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Summary 
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of several advanced malignancies leading to durable remission in a 
subset of patients. Their rapidly expanding use has led to an increased frequency of immune-related adverse events (irAEs). The pathogenesis 
of irAEs is poorly understood but may involve aberrant activation of T cells leading to inflammatory cytokine release or production of pathogenic 
antibodies leading to organ damage. Severe irAEs can be extremely debilitating and, in some cases, life threatening. IrAEs may not always be 
corticosteroid responsive or may require excessively high, often toxic, corticosteroid doses. Therapeutic plasma exchange (PLEX) is a treatment 
modality that has shown promising results for the management of certain severe irAEs, including irAEs that are not mentioned in current treat-
ment guidelines. PLEX may attenuate ongoing irAEs and prevent delayed irAEs by accelerating clearance of the ICI, or by acutely removing path-
ogenic antibodies, cytokines, and chemokines. Here, we summarize examples from the literature in which PLEX was successfully used for the 
treatment of irAEs. We posit that timing may be a critical factor and that earlier utilization of PLEX for life-threatening irAEs may result in more 
favorable outcomes. In individuals at high risk for irAEs, the availability of PLEX as a potential therapeutic mitigation strategy may encourage 
life-saving ICI use or rechallenge. Future research will be critical to better define which indications are most amenable to PLEX, particularly to 
establish the optimal place in the sequence of irAE therapies and to assess the ramifications of ICI removal on cancer outcomes.
Keywords: therapeutic plasma exchange, plasmapheresis, immunotherapy, immune checkpoint inhibitors, immune-related adverse event
Abbreviations: ANCA, Antineutrophil cytoplasmic antibody; ASCO, American Society for Clinical Oncology; CTCAE, Common Terminology Criteria for Adverse 
Events; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4; DIRE, Delayed immune-related event; ESMO, European Society for Medical Oncology; FFP, Fresh 
frozen plasma; GBS, Guillain-Barre syndrome; ICI, Immune checkpoint inhibitor; IFNγ, Interferon gamma; irAE, Immune-related adverse event; IVIG, Intravenous 
immunoglobulin; MG, Myasthenia gravis; NCCN, National Comprehensive Cancer Network; MOG, Myelin oligodendrocyte glycoprotein; MPO, Myeloperoxidase; 
NMO, Neuromyelitis optica; PD-1, Programmed cell death protein 1; PD-L1, Programmed cell death ligand 1; PLEX, Plasma exchange; RRT, Renal replacement 
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Introduction
Immune checkpoint inhibitors (ICIs) have revolutionized on-
cology, producing durable responses in a subset of patients 
[1]. Immune checkpoint molecules, such as CTLA-4 and 
PD-1/PD-L1, mediate negative regulatory signaling pathways 
that play a critical role in dampening autoreactive T-cell sig-
nals and help to maintain self-tolerance. Blockade of CTLA-
4, a molecule primarily involved in regulating T-cell priming, 
leads to expansion of T-cell clonal diversity and enhanced 
anti-tumor responses. The PD-1/PD-L1 checkpoint mediates 
peripheral tolerance, and upregulation of the PD-L1 check-
point pathway may enable tumors to evade immune attack 

by T cells. Thus, ICIs targeting CTLA-4, PD-1, and PD-L1 can 
effectively unleash the host immune system to generate a pro-
ductive anti-tumor response by stimulating T-cell-mediated 
killing of tumor cells [2].

ICIs were initially approved for metastatic cancers, no-
tably melanoma, non-small cell lung cancer, and genitouri-
nary cancers. Indications for ICIs have rapidly expanded 
to multiple additional cancer types. Their use has moved to 
earlier lines of therapy, as well as in earlier cancer stages in-
cluding the adjuvant and neoadjuvant settings. As of 2018, 
43.63% of cancer patients were considered eligible for ICI 
therapy [3]. ICIs are being used as monotherapy (i.e. PD-1 
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inhibitors nivolumab, pembrolizumab, cemiplimab, and PD-
L1 inhibitors atezolizumab, avelumab, durvalumab), in com-
bination with other ICIs (i.e. CTLA-4 inhibitor ipilimumab), 
in combination with chemotherapy (i.e. pemetrexed), with 
targeted agents such as kinase inhibitors (i.e. cabozantinib, 
axitinib), or in combination with radiation therapy [4,5]. 
Beyond the currently targeted immune checkpoint molecules 
CTLA-4, PD-1, and PD-L1, strategies are being developed to 
target additional checkpoint molecules such as LAG-3, TIM-
3, TIGIT, CD73, B7-H3, and VISTA [6].

Targeting negative regulators that disrupt immune toler-
ance mechanisms can lead to the anticipated consequence 
of generating autoimmune and autoinflammatory toxicities 
that are referred to as immune-related adverse events (irAEs), 
which can affect virtually any organ system. The increased 
use of ICIs in growing numbers of indications and in 
combinations with other therapies has led to an increasing 
frequency of irAEs. Severe irAEs may lead to ICI discontinu-
ation and sometimes death or long-term disability [7]. Hence, 
there exists an important need for biomarkers predicting se-
vere irAEs to guide therapeutic decisions regarding risk/ben-
efit considerations around ICI use, as well as to assess the 
safety of ICI rechallenge following irAE development. There 
is an urgent need to identify more effective treatments for se-
vere irAEs; earlier and more effective interventions may be 
key in reversing damage, which in some cases can develop 
rapidly.

As the field of immuno-oncology gains more experi-
ence with irAEs, there are growing numbers of case reports 
citing the successful use of plasma exchange (PLEX) in the 
management of severe irAEs. Although the mechanisms by 
which PLEX may exert its effects are not completely under-
stood, PLEX can remove ICIs because of their large molecu-
lar weight. In addition, the removal of pathogenic antibodies 
and cytokines may modulate the immune milieu favorably. As 
many ICIs have prolonged half-lives and sustained pharma-
codynamic effects, increasing clearance of ICIs may reduce 
both the severity and the duration of irAEs. Here, we review 
the current guidance on indications for PLEX in irAE man-
agement. In addition, we discuss the scientific rationale for 
why PLEX may be a useful adjunctive treatment for certain 
severe irAEs and review clinical considerations, particularly 
patient selection, regarding its application. Finally, we pose 
questions to the community on the specific indications and 
thresholds for PLEX, the timing of PLEX in the severe and 
life-threatening irAE treatment algorithm, and optimal clin-
ical trial designs.

Immune-related adverse events
IrAEs can affect any organ system, and classic irAE 
manifestations include rash, colitis, endocrine dysfunction, 
pneumonitis, hepatitis, arthritis, as well as the more rare 
neurologic, hematologic, cardiac, and even ophthalmologic 
adverse events [8]. Adverse events in clinical trials are graded 
using the Common Terminology Criteria for Adverse Events 
(CTCAE) scale from the US National Cancer Institute. 
Although the majority of irAEs are mild to moderate (CTCAE 
grade 1 or 2), a substantial proportion are severe to life threat-
ening (CTCAE Grade 3 or 4), with death (CTCAE Grade 5) 
in up to 2% [9]. In the systematic review by Arnaud-Coffin et 
al., the rate of irAE development with anti-PD-(L)1 inhibitors 
was 74% (with 14% Grade 3 or greater), 89% with anti-
CTLA-4 inhibitors (with 34% Grade 3 or greater), and 90% 

in those treated with combination therapy (with 55% Grade 
3 or greater) [9]. Toxicities and deaths vary by regimen: 70% 
of CTLA-4 inhibitor-related deaths were attributed to colitis, 
whereas PD-1 and PD-L1 inhibitor-related deaths were more 
often from pneumonitis (35%), hepatitis (22%), and neuro-
toxicity (15%) [10].

Based on two large meta-analyses of clinical trials, the 
rates of organ-specific irAEs of any grade were the follow-
ing: colitis (11.9–14.5%), hypothyroidism (8.3–13.8%), hep-
atitis (1.2–10.4%), hypophysitis (0.5–10%), hyperthyroidism 
(0.4–9.3%), and pneumonitis (3.0–4.6%) [11, 12]. Rates of 
organ-specific irAEs vary widely, based on the population be-
ing studied: for example, in the clinical trial setting (in which 
patients with pre-existing autoimmunity are often excluded) 
vs. real world; malignancy type (i.e. pneumonitis is more 
common in lung cancer patients, and vitiligo in melanoma 
patients); and checkpoint inhibitor type (i.e. higher rates of 
colitis and hypophysitis with anti-CTLA-4 treatment).

As prescription of ICIs has increased, two high-risk 
populations have emerged: (i) cancer in patients with 
pre-existing autoimmune disease and (ii) patients needing 
retreatment of relapsed cancer with ICIs despite prior 
irAEs. Although excluded from early pivotal trials, patients 
with pre-existing autoimmune or inflammatory conditions 
are more frequently receiving ICIs in the real-world setting. 
Their risk for flare of their underlying disease may be up to 
50% [13], and they may be at higher risk for other irAEs 
given their autoimmune predisposition [14]. As enthusi-
asm for ICI use in this population is dampened, there is a 
need for prospective studies that aim to better character-
ize this risk [15]. In oncology patients with limited ther-
apeutic options, rechallenge with ICIs in spite of a prior 
irAE may be considered. Retrospective studies show irAE 
recurrence rates ranging from 18% to 30%, suggesting 
that ICI rechallenge may be a reasonable option in some 
circumstances [16]. Assuming PLEX were an effective 
means of managing severe irAEs, the availability of a miti-
gation strategy might provide reassurance and could lower 
the activation barrier for the use of ICIs in these higher-risk 
populations.

Guidelines for the diagnosis and management of irAEs have 
been published by several oncology organizations (NCCN, 
ASCO, SITC, ESMO); however, these recommendations are 
largely based on expert opinion without supportive high-
quality evidence [17–20]. In general, for irAEs that are Grade 
2 or higher, recommendations are to hold the ICI and consider 
corticosteroids at doses typically ranging from 0.5 to 1 mg/
kg/d of prednisone or equivalent. For Grade 3 or 4 irAEs, 
pulse dosing of corticosteroids ranging from 500 to 1000 mg 
of methylprednisolone (or equivalent) may be recommended. 
The well-known negative side effects of corticosteroids 
highlight the need for more mechanistically informed 
corticosteroid-sparing treatment options. The impact of high 
intensity and/or prolonged treatment with corticosteroids 
on anti-tumor immunity is not fully understood. The use of 
corticosteroids at doses of greater than 10 mg before ICI ini-
tiation has shown a negative impact on anti-tumor immunity 
[21]. Furthermore, a more recent study suggests that early use 
of corticosteroids within the first 2 months of starting ICI 
may hinder ICI efficacy [22]. In a retrospective study of mel-
anoma patients with ICI-induced hypophysitis, overall sur-
vival was significantly lower in the group receiving high-dose 
vs. low-dose corticosteroids [23]. Thus, therapies designed to 
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reduce corticosteroid dose intensity and duration might im-
prove tumor outcomes and significantly reduce irAE treat-
ment toxicity.

Diverse pathogenic mechanisms of irAEs
Given the clinical heterogeneity of irAE phenotypes, the 
pathogenesis of irAEs, not surprisingly, appears to be mul-
tifaceted. A recent review by Esfahani et al. emphasizes the 
need to define these driving pathogenic mechanisms precisely 
to optimize and personalize irAE treatments. In addition, 
to avoid the potential risk of nonspecific therapies such as 
corticosteroids, the authors particularly highlight the need for 
targeted therapies that are less likely to impair the anti-tumor 
response [24].

Treatment algorithms beyond corticosteroids for specific 
irAEs have typically been based on their cognate conditions, 
such as the use of infliximab or vedolizumab for ICI colitis, the 
use of mycophenolate mofetil for ICI hepatitis, and the use of 
rituximab and/or intravenous immunoglobulin (IVIG) for he-
matologic complications such as ICI autoimmune hemolytic 
anemia or idiopathic thrombocytopenic purpura. However, it 
is also recognized that irAEs may not fully phenocopy their 
cognate conditions. Many irAEs are ‘seronegative’, without 
the presence of the classically associated autoantibodies: for 
example, rheumatoid factor and cyclic citrullinated peptide 
antibodies that are frequently seen in rheumatoid arthritis are 
typically absent in ICI-associated arthritis [25]. Pathogenic 
antibodies may be different from the classically defined 
autoantibodies [26] or have yet to be identified. Furthermore, 
the kinetics of irAE onset may be more rapid and disease se-
verity may be greater. For a limited subset of severe or refrac-
tory irAEs, recent oncology guidelines recommend the use of 
therapeutic plasma exchange (PLEX) and/or IVIG for certain 
neurological conditions; however, there may be mechanistic 
rationale to explore the use of PLEX in a wider range of se-
vere non-neurological irAEs.

Understanding irAE pathogenesis remains an active area 
of investigation. Proposed mechanisms include the follow-
ing: (i) T-cell cross-reactivity between shared tumor antigens 
and normal human tissue, (ii) development of autoantibodies 
due to generation and/or expansion of autoreactive T and B 
cells with ICI therapy, (iii) release of inflammatory cytokines 
that results in immune-mediated damage in tissues with an 
anatomic predisposition, (iv) complement-mediated inflam-
mation that may result from direct binding of ICI antibody 
to its ligand expressed on normal tissue, and (v) influence of 
the microbiome that may impact irAE development [24, 27]. 
More recent studies have identified that levels of circulating 
activated CD4 memory T cells and T-cell receptor diversity 
are two pretreatment T-cell characteristics associated with se-
vere irAEs [28]. Elegant mechanistic work in ICI colitis has 
recently highlighted that not only are CD8+ tissue-resident 
memory T cells (T

RM) the predominant activated cell type; 
their activation status correlates with disease severity [29, 30]. 
In addition, several cytokines, in particular interferon-gamma 
(IFNγ) and tumor necrosis factor-alpha (TNFα), chemokines, 
and other cell surface receptors have emerged as potential 
therapeutic targets in refractory colitis cases. PLEX may not 
be expected to have efficacy in predominantly T-cell-driven 
processes, especially if the damage is mediated by local cyto-
kine release. Hence, a more detailed mechanistic understand-
ing of the different irAEs is critical to best define appropriate 
indications for the use of PLEX.

Background on therapeutic plasma exchange
Therapeutic plasma exchange (PLEX, also referred to as 
therapeutic plasma exchange or plasmapheresis) is a pro-
cedure by which blood is removed from a patient and is 
then separated by either centrifugation or filtration into its 
components. Centrifugation is much more efficient and rapid 
than filtration. As antibodies are more effectively removed 
with centrifugation, centrifugation is the more commonly 
used technique for PLEX. Plasma is removed, while the re-
maining blood components and replacement fluids (albumin, 
fresh frozen plasma [FFP], or a combination) are returned to 
the patient. PLEX can be used as a standalone or adjunctive 
therapy, with the most recent American Society for Apheresis 
guidelines citing 157 indications and 84 diseases for which 
apheresis modalities should be considered, with varying 
levels of strength and quality of evidence [31]. PLEX extracts 
substances dependent on size, the volume of distribution, the 
amount that is bound to albumin, intravascular and extravas-
cular distribution, speed of equilibration, and rate of synthesis 
[32]. PLEX can remove pathologic substances from plasma, 
such as autoantibodies, immune complexes, cryoglobulins, 
toxins, or lipids, as well as therapeutic monoclonal antibodies 
[33]. This potentially beneficial impact of PLEX can con-
found laboratory-based monitoring of biomarkers, such as 
serum creatinine kinase in myositis, by both removing bio-
marker and diluting any remaining biomarker during and im-
mediately after PLEX. Alternate indicators of irAE activity 
may be required during and immediately after PLEX.

Randomized controlled trials have demonstrated the efficacy 
of PLEX for indications such as thrombotic thrombocytopenic 
purpura (TTP), acute inflammatory demyelinating polyneu-
ropathy (AIDP), and central nervous system demyelination, 
and acute myasthenia gravis crises [32, 34].

PLEX and irAEs
For certain severe and potentially life-threatening irAEs, 
PLEX could be considered early, as a complement to other 
immunosuppression, as there is likely a small window of op-
portunity in which to quickly reverse the disease process and 
prevent its progression. In all four oncology society guidelines 
for irAE management (NCCN, ASCO, SITC, and ESMO), 
PLEX is recommended for ICI-related myasthenia gravis and 
Guillain Barre Syndrome (Table 1). A recent study described 
better outcomes for all patients who received front-line IVIG 
or PLEX in addition to corticosteroids for ICI-related myas-
thenia gravis, underscoring the importance of early interven-
tion [35]. However, there is not a consensus across the four 
guidelines on the use of PLEX for other neurologic indications 
including myositis, encephalitis, and transverse myelitis. 
Beyond neurologic conditions, there are other indications for 
which PLEX has been used but which are not articulated in 
current guidelines.

Rationale for PLEX
Removal of pathogenic antibodies
PLEX, in conjunction with immunosuppression, can provide 
rapid relief of symptoms in cases where pathogenic auto- and 
allo- antibodies mediate disease pathology. The natural half-
life of IgG is approximately 21 days. Theoretically, if one were 
to assume that the use of an immunosuppressive agent was ca-
pable of stopping pathogenic antibody production completely 
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and immediately (which is not the case), serum levels of this 
pathogenic antibody would still be at 50% of their initial val-
ues for at least 21 days after initiating immunosuppressive 
therapy. In cases where an aggressive autoantibody mediates 
disease pathology, this delay in antibody clearance could lead 
to severe and potentially even fatal consequences [33].

PLEX has been shown to rapidly reduce pathogenic 
antibodies and simultaneously improve clinical strength 
in myasthenia gravis, one of the best understood antibody-
mediated diseases with a close relationship between antibody 
levels and symptom burden [36]. Similar efficacy of PLEX 
has been demonstrated in other well-known IgG-mediated 
antibody diseases such as neuromyelitis optica spectrum 
disorders [37]. PLEX is considered as the first-line therapy for 
anti-glomerular basement membrane disease (anti-GBM, also 
known as Goodpasture disease), a rare small vessel vasculi-
tis that can affect glomerular and pulmonary capillaries lead-
ing to rapid organ dysfunction (crescentic glomerulonephritis 
and diffuse alveolar hemorrhage) [38]. In essence, if disease 
burden is directly related to antibody titer, PLEX should be 
able to improve clinical state by rapidly reducing pathogenic 
antibody levels.

Autoantibodies have been associated with the development 
of some irAEs, although their direct pathogenicity has yet 

to be formally proven. One study found that patients with 
anti-thyroid antibodies after ipilimumab treatment developed 
significantly more thyroid dysfunction compared with those 
without antibodies, and interestingly, these antibody-positive 
patients showed a trend toward improved survival [39]. Das 
et al. showed that ICI-treated patients who developed changes 
in B cells (including the increased proliferation of CD21 low 
B cells and plasmablasts, and clonal proliferation of circulat-
ing B cells) experienced higher rates of severe irAEs follow-
ing combined checkpoint blockade, supporting a potential 
pathogenic role for B cells and autoantibodies [40]. Antibody 
discovery efforts using cDNA expression libraries revealed 
the association of novel antibodies that correlated with the 
development of ICI-related hypophysitis (anti-GNAL and 
anti-ITM2B autoantibodies) and pneumonitis (anti-CD74 au-
toantibody) [26]. This raises the possibility that many irAEs 
considered to be ‘seronegative’ by standard testing may in fact 
be driven by novel antibodies that have yet to be identified.

Removal of therapeutic monoclonal antibodies
PLEX has been used to remove therapeutic monoclonal 
antibodies, typically IgG1 and IgG4 constructs, to mitigate 
toxicities that can occur as a result of their prolonged half-lives 
and pharmacodynamic effects. PLEX is a standard procedure 

Table 1. Summary of current oncology treatment guidelines regarding use of PLEX

 NCCN [20] ASCO [17] SITC [18] ESMO [19] 

Myasthenia Gravis Grade 3-4: “Initiate  
plasmapheresis or IVIG 
if no improvement/ 
worsening on steroids or 
severe symptoms”

Grade 3-4:“Initiate IVIG 2 g/kg 
IV over 5 d or plasmapheresis x 
5 d”

Grade 3-4:“IVIG 2 g/kg over 
5 d or plasmapheresis over 5 
days may be considered”

“In the case of GBS 
or myasthenia-like 
symptoms, consider 
adding plasmapheresis 
or IVIG”

Guillain-Barre  
Syndrome

Grade 2 or 3-4: “Start 
IVIG or plasmapheresis  
in addition to pulse 
methylprednisolone 1 g 
daily x 5 d”

Grade 2 or 3-4: “Start IVIG or 
plasmapheresis.”

“Patients with any grade 
of encephalitis or GBS 
should receive pulse-dose 
methylprednisolone at 
1000 mg IV daily for 3-5 d 
and should additionally  
receive IVIG or PLEX”

“In the case of GBS 
or myasthenia-like 
symptoms, consider 
adding plasmapheresis 
or IVIG”

Demyelinating 
diseases including 
transverse myelitis

“Methylprednisolone 
pulse dosing 1 g/d for  
3-5 days,
Strongly consider IVIG or 
plasmapheresis”

Grade 3-4:“Methylprednisolone 
pulse dosing 1 g/d and consider 
IVIG or plasmapheresis if no  
improvement or symptoms 
worsen after 3 days”

Myositis Grade 3-4:“Consider plasma-
pheresis in patients with acute or 
severe disease as guided by rheu-
matology or neurology”

Grade 3:“For muscle weak-
ness severely limiting mobility, 
cardiac or respiratory involve-
ment, or dysphagia, 1-2 mg/
kg methylprednisolone IV 
or higher dose bolus may be 
considered as well as plasma-
pheresis or IVIG”

Encephalitis Grade 3-4:“If severe or 
progressing symptoms or 
oligoclonal bands present,  
consider pulse dose CS plus IVIG 
2 g/kg x 5 d or plasmapheresis”

“If ICI-related encephalitis 
does not respond to pulse-
dose corticosteroids, patients 
may receive IVIG (2 g/kg in 
divided doses over the course 
of  
5 d), PLEX (one session every 
other day for 5-7 cycles), or 
rituximab”

ASCO: American Society of Clinical Oncology; CS: corticosteroid; ESMO: European Society for Medical Oncology; GBS: Guillain-Barre Syndrome; IVIG; 
intravenous immunoglobulin; NCCN: National Comprehensive Cancer Network; PLEX: plasma exchange; SITC: Society for Immunotherapy of Cancer.



Early plasma exchange for severe irAEs 5

for drug removal in the mitigation of monoclonal antibody-
induced progressive multifocal leukoencephalopathy (PML). 
As an example, natalizumab, an anti-alpha 4 beta 1 integrin 
IgG4 monoclonal antibody, inhibits leukocyte trafficking in 
multiple sclerosis and can, rarely, lead to PML. One study 
demonstrated that 12 patients with multiple sclerosis who 
underwent three 1.5-volume PLEX sessions over 5 or 8 days 
had a reduction in natalizumab levels by a mean of 92% from 
baseline [41]. The rate of clearance of ICIs by PLEX has not 
been studied extensively, but one case report demonstrated 
that two sessions with two plasma volume procedures led to 
a 90% reduction in pembrolizumab levels, which decreased 
from 10 200 ng/ml to 1200 ng/ml and was associated with a 
favorable clinical outcome for myocarditis [42].

ICIs are fully humanized IgG1 molecules (ipilimumab 
targeting CTLA-4, and atezolizumab, avelumab, and 
durvalumab targeting PD-L1) and IgG4 molecules 
(nivolumab, pembrolizumab, and cemiplimab targeting PD-
1) (Table 2) [43]. Their half-lives range from 6 to 27 days, 
with receptor-mediated clearance with a combined linear 
and non-linear phase [44, 45]. They have limited diffusion 
out of the vascular space, with the volume of distributions 
(Vd) ranging from 4.5 to 7.2 liters. Five PLEX procedures 
with 1-volume plasma exchange will reduce IgGs by approx-
imately 70–90% for actively produced substances; consider-
ing that ICIs are not actively produced, the rate of decline 
with PLEX is considered to be higher. Thus, it is likely that 
less than 5 PLEX procedures would reduce the ICI level con-
siderably [33]. The kinetics of ICI removal by PLEX needs to 
be studied further to better define the PLEX schedule needed 
to remove ICI during a severe irAE.

Although the majority of irAEs occur within the first 4 
months of starting ICI therapy [46], notably many may oc-
cur later throughout the course of ICI treatment or even 
months after ICI therapy has been discontinued, referred to 
as delayed immune-related events (DIREs) [47–49]. The po-
tential for ICIs to cause persistent irAEs or DIREs may be 
due to their long half lives and lasting pharmacodynamic 
effects [47]. After a single dose of nivolumab, which has a 
serum half-life of 12–20 days, PD-1 receptor occupancy on T 
cells plateaus at approximately 80% as late as 90 days later. 
Following three doses of nivolumab, receptor occupancy re-
mains at 40% for greater than 8 months after the last dose 

[50]. Since ICI binding to its respective targets is reversible, a 
reduction in serum levels of ICI might lead to reduced binding 
and prevent further ICI-related toxicity. An important con-
sideration is that irAEs may, in some cases, be mediated by 
epigenetic reprogramming, leading to sustained immune ac-
tivation independent of ongoing ICI receptor occupancy [2]. 
However, several Grade 1 irAEs are monophasic and resolve 
after discontinuation of the ICI, suggesting reversibility of the 
underlying immune activation that may in part be related to 
ICI washout.

Removal of cytokines and chemokines
The efficacy of PLEX for removing cytokines and chemokines 
have shown variable impacts in different contexts [32]. 
However, there have been a plethora of recent studies in se-
vere COVID-19 patients who develop hyperinflammation 
and cytokine storm, with a systematic review of 18 papers 
describing 220 patients who received PLEX, including one 
randomized controlled trial. In general, biochemical im-
provement was observed in the majority of studies, showing 
decreases in C-reactive protein, IL-6, ferritin, lactate dehydro-
genase, and D-dimer concentrations, with the enhancement 
of respiratory function [51]. As cytokines play a prominent 
role in mediating several irAEs, the use of PLEX may be ben-
eficial, especially in cases of severe irAEs. In addition to the 
above, removal of chemokines by PLEX seen in animal stud-
ies has demonstrated decreased leukocyte infiltration into end 
organs, suggesting yet another potential therapeutic mechan-
ism [52].

Potential risks and costs of PLEX
Potential complications of PLEX are related to the need for 
central venous access, anticoagulation, and the use of re-
placement with 5% albumin and/or plasma. Although in our 
center we routinely rely on large-bore peripheral IVs, other 
centers do require central venous catheters. Central venous 
catheters may introduce risks for infection and septicemia, 
thrombosis, and pneumothorax. Citrate is typically used as 
an anticoagulant which may lead to hypocalcemia that can 
cause paresthesias, muscle cramps, or in severe cases, cardiac 
arrhythmias. Repeated PLEX sessions with albumin replace-
ment fluid may lead to depletion of coagulation factors and 
immunoglobulins. The risk for bleeding and infections may 
increase and necessitate the substitution of FFP for 5% al-
bumin. FFP carries the risks of adverse reactions to donor 
plasma such as anaphylaxis, transfusion-related acute lung in-
jury (TRALI) and the very rare risk of exposure to infectious 
pathogens [53]. One commonly used strategy for minimizing 
FFP exposure is to conduct PLEX every other day, rather than 
daily. Overall, adverse events related to PLEX were reported 
to occur in about 2–3% of cases. The majority of adverse e-
vents were mild (improved with no intervention) or moderate 
(resolved after medication) and only 0.1% were considered 
severe (leading to interruption of the procedure). There was 
only one reported death in over 100 000 procedures, which 
occurred in a patient with multiple comorbidities [54].

From a practical standpoint, the efficiency of PLEX is 
greatest when the drug to be removed is either a large protein  
or is highly protein bound, and the drug has a small volume 
of distribution. This includes intravenous immune globu-
lin, therapeutic monoclonal antibodies, such as rituximab, 
as well as protein-bound drugs such as cyclophosphamide  

Table 2. Pharmacologic characteristics of immune checkpoint inhibitors.

ICI  T 1/2  Vd  IgG subclass  MoA  

Nivolumab 25 days 6.8 l IgG4 anti-PD-1

Pembrolizumab 22 days 6 l IgG4 anti-PD-1

Cemiplimab 20 days 5.3 l IgG4 anti-PD-1

Dostarlimab 23.5 days 5.3 l IgG4 anti-PD-1

Camrelizumab 14 days 5.4 l IgG4 anti-PD-1

Atezolizumab 27 days 6.9 l IgG1 anti-PD-L1

Avelumab 6.1 days 4 l IgG1 anti-PD-L1

Durvalumab 17 days 6.9 l IgG1 anti-PD-L1

Ipilimumab 15 days 7.2 l IgG1 anti-CTLA-4

ICI: immune checkpoint inhibitor; T1/2: Half-life; Vd: Volume of 
distribution; MoA: Mechanism of action; L: Liter; IgG: Immunoglobulin 
G; anti-PD(L)1: anti-Programmed Cell Death (Ligand)1; anti-CTLA-4: 
anti-cytotoxic T-lymphocyte-associated protein 4. From reference [43].
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and azathioprine. Corticosteroids such as prednisone and 
methylprednisolone are not substantially impacted by 
PLEX [55]. PLEX is associated with considerable logistical 
considerations and resource utilization, as PLEX requires co-
ordination of a multidisciplinary team including subspecialty 
clinicians, transfusion medicine, nursing support, and a serv-
ice for central line placement. Access can be a significant bar-
rier, as not every institution may be readily able to deploy 
these services urgently, either on an inpatient or outpatient 
basis. Although cost is another limiting factor for PLEX, one 
study reported five sessions of PLEX to be more cost-effec-
tive than five doses of IVIG (approximately 10,000 dollars 
vs. 5000 dollars [56]). The costs of PLEX need to be factored 
into the risk–benefit equation; however, this must also be bal-
anced with the potential for clinical benefit, including metrics 
such as shorter hospital stays, and improved quality of life 
(e.g. decreased need for skilled nursing support).

Potential indications for PLEX
Here, we highlight severe and life-threatening irAEs where 
utilization of PLEX as an adjunct to immunosuppression 
may be helpful, citing examples of compelling case reports  
(Table 3). We recognize the lack of rigorous evidence in this 
domain. We emphasize the importance of clinical acumen in 
driving the decision if and when to initiate PLEX. The optimal 
timing and use of PLEX remains to be more rigorously tested, 
but a reasonable recommendation might be to consider its use 
in rapidly progressive severe or life-threatening irAEs after 
the failure of an initial course of high-dose corticosteroids (in-
cluding pulse doses). There are several case reports in which 
PLEX was used unsuccessfully: possible explanations include 
clinical deterioration driven by other mechanisms, and/or the 
possibility that implementation of PLEX occurred too late, 
after inflammatory processes had become irreversible.

Neurologic
Neurologic irAEs are rare with an overall incidence of 
<1% [72] but can have high morbidity and mortality such 
that expedited diagnosis and treatment is paramount. 
Autoantibodies play a prominent role in the pathogenesis 
of ICI-related myasthenia gravis (MG) and Guillain Barre 
syndrome (GBS). PLEX is routinely used in severe forms of 
MG and GBS and so PLEX has been fairly well adapted in 
ICI-related MG or GBS. There are many other neurologi-
cal syndromes that may be mediated by autoantibodies, in-
cluding paraneoplastic disorders such as limbic encephalitis 
or subacute cerebellar ataxia. Commercially available anti-
body testing only detects a known antibody in approximately 
half of the patients, raising the possibility of unidentified 
antibodies driving pathogenesis [73]. There are several cases 
of severe irAE encephalitis that have been successfully man-
aged with PLEX, and in some cases, IVIG [58, 59]. Transverse 
myelitis is another complication that can be especially debil-
itating and there are well-known antibody-mediated causes 
of transverse myelitis (NMO, MOG), although some cases 
of transverse myelitis do not have any described antibody. 
A recent study highlighted classical antibody-mediated neu-
rological syndromes that were seronegative after ICI use. All 
patients had excellent neurological outcomes when treated 
with steroids, PLEX and IVIG along with ICI discontinuation 
[74]. Wilson et al. argue that rapid recovery and positive an-
tibody staining on brain or nerve tissues by sera from these 

patients suggests a likely novel, yet unidentified antibody-
mediated process.

Another common neurological irAE is myositis, and overall 
incidence of myositis from clinical trials of ICI is about 0.38% 
(odds ratio 1.96) for patients receiving ICIs compared with 
controls [75]. Sometimes myositis is associated with myas-
thenia gravis and occasionally myocarditis, the greatly feared 
‘triple M syndrome’. Patients with associated myocarditis are 
likely to have worse outcomes and require aggressive therapy 
including corticosteroids, IVIG and sometimes PLEX. In most 
published reports, when patients develop MG or myocarditis 
with myositis, PLEX seems to be considered an option and 
has been used. However, at least one large case series which 
reviewed all the patients with ICI-myositis (with or without 
MG or myocarditis) documents PLEX use in about 30% of 
cases with ICI myositis alone and near 100% PLEX use in 
patients with myositis and MG [76].

Cardiac
Although rare with incidences ranging from 0.04% to 1.14%, 
cardiotoxicity from ICIs has an extremely high mortality rate 
which ranges from 35% to 50% [77–79]. In ICI-mediated my-
ocarditis, T-cell infiltration of the myocardium is observed in 
the absence of B cells or antibody deposits [80]. The findings 
of similar T-cell clones in both myocardium and tumor may 
suggest either T-cell reactivity to a heart-specific antigen or 
cross-reactivity between T cells recognizing an antigen shared 
by tumor and normal cardiac tissue [81]. Additionally, cross-
talk between key T-cell and antigen-presenting cell subsets 
may play an important role in potentiating autoimmunity in 
the heart [82, 83]. Although randomized trial data does not 
yet exist for the usage of PLEX in ICI myocarditis, several 
compelling clinical cases exist in which PLEX was used suc-
cessfully to mitigate severe myocardial inflammation in cases 
in which corticosteroids and even abatacept appeared to have 
had limited efficacy [42, 63, 64]. Although the mechanism 
of efficacy of PLEX in these cases is not known, potential 
mechanisms include the removal of cytokines/chemokines 
critical to cell–cell communication between key pathogenic 
cell subsets (e.g. between T-cell subsets, between T-cells and 
antigen-presenting cells, etc.) as well as direct removal of the 
immune checkpoint inhibitor and subsequent reduction of ac-
tivation of myocardial-directed cytotoxic T-cells.

Renal vasculitis
Another uncommon but dangerous complication of check-
point inhibitor therapy is ICI-associated renal vasculitis. 
Although the most common kidney condition related to ICI 
irAE is acute interstitial nephritis, the glomerular disease can 
occur. Among the reported glomerular diseases, vasculitis is 
the most common [84]. Unlike other medication-associated 
vasculitides which are typically anti-neutrophil cytoplasmic 
antibody (ANCA) positive, ICI-associated vasculitis is often 
ANCA negative [69]. We identified two reported cases of 
ANCA-positive and two cases of ANCA-negative renal vascu-
litis, all successfully treated with PLEX in combination with 
other treatment modalities.

Laamech et al. report the case of an 81-year-old with 
non-small cell lung cancer treated with nivolumab who de-
veloped pulmonary hemorrhage and crescentic glomerulo-
nephritis 3 weeks after his last dose of nivolumab [70]. He 
was myeloperoxidase (MPO) antibody positive and initially 
treated with pulse methylprednisolone and rituximab without  
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renal response and ultimately required renal replacement ther-
apy (RRT). His nivolumab level at this time was 4.1 µg/ml,  
and PLEX was initiated. He received seven sessions with cor-
responding improvement in serum creatinine, return of re-
nal function, and post-treatment nivolumab level <3 µg/ml. 
His estimated glomerular filtration rate recovered to 20 ml/
min/1.73 m2 (baseline 84), and he did not require further RRT.

Mamlouk et al. report one case of ANCA-positive and 
two cases of ANCA-negative renal vasculitis all initially un-
successfully treated with steroids [69]. All three received IV 
methylprednisolone for 3 days (one had initially received 
an outpatient oral prednisone taper for rash), followed by 
a combination PLEX and rituximab. All patients briefly re-
quired RRT, but eventually experienced partial kidney recov-
ery. None of the above four cases experienced relapse of the 
vasculitis, nor did any patient experience an adverse event 
related to PLEX.

These successful experiences are in contrast with the 
mixed enthusiasm for PLEX in de novo ANCA vasculitis a-
mong nephrologists [85]. Revisions for guidelines of PLEX 
indications in ANCA vasculitis are under consideration af-
ter a large randomized controlled trial failed to show ben-
efit, although there was a signal for potential short-term 
benefit among those with severe renal disease [86]. Possible 
explanations for the difference in outcomes between ICI-
related cases and the de novo ANCA vasculitis literature in-
clude publication bias for those with favorable outcomes, a 
unique benefit derived from ICI removal, earlier initiation 
of PLEX in ICI-related cases before the onset of irreversible 
damage, or potential differences in the pathogenicity of the 
antibodies mediating vasculitis.

Hematologic
Hematologic irAEs, while rare, include diseases for which 
there is the considerable published experience of application 
of PLEX as the first line or as salvage therapy in the non-
ICI setting: TTP; cold agglutinin syndrome; post-transfusion 
purpura; cryoglobulinemia; catastrophic antiphospholipid 
syndrome; and cytokine release syndromes including 
macrophage activation syndrome and hemophagocytic 
lymphohistiocytosis. Other described hematologic irAEs, 
including warm autoimmune hemolytic anemia, immune 
thrombocytopenic purpura, pure red cell aplasia, and agranu-
locytosis are not typically treated with PLEX [87, 88].

PLEX is considered first-line therapy for TTP, as it can not 
only remove anti-ADAMTS13 autoantibodies but also infuse 
the ADAMTS13 protease by using FFP as the replacement 
fluid. To date, there have been seven cases of ICI-related TTP 
reported [65], which in general showed favorable responses if 
PLEX was initiated early. Although outcomes were not avail-
able for all cases, it is notable that two patients showed du-
rable remission and one showed complete response following 
PLEX, suggesting that removal of the ICI was not detrimental 
to their cancer outcome.

While Ohira et al. report a case of fulminant cytokine 
release syndrome (CRS) in the setting of ICI-related der-
matomyositis that was successfully treated with pulse dose 
corticosteroids, PLEX, and mycophenolate mofetil [68], there 
are several other cases of CRS described in the literature that 
did not utilize PLEX [89, 90]. Therefore, the specific clini-
cal indication and impact of PLEX on CRS outcome remains 
unclear: in particular, whether PLEX can induce a faster res-
olution of CRS and/or result in decreased corticosteroid use.

GVHD
Amerikanou et al. report a striking case of severe multi-organ 
graft-versus-host disease after nivolumab therapy for relapsed 
Hodgkin’s lymphoma that permits speculation that the early 
timing of PLEX may have driven the positive outcome. The 
patient experienced rapid deterioration, including reduced 
level of consciousness with decorticate posturing, status ep-
ilepticus, and worsening skin features (widespread erythema-
tous lesions, peri-orbital swelling, oral desquamation). PLEX 
was initiated early on day 8, and after 3 days of PLEX, the 
patient had no residual neurologic deficits with significant im-
provement in his mucosal ulceration and rash. Measurement 
of plasma nivolumab level by enzyme-linked immunosorb-
ent assay (ELISA) confirmed a steep decline in the drug level 
6 days after PLEX [71]. The patient experienced remission 
at 12 months following PLEX, with the absence of chronic 
GVHD.

First-line and second-line indications for therapeutic PLEX 
are articulated in the 2019 guidelines from the American 
Society for Apheresis [31]. Although many of these indications 
may not commonly be seen in conjunction with ICIs, aware-
ness of indications that have a higher likelihood of therapeutic 
success with early initiation of PLEX may be clinically useful.

Conclusions and future directions
There remain many research questions for the field that 
should be prioritized, including:

• In which severe or life-threatening irAEs should PLEX be 
utilized?

• What is the optimal timing for the use of PLEX?
• What are the mechanisms by which PLEX may be 

exerting its beneficial effect?
• Do the pharmacokinetics of ICI removal correlate with 

the patient outcome?
• Should PLEX protocols (including the number of ses-

sions, schedule of sessions, and amount of plasma 
exchanged per session) be drug specific, e.g. vary by the 
IgG subtype and antibody–drug constructs?

• How should disease-specific responses be measured, and 
should we be putting more emphasis on “time to im-
provement” as an outcome? Does use of PLEX result in 
more rapid clinical improvement, leading to shorter hos-
pital stays, decreased disability, and/or improved quality 
of life?

• What are acceptable disease-specific surrogates for a re-
sponse when PLEX transiently removes a usual clinical 
biomarker of disease (e.g. CK levels)?

• What are the risk/benefit and cost/benefit considerations 
for the use of PLEX?

• Does early use of PLEX minimize the amount and dura-
tion of corticosteroid use?

• What is the impact of PLEX on tumor-related outcomes?
• Can patients be rechallenged with ICI after PLEX, and 

what is the likelihood of irAE recurrence?

We discuss the use of PLEX in addition to immunosuppres-
sion for the treatment of severe irAEs that may be steroid-
refractory and/or rapidly progressive, leading to the risk of 
death or disability. We posit that early use of PLEX may 
lead to more favorable outcomes, including faster time to 
recovery with decreased long-term disability, and decreased  
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corticosteroid toxicities. PLEX has the ability to remove path-
ogenic antibodies (many of which have yet to be identified 
in irAEs), cytokines, chemokines, and importantly, the ICI 
itself. ICIs may exert a prolonged pharmacodynamic effect 
that can lead to perpetuation of irAEs. A number of case 
reports suggest that PLEX may not negatively affect the anti-
tumor response, however larger studies are needed to more 
definitively address this question. In reviewing the available 
case reports of PLEX for irAEs, earlier utilization of PLEX 
may be associated with a more positive outcome, suggesting 
an early window of opportunity.

Acknowledging that current data are based on case ser-
ies and are thus hypothesis-generating, we propose that 
sufficient evidence exists to warrant rigorous studies that 
engage PLEX earlier in the treatment algorithm of severe 
and rapidly progressive irAEs. We recognize the operational 
complexities associated with rapid deployment of PLEX, 
which requires seamless collaboration amongst several 
specialties (which at some centers may include transfusion 
medicine, hematology, nephrology, neurology, oncology, 
and/or immunology) along with extensive nursing support. 
The relative cost of PLEX and its attendant resource utiliza-
tion are significant. However, if PLEX works as a mitigation 
strategy for severe irAEs, this may enable the safer and more 
effective use of ICIs, especially in high-risk populations, in-
cluding those with pre-existing autoimmune disease and/
or those with prior irAEs who are rechallenged. Ultimately, 
there is a need for prospective multi-center randomized 
controlled studies of PLEX for irAEs in order to robustly 
demonstrate its potential value.
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