we find modest improvement in enrichment for lower
cut-offs, while including allosteric hub and stress information.
For β1AR, the improvement was found to be the highest at a
cutoff of 35%, while for A2AR, the maximum enrichment was
obtained at 20% cutoff.

■ DISCUSSION
The stability score reflects the average enthalpy of an ensemble
of conformations of a mutant near the starting structure.
Mutants that have a high thermostability score show favorable
enthalpy for most of the conformations in the ensemble,
whereas the mutants with low thermostability scores have
conformations with unfavorable enthalpy in the ensemble. This
means that thermostable mutants can maintain favorable
enthalpy despite small structural perturbations, unlike thermally
unstable mutants. Thus, thermostable mutants are more
resistant to thermal fluctuations, and this could explain their
stability.
We have tested the performance and sensitivity of the

LITiConDesign method by using homology models of varying
resolution (closeness to the crystal structure). We find that the
homology models derived using close homologues as templates
(templates with low RMSD to the target crystal structure)
perform better than the ones based on distant templates. Parts
a and bo of Figure 8 show the performance of the different
homology models of β1AR and A2AR, respectively. Parts e and f
of Figure 8 show the performance of the NTSR1 models. For
the +NT data, we used the crystal structure of active NTSR1,
while for the −NT data, we used the homology model of
inactive NSTR1 based on the β2AR crystal structure. We
calculated the number of true thermostable mutants that are
recovered in the top 50% when sorted by calculated
thermostability scores. In Figure 8a and b, for each model,
the residues that are correctly identified are highlighted in
orange. As expected, for β1AR, the crystal structure, and the
homology model of β1AR based on β2AR and D3DR performed
better than the distant A2AR and CXCR4 based models.
Residues that are correctly identified by most of the structures
are colored green, the ones that are identified by only the close
template models and crystal structures are colored yellow, while
the ones that are not identified by any of the models are
colored red. For the NTSR1 models (Figure 8e and f), residues
that are correctly identified by the crystal structure or
homology model are colored green, and the ones that are not
identified are colored red. These residues are also highlighted in
Figure 8c, d, g, and h. For β1AR, the three mutants (I551.46A,
V902.47A, I1293.40A) that are not identified by any of the models
are all located in tightly packed regions of the receptor, facing
the core of the TM domain. In contrast, the residues that are
successfully predicted by our method are located in loosely
packed regions of the receptor (near the extracellular or
intracellular termini of the TM helices) or facing the lipid
bilayer. For the residues located in tightly packed regions of the
receptor, the side chain optimization methods are inadequate to
account for the repacking of the side chains upon mutation.
This could be a possible reason for the failure of our method in
not identifying certain residues. Also, the lack of electrostatic
component in our energy function could contribute to the
failure of this method in identifying certain mutations. The

electrostatic energy could be important for mutations in tightly
packed regions of the receptor that are in the neighborhood of

Figure 8. (A, B; E, F) Thermostable residues that were identified using
different GPCR structures: (A) β1AR; (B) A2AR; (E) active-like state
crystal structure of NTSR1; (F) homology model of inactive NTSR1
based on β2AR. Experimental thermostability scores have been
normalized so that the experimental value for the wild type receptor
is 50%. If a residue was correctly identified by a particular model, the
cell corresponding to that model is colored orange; the residues that
were identified by all models are colored green, ones that were
identified only by the crystal structures or close template homology
models are colored yellow; those that were not identified by any of the
models are colored red. (C, D; G, H) crystal structures of (C) β1AR,
(D) A2AR, (G) NTSR1 +NT, and (H) NTSR1 −NT showing the
thermostable mutation positions. +NT and −NT refer to NTSR1
mutants that are thermostable in presence and absence of neurotensin,
respectively.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500616v | J. Chem. Theory Comput. 2014, 10, 5149−51605157



polar residues. It is difficult to accurately estimate the
electrostatic energy, especially in a hybrid environment such
as the lipid bilayer. We have excluded the electrostatic
component from our scoring function, since adding the
electrostatic energy worsened the predictability of the thermo-
stabilizing mutations. However, specialized energy functions for
hydrogen bonds/salt bridges could be developed to model the
effect of the polar residues in modulating receptor stability.
Such energy functions are currently under development in our
lab.
In the case of A2AR (Figure 8d), the residues that were

correctly predicted were all located in less tightly packed
regions of the receptor, either in the extracellular or intracellular
ends of the TM helices, or facing the lipid bilayer. It is not clear,
however, why the three residues C773.25A, L853.33A, and
L1925.53A could not be identified.
In the case of NTSR1 bound to neurotensin (+NT mutants;

Figure 8g), our method failed to identify several residues that
are located mainly at the intracellular part of the receptor on
TM5 and TM6. The residues that were correctly identified are
on TM1 and TM7. Although it is not clear why the residues on
TM5 and TM6 were not identified, it is possible that the
limited conformational sampling performed by LITiCon failed
to take into account the flexibility of TM5 and TM6 in the
active state of NTSR1. These two helices are thought to
undergo the largest conformational change during activation
and are thus expected to be dynamic in the active state of the
receptor. In contrast to the +NT mutants, the −NT mutants
showed improved predictability using LITiConDesign, as shown
in Figure 8h. Out of the two mutations on TM2, A1202.57L was
successfully identified, while I1162.53A, located one helical turn
below A1202.57, was not. Being in the middle of the TM2
region, I1162.53 is more tightly packed compared to A1202.57

and hence could not be identified due to difficulty in predicting
side-chain packing. However, it is not clear why the other two
mutations, L721.40A and L2054.61A (both of them face the lipid
bilayer) could not be identified.
We also tested whether the mutation positions that were

combined to produce the thermostable mutants that were
crystallized (with multiple mutations) for both receptors (i.e.,
m23 mutant of β1AR and StaR2 mutant of A2AR) could be
identified by our method. Out of the four hydrophobic
mutations that are part of the m23 mutant, only V902.53 was
not identified. Among the StaR2 mutations, all of them were
successfully identified. The crystallizing mutation positions
along with their TM scores and thermostability (single point
alanine mutation) are highlighted in Figure S3 of the
Supporting Information.
In both β1AR and A2AR, mutating allosteric hubs lead to poor

thermostability, and therefore, these positions can be
eliminated from potential positions to mutate. Using MD
simulations, we mapped the major allosteric communication
pathways in the inactive states of β1AR and A2AR. These
pathways connect distant receptor domains that show
correlated motion. In GPCRs, concerted motion of distant
domains help to preserve the structural stability of specific
functional states such as the inactive state. When the correlated
movement between distant domains in the inactive state is
disrupted, by mutating allosteric hubs, the inactive state could
be destabilized. We recently showed that in β2AR, mutating
allosteric hubs that mediate allosteric communication in the
inactive state led to increased constitutive or agonist induced
activity. On the other hand, mutating hub residues that mediate

allosteric communication in the active state lead to reduced
activity.28 Thus, mutating the allosteric hubs in β1AR and A2AR
could destabilize the inactive state leading to decrease in
thermostability.

■ CONCLUSIONS

The LITiConDesign method is a computational method for
rapid prediction of thermostable mutation positions in a given
GPCR or any helical membrane protein. It is based on
generating an ensemble of conformations generated using the
conformational sampling method called LITiCon for GPCRs.
We have analyzed the performance of the computational
method LITiConDesign in predicting thermostabilizing muta-
tions for GPCRs. We have compared the calculated thermo-
stability scores to the experimental values for 434 single
mutants from three class A GPCRs, β1AR, A2AR, and NTSR1.
We found that mutations that have a high thermostability score
are more probable to be thermostable experimentally. We also
showed that using an ensemble of conformations was a better
choice for predicting thermostability compared to a single
structure. We observed that the ensemble of conformations
from LITiCon performs similarly in predicting the thermo-
stability as the ensembles from MD simulations. However, the
LITiCon method takes 1/10th the computational time as the
MD method. Typically, scanning a GPCR with 140 mutants
takes 10 h using 32 Intel Xeon CPUs. Therefore, it can be very
useful for fast predictions of thermostable single point mutants.
We identified two important properties obtained from MD

simulations of GPCR structures, which can be used to improve
thermostability prediction. Using microseconds of MD
simulations of the GPCR crystal structures, we calculated the
net force (stress) on each residue in the receptor structures. We
also identified the residues that communicate multiple allosteric
pipelines (allosteric hubs). In both β1AR and A2AR, mutating
allosteric hubs lead to poor thermostability, and therefore, these
positions can be eliminated from potential positions to mutate.
We observed that mutating residues with high level of stress in
the wild type receptors to alanine does not lead to
thermostability of these single point mutants, showing a weak
inverse correlation between thermostability and stress. These
observations hold true for single point mutations to alanine and
not to other amino acids. Thus, including the residue based
stress and allosteric hub information improved the prediction of
the thermostable mutation positions in GPCRs. Our method
for predicting thermostability lays the groundwork for
computational design of thermostabilizing mutants of GPCRs
in future.
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