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Abstract

Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for
understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair
cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we
quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly
bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified
variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were
developed for regions inside and outside of parks and protected areas to account for substantial differences in
anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from
55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to
males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-
moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks
and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-
specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that
male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial
patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features,
potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which
represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by
understanding spatial- and gender-based stress responses to landscape conditions.
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Introduction

Spatial patterns of species decline and extinction have been

linked to complex interactions among anthropogenic factors, such

as habitat loss and fragmentation [1–3], over-exploitation [4],

climate change [5,6], and competition with invasive species [7,8].

Whereas many large predators lack the behavioural plasticity

necessary to adapt to rapid change [9], at greatest risk are large

bodied predators with diminished geographic range, small

population size, low fecundity, and which occupy higher trophic

levels [4,10,11]. To date, efforts to examine spatial patterns of

species decline have focused primarily on changing patterns of

species distributions, abundance, and mortality in response to

anthropogenic activities and habitat fragmentation [12–14].

Although such studies provide essential understanding about

how wild populations have responded to changing environments,

they are generally retrospective due to a temporal disconnect

between the disturbance event and associated population decline

[15]. What effective policy intervention requires are real-time

measures of potential stressors with associated spatial methods to

reliably understand where individuals within populations might be

at most risk of declines.

Recently, measures of the physiological response of wildlife to

external stressors are emerging as a viable approach for analyzing

contemporary impacts of habitat conditions and disturbance on

the health and fitness of individuals and populations [15,16].

Cortisol concentrations measured from saliva, blood, feces, and

hair [17–19] have been used as a non-invasive approach to

quantify long-term stress responses in animals such as the northern

spotted owl [20], squirrel gliders [21], ungulates [22–24], wolves

[25], and grizzly bears [26,27]. Vertebrates respond to noxious

external stimuli by activation of the hypothalamic-pituitary-

adrenal axis with the resultant release of glucocorticoids, such as

cortisol, into the blood circulation [28] allowing the organism to
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respond to the stressor with the goal of maintaining or re-

establishing homeostasis [29]. However, persistent or repeated

exposure to stressful stimuli, and resultant continued circulation of

glucocorticoids, have been found to impair immune system

performance, increase susceptibility to disease, and decrease

growth and reproductive capacity in some species [15,28,30].

An emblematic species of western North America, the grizzly

bear (Ursus arctos) has experienced substantial reduction in its

historic range due to human settlement and development [31].

Conservation of remaining localized populations is difficult due to

conflicting public opinion and land-use [32]. Grizzly bears in

Alberta, Canada, have recently been estimated to number fewer

than 700 individuals [33], and as a result the provincial population

was listed as Threatened in 2010 [34]. Grizzly bears in Alberta

occupy a landscape heavily impacted by human activities and

resource extraction. Industrial activities (e.g., forestry, oil and gas

exploration, mining, and agriculture) and extensive road networks

are prevalent throughout grizzly bear habitat within the province

resulting in a highly fragmented multi-use landscape [35,36].

Although a number of parks and protected areas exist, many are

subject to a wide variety of recreational pursuits and high human

visitation rates. Anthropogenic land-use and open road access

features represent primary causes of grizzly bear mortality as bears

have been found to select anthropogenic disturbed habitats to

exploit seasonal food availability, which has increased contact with

humans [35,37–39]. Further, patterns of land-use have resulted in

genetically fragmented sub-populations that may not be viable in

the long-term [36,40]. Less clear is how these activities, which vary

spatially and in their character, affect the physiology of individuals.

Spatial patterns of anthropogenic land-use, forest conditions,

and topography also influence the distribution of available

resources (e.g., [38]). Conceptually, habitat quality accounts for

the range of conditions that have an impact on the health of an

animal occupying the habitat [41]. Grizzly bears in Alberta

occupy large home ranges (ranging from approximately 300 km2

for females to upwards of 1500 km2 for males) allowing them to

seasonally select a diverse assemblage of habitat types necessary to

meet their nutritional needs [42,43]. True to their description as

opportunistic omnivores, the diet of grizzly bears in Alberta is

generally low in protein consisting mostly of green vegetation,

fruits, and insects [38,44], although the consumption of ungulates

varies seasonally [45]. Accounting for spatial variability in

environmental factors related to habitat, such as forest conditions,

landcover, vegetation productivity, and elevation, that influence

the availability of food resources and have an impact on the health

of individuals is an important consideration when assessing the

relationship between landscape conditions and physiology [46,47].

We know that human impacts to the landscape, including

habitat loss and alteration [33], contribute to grizzly bear mortality

[48–50]. Yet, little is understood regarding how human activities

and habitat conditions affect bears physiologically. Given small

grizzly bear population sizes [36], densities, and reproductive rates

[51], research on the interaction between physiological status and

landscape conditions is essential. Although physiological status can

be represented by a wide range of metrics, we specifically focus on

long-term stress in this study because of growing recognition that

long-term stress is an important factor linking ecological change

with impaired health and population performance in wildlife

[52,53]. Accordingly, our goal is to quantify spatial relationships

between landscape conditions and long-term stress levels in grizzly

bears by statistically integrating a spatially and temporally broad

dataset of hair cortisol concentrations (HCC) with data represen-

tative of habitat conditions and anthropogenic disturbance. To

meet this goal we address the following objectives:

1. Quantify impacts of habitat conditions and anthropogenic

landscape disturbance on observed spatial patterns of HCC

levels in Alberta grizzly bears.

2. Develop a spatially explicit model to predict HCC levels across

grizzly bear habitat based on current landscape conditions.

3. Interpret the spatial distribution of predicted HCC values using

data describing the relative importance and security of grizzly

bear habitat.

To address these objectives, novel spatial methods are required

to integrate HCC data with spatially continuous data representing

environmental conditions and to quantify observed relationships.

Methods presented here, including marked point pattern analysis

using kernel density estimation and non-parametric regression

using random forests, provide an effective means for analyzing

ecological data and are appropriate for future research on wildlife

and HCC.

Study Area
The study was carried out for five grizzly bear management

units (BMUs) in Alberta, Canada (Figure 1). Representing an area

of nearly 111,000 km2, the Grande Cache, Yellowhead, Clear-

water, Livingstone, and Castle BMUs are divided by major east-

west transportation corridors. As such, the BMUs largely represent

genetically isolated populations, although some inter-population

movement does occur [36]. Due to the geographic extent of the

study area, vegetation, topography, and local weather conditions

are highly variable. Elevation ranges from 450 m to 3500 m and

increases from east to west. In the western mountainous region,

habitat types include alpine and sub-alpine ecosystems comprised

of fir (Abies spp.), pine (Pinus spp.), and spruce (Picea spp.), and wet-

meadow complexes [54,55]. To the east, lower elevation foothills

comprised of mixed-wood forests of pine, aspen and poplar

(Populus spp.), spruce, and balsam fir (Abies balsamea) represent a

transitional zone between the Rocky Mountains and the prairies

[54]. Mean temperatures range from 12uC in the summer to

27.5uC in the winter, and mean annual precipitation is 450–

800 mm. Major grizzly bear foods found in the region include

herbaceous plant growth such as sweetvetch (Hedysarum spp),

Canada buffaloberry (Shepherdia canadensis), bearberry (Arctostaphylos

uva-ursi), horsetail (Equisetum spp), dandelions (Taraxacum officinale),

and clover (Trifolium spp), as well as a variety of insects and

ungulates [38,56].

Resource extraction activities within the BMUs also vary

spatially. They include forestry, oil and gas exploration, mining,

and agriculture. To service resource extraction activities, an

extensive network of roads exists that provide access to grizzly bear

habitat resulting in increased human-bear conflict and mortality

[49,50,57]. These roads and areas are also widely used for

recreation, including hunting, fishing, hiking, and trail-riding with

all-terrain vehicles and snowmobiles. A network of parks and

protected areas, including Jasper, Banff, and Waterton National

Parks, as well as a number of provincial parks and wilderness

reserves, which generally exclude resource extraction activities, are

also found throughout the BMUs.

Materials and Methods

Ethics Statement
Grizzly bear hair collection was undertaken as part of an

initiative to conduct a population inventory program for the

species. The population inventory work was carried out at the

request of the Government of Alberta (Environment and

Sustainable Resource Development) by the Foothills Research

Spatial Analysis of Stress in Grizzly Bears
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Institute’s Grizzly Bear Program (FRIGBP) and followed the

techniques described by Woods et al. [58] and Proctor et al. [59].

Grizzly bears are not provincially endangered and were not a

protected species during the time when this sampling occurred. All

samples were collected on provincial and federal lands under the

authority of the Government of Alberta (Environment and

Sustainable Resource Development and Alberta Parks) and the

Government of Canada (Parks Canada). This inventory program

was approved by the Alberta Department of Sustainable Resource

Development animal care committee and by Parks Canada when

sampling occurred in their jurisdiction in each year of data

collection. Annual research permits and animal care approvals

were obtained from both provincial and federal agencies

responsible for permits and licensing of these activities.

Hair Cortisol Concentrations
Cortisol concentrations (picograms per milligram of hair - pg/

mg) were measured in grizzly bear hair samples obtained annually

from 2004 to 2008. As cortisol accumulates in hair for the duration

of its growth, the HCC values used in this analysis represent a

stress signal from the period of hair growth during the year

preceding hair sample capture. Hair is a stable medium that can

be collected non-invasively from free-ranging animals [26]. It can

be transported and stored with relative ease (e.g., paper envelope

at room temperature) and substances incorporated into growing

hair, including cortisol, remain detectable for years to centuries

[60]. These attributes make hair cortisol concentrations particu-

larly effective for quantifying long-term stress in far-ranging

species such as grizzly bears [26,61]. Hair samples were collected

using barbwire hair snags [55,56] randomly placed within 7 km6
7 km grid cells and repositioned at 14 day intervals throughout

known grizzly bear habitat in each BMU during the spring and

early summer (see [62–66] for methods used to collect grizzly bear

hair samples in each BMU). A total of 304 HCC values (n = 168

females, n = 136 males) were extracted from hair samples collected

in the five BMUs (see [26] for details regarding procedures to

extract cortisol concentrations from grizzly bear hair). As only two

of the 304 HCC values were from the same individual, the HCC

data represent an effective characterization of long-term stress in

the Alberta grizzly bear population. The range of observed HCC

values (0.16–14.94 pg/mg vs. 0.16–23.66 pg/mg) and mean HCC

695% CI (1.2060.29 pg/mg vs. 1.5260.34 pg/mg) were similar

between males and females, respectively. Further, comparison

between the mean HCC values for males and females did not

indicate a statistically significant difference (independent samples t-

test with observed values: p = 0.19; independent samples t-test

with ln-transformed values: p = 0.13).

Habitat Conditions
We represented grizzly bear habitat conditions by integrating a

variety of spatial data. These variables, characterizing forest

conditions, landcover, topography, and vegetation productivity

measured using remotely sensed data, represent proxies for food

availability (see Table 1 for rationale for inclusion of variables).

Figure 1. Study area location in Alberta, Canada. Grizzly bear hair samples were collected in each bear management unit during a single
summer (Yellowhead – 2004; Clearwater – 2005; Livingstone – 2006; Castle – 2007; Grande Cache – 2008).
doi:10.1371/journal.pone.0083768.g001
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Percent crown closure and percent conifer were modelled and

scaled from 0% to 100% through classification of Landsat

Thematic Mapper (TM) 5 and Landsat 7 Enhanced Thematic

Mapper Plus (ETM+) imagery informed by topographic deriva-

tives from a digital elevation model (DEM) [67]. Landcover was

classified into eight classes: upland trees, wetland trees, upland

herbs, wetland herbs, shrubs, water, barren land, and snow/ice,

using Landsat TM 5 and ETM+7 imagery, and topographic

derivatives [68,69]. We assessed terrain conditions using a DEM

detailing elevation for the study area obtained from the

Government of Canada spatial data portal Geobase and

resampled to 1 km grid cells. A terrain ruggedness index,

providing a measure of terrain complexity and variability [70],

and a compound topographic index, which represents potential

soil moisture based on slope, catchment area, and upstream water

sources [71], were derived from the DEM.

We used indices from the Dynamic Habitat Index (DHI)

[72,73], which has been linked to observed spatial patterns of

avian species [74], biodiversity gradients [75], and home range

size of carnivores [76], to characterize vegetation productivity in

the study area. The DHI indices are calculated from remotely

sensed imagery and summarize annual trends in monthly images

of the fraction of photosynthetically active radiation (fPAR). In this

study, fPAR is derived from Advanced Very High Resolution

Radiometer (AVHRR) reflectance values with a spatial resolution

of 1 km from 2003 to 2007 [72,77]. The DHI is comprised of

three indices representing vegetation productivity: cumulative

greenness, variation in greenness, and minimum cover [72,78].

Cumulative greenness, which represents total vegetation produc-

tivity, is estimated annually by summing monthly fPAR observa-

tions. Variation in greenness, representative of seasonal changes in

productivity, and consequently the seasonal availability of food

resources, is calculated using the coefficient of variation in fPAR

values over a year. Highly seasonal landscapes, such as alpine

environments, where greenness values vary substantially due to

snowpack, receive higher values than regions that are productive

year round, such as evergreen forests [72]. The minimum cover is

an estimate of the lowest level of vegetative productivity available

year round and may influence the persistent use of habitat by

herbivorous species. As production of leafy biomass and fruits

consumed by grizzly bears is seasonally dependent [45,79], regions

with high seasonality and cumulative greenness, as well as high

minimum cover, are likely representative of high quality grizzly

bear habitat.

Habitat Selection
We characterized spatial patterns of seasonal habitat use by

grizzly bears throughout the study area using resource selection

functions (RSFs) where the probability of habitat use is ranked

from 0 (low) to 10 (high) [43,80]. An RSF models the probability of

use of a resource, relative to its availability, based on occurrence

patterns of an animal on the landscape [81]. The RSFs developed

Table 1. Variables used to predict HCC levels in grizzly bears.

Abbreviation Variable Range Rationale

Habitat conditions

cc Percent crown closure (%) 0–100 Influences forest understory vegetation abundance

pctcon Percent conifer (%) 0–100 Correlated with herbaceous food abundance

lcover Landcover (categorical) 1–8 Proxy for presence and abundance of food sources

dhi_cum Dynamic Habitat Index – cumulative greenness (unitless) 0.33–18.50 Estimate of total vegetation productivity

dhi_cv Dynamic Habitat Index – coefficient of variation (unitless) 0.19–1.35 Estimate of seasonal change in vegetation productivity

dhi_min Dynamic Habitat Index – minimum cover (unitless) 0–0.40 Lowest estimated annual vegetation productivity

elev Elevation (m) 450–3500 Impacts landcover, vegetation cover, and human access

tri Terrain ruggedness index (unitless) 0–189.33 Impacts human access and grizzly bear mortality

cti Compound topographic index (unitless) 3.86–18.03 Correlated with herbaceous foods and presence of ungulates

Habitat selection

rsf_s1 Resource Selection Function – hypophagia (categorical) 0–10 Probability of habitat selection following den emergence

rsf_s2 Resource Selection Function – early hyperphagia (categorical) 0–10 Probability of habitat selection during the summer

rsf_s3 Resource Selection Function – late hyperphagia (categorical) 0–10 Probability of habitat selection during the fall

rsf_max Resource Selection Function – maximum value (categorical) 0–10 Maximum observed habitat selection across all three seasons

Anthropogenic disturbance

rd_dd Roads – distance decay (unitless) 0–1 Impacts human access and contribute to landscape
fragmentation

rail_dd Railways – distance decay (unitless) 0–1 Contribute to grizzly bear mortality

wl_dd Oil and gas well-sites – distance decay (unitless) 0–1 Concentrated sites of human activity and contribute to habitat
fragmentation

ln_den Secondary linear features – density (km/km2) 0–7.28 Contribute to habitat fragmentation, density of forest edges, and
impacts human access

cblk_l Forest harvest blocks – # than 15 years old (% cut/km2) 0–100 Younger seral forests have greater abundance of herbaceous
foods

cblk_g Forest harvest blocks –.than 15 years old (% cut/km2) 0–100 Food availability decreases as time since disturbance increases

pa Proportion parks and protected area (unitless) 0–1 Less disturbance compared to surrounding landscape

doi:10.1371/journal.pone.0083768.t001
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for this study area are based on third order selection [82], and as

such the modelled probability of habitat use by grizzly bears is

representative of selection at the patch level (see [43] for RSF

model details and accuracy). Separate RSF models were used for

male and female bears in three seasons, hypophagia (1 May to 15

June), early hyperphagia (16 June to 31 July), and late hyperphagia

(1 August to 15 October), as well as the maximum observed RSF

value for all three seasons (Table 1).

Anthropogenic Influence
Anthropogenic features we considered included roads, railways,

oil and gas well-sites, cut-lines, power-lines, pipelines, and forest

harvest blocks (Table 1). Anthropogenic data were provided by

Alberta Sustainable Resource Development and are mapped and

updated by the FRIGBP based on appearance of disturbance

features in Landsat imagery. We represented roads, railways, and

oil and gas well-sites using an exponential distance decay function,

e2ad where d is the distance in metres to the feature and a was fixed

at 0.002 [80]. The distance decay surfaces decrease linearly from a

value of 1 at the location of the anthropogenic feature to a value of

0 at a distance of approximately 2000 m. We represented

secondary anthropogenic linear features, such as cut-lines,

power-lines, and pipelines, as a cumulative linear density per

1 km2 grid cell (km/km2).

We divided forest harvest blocks into two age classes (#15 years

old; .15 years old) to account for regeneration and resultant

differences in grizzly bear food availability present within the

harvested areas [38,83]. We assessed the influence of forest harvest

blocks by calculating the proportion of harvested area in 1 km2

grid cells. Resultant grid cells ranged from a value of 1

representing an area that has been completely harvested to 0

indicating no harvesting had occurred in the area. Finally, we

modelled the influence of the parks and protected areas in the

region, which represent a noted contrast in terms of land-use

compared to the surrounding landscape, based on proportion

parks and protected area within a 10 km radius from 1 km2 grid

cells. Values ranged from 1 for cells completely within parks and

protected areas to 0 when no parks and protected areas were in the

immediate vicinity.

Conservation Areas and Habitat Security
Core and secondary grizzly bear conservation areas, based on

observed patterns of grizzly bear occurrence, resource availability,

and road density, have been mapped within the five BMUs [80].

Core conservation areas, which are meant to act as a population

source, are defined as regions with high quality habitat (using RSF

scores as surrogates) and road densities below 0.6 km/km2.

Secondary conservation areas also contain high quality habitat,

however road densities are higher at 1.2 km/km2 which increases

the risk of mortality and decreases the population source capacity

of the area. Within these regions, habitat states have been assessed

by characterizing the landscape based on habitat quality and

mortality risk [84]. In this analysis we incorporate three defined

habitat states in 1 km2 grid cells: secure habitat (low mortality risk),

sink habitat (high mortality risk), and non-critical habitat.

Combined with the present network of parks and protected areas,

the core and secondary conservation units as well as the observed

habitat states were used to help interpret geographic relationships

in the modelled distribution of HCC values within the five BMUs.

Kernel Density Estimation of Hair Cortisol Concentrations
To integrate the HCC point data with spatially continuous

habitat and anthropogenic variables, we converted HCC data

from points to a continuous surface using kernel density estimation

(KDE). KDE is frequently used in wildlife analyses to summarize

spatial variation in the intensity of habitat selection over large

areas (e.g., the utilization distribution) based on telemetry point

data [85]. KDE is also employed to spatially allocate attribute data

(based on a statistically or ecologically significant bandwidth) over

an area representative of the sample locations to understand how

underlying environmental characteristics influence spatial pattern

[86]. The KDE surface provides greater detail regarding the

spatial variability of the underlying point pattern, which is the case

in the spatial distribution of HCC levels. Kernel density estimation

of a marked point pattern is defined by

g(u)~

P
i k(e(u){xi)viP
i k(e(u){xi)

,

where k is a Gaussian kernel, the HCC point data values are given

by v1,:::,vn at locations x1,:::,xn, u are the smoothed HCC values,

and e uð Þ is an edge correction factor based on the reciprocal of the

kernel mass

1

e(u)
~

ð
w

k(v{u)dv

inside the observation window or spatial extent W [87,88]. The

spatial extent was defined separately for males and females in each

BMU as the minimum convex polygon (MCP) of HCC sample

locations [89]. Kernel values were stored in a 1 km cell matching

the spatial resolution of landscape variables. A 9 km kernel

bandwidth was defined as it corresponds to the average daily area

used by an adult female grizzly bear [43] and was supported by

least-squares cross-validation, which identifies the bandwidth that

minimizes the summed squared error between observed values

and smoothed values.

We assessed the influence of individual HCC points on the

stability of the male and female KDE surfaces by generating 99

leave-one-out bootstrap HCC kernel density surfaces for valida-

tion [90]. We quantified uncertainty in the HCC surfaces for each

BMU by determining the proportion of KDE pixels that fell within

a 95% confidence interval (p,0.01) of similar observed values in

the bootstrap surfaces [91]. We compared the distribution and

central tendency of the values in the KDE HCC surfaces to the

original HCC values using Kolmogorov-Smirnov and Mann-

Whitney U tests.

Random Forest Models
We used random forest models to quantify the influence of

habitat and anthropogenic variables on the spatial distribution of

male and female grizzly bear HCC values from the KDE surfaces.

A non-parametric recursive regression method, random forests

combine multiple regression trees built using bootstrap samples of

data [92]. Each individual regression tree is grown to its maximum

size using random subsets of predictor variables [93]. Trees are

combined by averaging and estimation of response values is

performed using the withheld out-of-bag observations [93,94].

The model variance explained is assessed based on the accuracy of

the prediction of out-of-bag data. Random forests have been found

to be ideally suited to ecological data as they do not require linear

relationships, effectively model variable interactions, can handle

missing data and correlated variables, are more stable than

traditional regression trees to minor changes in input data, and

have high predictive power [92–94]. Variable importance in

random forest models is quantified using two complementary

Spatial Analysis of Stress in Grizzly Bears
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output metrics. The first is a normalized comparison of the mean

square error of model predictions with predictions generated using

randomly permuted predictor values from the out-of-bag data

[93]. The second is the average total decrease in node impurity

attributed to splitting on each variable measured using the residual

sum of squares and provides an indication of node prediction

accuracy attributed to each variable.

We ran random forest models for both male and female grizzly

bears using a random subset of 50% of the available data. The

remaining 50% of the data were withheld for model validation.

Each model included 1000 trees to allow stabilization of out-of-bag

error and 18 variables were randomly selected for consideration at

each split. Due to varying landscape conditions and anthropogenic

influence inside and outside of parks and protected areas, we

produced secondary random forest models with an inside parks

and protected areas/outside parks and protected areas distinction

to explore potentially differing variable importance.

We used validated random forest models to predict male and

female HCC values in 1 km2 grid cells for the area of the five

BMUs outside the confines of the MCPs used in the development

of the KDE surfaces. We explored relationships between the 10

most influential variables and the predicted HCC values by

summarizing the mean predictor values that corresponded with

the lower (0.16–0.45 pg/mg: low HCC), inner (0.46–1.62 pg/mg:

moderate HCC), and upper (.1.62 pg/mg: high HCC) quartiles

of the input HCC point data. We used the pooled interquartiles of

the input male and female HCC values in order to facilitate direct

comparison of HCC levels between the sexes. These same HCC

value breaks were used to summarize the percentage of pixels

within the area of each BMU classified as a low, moderate or high

HCC.

To aid interpretation of predicted HCC values, we assessed the

associations between HCC values and parks and protected areas,

core conservation areas, and secondary conservation areas based

on the frequency distribution of male and female HCC values

occurring within each of these management units. We also

assessed relationships between the predicted male and female

HCC values and classified secure, sink, and non-critical habitat

types using frequency distributions based on 1 km2 pixel

associations.

Results

Validation of HCC Kernel Density Layers
Comparison of input HCC values and generated KDE HCC

surfaces indicated that the KDE represented the range and spatial

distribution of HCC values. Greater than 80% of pixels in the

HCC KDE surfaces for all five BMUs fell within the 95%

confidence interval (p,0.01) when compared to values in the 99

leave-one-out bootstrap surfaces. Kolmogorov-Smirnov and

Mann-Whitney U tests showed the attributes of HCC KDE

surfaces were not significantly different than measured HCC

values in each of the BMUs (Table 2).

Male HCC Models
Using random forest metrics, habitat conditions and anthropo-

genic disturbance variables considered explained 74.28% of the

variance in the male HCC data (MSE = 0.17). Validation of the

male model using the withheld data returned an r2 of 0.71. The

male total model predicted a mean HCC value of 0.89 pg/mg

(695% CI: 0.01 pg/mg; range: 0.17 pg/mg –3.25 pg/mg).

Proportion parks and protected areas was the most influential

variable in the male model (Figure 2A). Habitat condition

variables with the greatest influence included the three topo-

graphic metrics (elevation, terrain ruggedness index, and com-

pound topographic index), the DHI metrics (cumulative greenness,

variation in greenness, and minimum cover), as well as crown

closure and the late hyperphagia RSF. Influential anthropogenic

variables included distance decay to roads, and to a lesser extent

distance decay to railways and the density of secondary linear

features (Figure 2A). Mean variable values associated with low,

moderate, and high predicted HCC values revealed generalized

trends in the relationship between variables and HCC values

(Table 3). Male HCC values had an inverse relationship with the

proportion parks and protected areas. HCC levels were low-to-

moderate at high and low elevations, and low stress-levels were

associated with rugged terrain and low soil wetness. Observed

HCC levels increased as the distance decay to roads decreased and

as forest crown closure increased. DHI metrics showed male stress

levels were lowest in areas with greater seasonality, low minimum

cover and moderate cumulative greenness. The late hyperphagia

RSF had the strongest relationship with male HCC values among

the habitat selection variables considered. Spatial associations

showed male HCC levels increased with increasing incidence of

habitat use in the fall season.

Evaluation of the influence of differing landscape conditions

inside and outside parks and protected areas on the modelled

HCC values altered the importance of predictor variables. The

male grizzly bear outside parks and protected areas model

explained 55.34% of the variance in the HCC data (MSE

= 014; r2 = 0.72). The mean predicted male HCC for the outside

parks and protected areas model was 1.01 pg/mg (695% CI:

0.01 pg/mg; range: 0.21 pg/mg –3.25 pg/mg). Excluding the

influence of parks and protected areas increased the importance of

density of secondary linear features and proportion of forest

harvest blocks greater than 15 years old (Figure 2B). The male

inside parks and protected areas model explained 74.96% of the

variance (MSE = 0.07, r2 = 0.84), similar to the total model. The

inside parks and protected areas model mean predicted male HCC

was 0.55 pg/mg (695% CI: 0.02 pg/mg; range: 0.17 pg/mg –

2.88 pg/mg). While the influence of variables related to habitat

quality, such as elevation, terrain ruggedness, crown closure, and

DHI metrics, were similar to the total model, the importance of

distance decay to roads increased substantially for males when the

spatial extent of the model was restricted to parks and protected

areas (Figure 2C).

HCC values predicted using the total male random forest model

showed spatial patterns of long-term stress in males were generally

low in western national parks and increased in non-protected and

low elevation regions to the east and south (Figure 3A). The

highest HCC values for males were restricted to zones in and

around smaller protected areas, while low and moderate HCC

values were more frequent and continuously distributed on the

landscape (Table 4). Frequency distributions of predicted HCC

values associated with parks and protected areas, core conserva-

tion areas, and secondary conservation areas revealed similar

trends. Low male HCC values had more frequent spatial

associations with parks and protected areas (Figure 4A). Regions

designated as core conservation areas had a higher frequency of

moderate male HCC values, while secondary conservation areas

were associated with moderate-to-high male HCC values

(Figure 4A). In terms of secure, sink, and non-critical habitats,

moderate-to-high male values were more frequently associated

with non-critical and sink habitats (Figure 4B).

Female HCC Models
Total female random forest models explained 68.46% (MSE

= 0.21; r2 = 0.70) of the variance in female HCC values. The mean
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predicted female HCC from the total model was 1.01 pg/mg

(695% CI: 0.02 pg/mg; range: 0.16 pg/mg –5.82 pg/mg).

Variable importance was similar to the total male model, as

proportion parks and protected areas was again the most

influential variable (Figure 2D). Important habitat variables in

the total female model included the three topographic metrics, the

three DHI metrics, crown closure, the hypophagia RSF, and

percent conifer. Important anthropogenic variables included

distance decay to roads and railways, as well as the proportion

of forest harvest blocks less than 15 years old. Generally,

relationships between the mean values of the 10 most influential

variables associated with low, moderate, and high predicted female

HCC values contrasted those in the male model (Table 3). Female

HCC values increased as the proportion parks and protected

areas, elevation, and terrain ruggedness increased. Unlike males,

low female HCC levels were associated with areas closer to roads,

areas which have a higher density of recent forest harvest blocks,

and forests with moderate crown closure. DHI metrics showed

females had lower HCC levels in areas exhibiting less seasonality

and higher minimum cover and cumulative greenness. Hypopha-

gia RSF values had the strongest associations with female HCC

levels which increased as the probability of habitat use increased in

the spring season.

The female outside parks and protected areas model had a

higher variance explained (67.61%; MSE = 0.20; r2 = 0.71),

compared to the female inside parks and protected areas model

(58.15%; MSE = 0.15; r2 = 0.58). The mean female HCC was

0.73 pg/mg (695% CI: 0.02 pg/mg; range: 0.16 pg/mg –

5.82 pg/mg) for the outside parks and protected areas model

and 1.86 pg/mg (695% CI: 0.02 pg/mg; range: 0.40 pg/mg –

3.10 pg/mg) for the inside parks and protected areas model.

Compared to the male model, the change in variable importance

was more pronounced in the female outside parks and protected

areas model as the influence of proportion of forest harvest blocks

less than 15 years old, distance decay to railways, and distance

decay to oil and gas well-sites all increased (Figure 2E). However,

unlike the male inside parks and protected areas model, restricting

the female model to landscape conditions within parks and

protected areas decreased the influence of all anthropogenic

variables while increasing the influence of the DHI and

topographic metrics (Figure 2F).

Spatial patterns of the predicted long-term stress levels for

female grizzly bears contrasted predicted male HCC patterns.

Predicted female HCC values were generally low in the eastern

portions of the study area where anthropogenic disturbance is

concentrated and increased substantially in the foothills and high

elevation parks and protected areas in the west (Figure 3B). As a

result, low female HCC values were more frequently associated

with secondary conservation areas and sink habitats (Figure 4C;

Figure 4D). High, moderate, and low predicted female HCC

values were more evenly distributed on the landscape, and high

female values had a far greater geographic representation

compared to similar male HCC values (Table 4). Similar to

males, the Livingstone BMU had the greatest percent area with

high female HCC values, while the Grande Cache BMU had the

greatest concentration of low male and female HCC values

(Table 4).

Discussion

Grizzly bears in Alberta, Canada face many challenges as a

result of increasing anthropogenic activities and habitat fragmen-

tation throughout their current range. While knowledge regarding

causes of mortality, habitat use, and spatial patterns of habitat

fragmentation and loss is considerable, less is known regarding the

impacts of landscape conditions on the health of grizzly bears [26].

We found no obvious differences in observed input HCC values

between males and females. Similarity in male and female input

HCC levels suggests that baseline cortisol levels are robust to

differences in the types and timings of life history events. However,

the spatial distribution of predicted HCC values, based on random

forest models integrating HCC stress surfaces with environmental

covariates, differed between males and females. In general, female

HCC levels appeared to follow a gradient based on elevation with

moderate-to-high values predicted in the mountain parks and core

conservation areas, and low-to-moderate values predicted in lower

elevation forests, prairies, and aspen parkland. The pattern for

male HCC values also appeared to follow a similar gradient. Male

HCC values were predicted to be low in the mountain parks and

moderate in the prairies and aspen parkland located in the eastern

portion of the study area. In contrast to females, focal areas of high

HCC values were not evident for males.

Gender based variation in spatial patterns of HCC levels suggest

the type and intensity of stressors are not uniform across the

landscape. Results suggesting females, and to a lesser extent males,

have low-to-moderate long-term stress levels in response to

environmental conditions present in regions highly impacted by

humans appear counterintuitive. However, disturbance features

related to resource extraction activities (e.g., forest harvest blocks,

roads, pipelines), which represent the dominant forest disturbances

in the study area due to extensive fire suppression [95,96], have

been correlated with the presence and abundance of foods

consumed by grizzly bears [38,97,98]. Findings presented here

support the hypothesis that long-term stress levels in certain

wildlife species may be correlated with the availability and

abundance of foods. Examining glucocorticoid levels detected in

grizzly bear scat in the Yellowhead BMU, Wasser et al. [99] found

preliminary evidence that grizzly bear stress levels were generally

low in areas with high densities of anthropogenic disturbance and

higher in areas with fewer disturbances. They hypothesized that

observed patterns of stress may be related to the greater

availability and distribution of foods in anthropogenic disturbance

Table 2. HCC kernel density estimation validation results by bear management unit (BMU).

BMU Proportion data within 95% CI (p,0.01) Kolmogorov-Smirnov Mann-Whitney U

Castle 0.89 p = 0.07 p = 0.09

Livingstone 0.86 p = 0.12 p = 0.17

Clearwater 0.88 p = 0.09 p = 0.08

Yellowhead 0.88 p = 0.16 p = 0.14

Grande Cache 0.87 p = 0.21 p = 0.27

doi:10.1371/journal.pone.0083768.t002
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Figure 2. Variable importance metrics for male and female HCC random forest models. Variable importance for the male (A) total model,
(B) outside parks and protected areas model, and (C) inside parks and protected areas model, as well as the female (D) total model, (E) outside parks
and protected areas model, and (F) inside parks and protected areas model. Variable importance plots on the left of each panel (%IncMSE) represent
the accuracy of random forest model predictions based on regression tree splits made using each variable. Plots on the right of each panel
(IncNodePurity) indicate how often each variable was used as a split in regression trees aggregated through the random forest. For example, in
panels A & D the proportion parks and protected areas was selected often as a tree split in the random forest and had a high predictive HCC value
accuracy.
doi:10.1371/journal.pone.0083768.g002
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features. Similar inverse relationships between glucocorticoid

levels and food availability and diet have been observed in other

grizzly bear populations [27,100], as well as in a number of bird

[47] and marine species [101]. For grizzly bears in Alberta, with a

diet comprised largely of seasonally dependent herbaceous food

sources [45], optimizing nutritional uptake over a short summer

season is essential to ensure energy demands are met over the

winter. Consequently, areas with more abundant food sources may

present a low-stress environment for grizzly bears despite human

activities.

While male and female stress levels in highly industrialized areas

in the east were comparable, the high mountain parks in the west

represented notable broadly dispersed areas of high stress for

females and low stress for males. The observed differences in HCC

levels may be the result of gender-specific differences in exposure

to stressors and/or differences in perception and response to

stressors both inside and outside of parks and protected areas. For

example, Graham et al. [57] found females were more likely to

select habitat associated with roads and to cross roads during the

day, while males avoided roads and were more likely to cross them

at night. Similarly, females have been found to select edge habitats

associated with anthropogenic disturbance while male habitat

selection is more frequently associated with naturally occurring

edges [97]. As a result, outside of parks and protected areas the

higher density of anthropogenic disturbance features, which are

generally avoided by males, may explain the slightly higher

observed male HCC levels compared to values inside the parks

and protected areas where anthropogenic activities are more

localized. However, as males occupy very large home ranges

(upwards of 1500 km2) they may be more capable of mitigating the

cumulative effects of external environmental stressors compared to

females whose home ranges are smaller (approximately 300 km2)

and have less inter-annual variability. This may explain the lower

spatial variability in HCC levels observed in males across the study

area.

Compared to males, female exposure to external stressors elicits

strong stress levels inside parks and protected areas. Despite the

importance of parks and protected areas as wildlife refuges,

Gibeau et al. [102] classified nearly half of the available habitat in

these areas as unsuitable for grizzly bears (i.e., high elevation areas

with poor food availability and concentrated areas of human

recreation and activity). As a result, the availability of high quality

habitat and foods is restricted in these regions and may result in

higher observed stress levels in females. We propose the same

conditions do not elicit a strong stress response in males due to

sexual segregation of high quality habitat selection within parks

and protected areas. Females have been found to make greater use

of sub-optimal habitats and areas in close proximity to humans to

avoid males and reduce the risk of infanticide when they are with

cubs [36,57,103–107]. Female habitat selection is also philopatric

as female offspring tend to occupy home ranges that take in part

of, or are in close proximity, to the home ranges of their mother

[59,106,108–110]. If males are dominating or excluding female

use of quality habitat in parks and protected areas the resulting

disparity in resources available to each gender could help explain

observed geographic differences in the stress levels in parks and

protected areas.

Further, in an assessment of grizzly bear body condition across

the study area, Cattet et al. [111] found bears inside mountainous

parks had poorer body condition compared to bears outside parks

and protected areas, and suggested observed patterns may be

linked to relatively low food availability in high mountain parks. If

food availability is linked to long-term stress in grizzly bears the

differences in body condition may in fact be the result of observed

differences in stress levels inside and outside of parks and protected

areas and warrants further study. While the observed spatial

associations between high stress levels and increased incidence of

habitat selection in the hypophagia and late-hyperphagia RSF

layers provide preliminary evidence of potential impacts of

competition on long-term stress, future studies explicitly consid-

ering impacts of sexual segregation and conspecific competition on

stress in grizzly bears would also be of interest.

The observed spatial patterns of long-term stress in areas with

high densities of human disturbance and activity represent a

potential grizzly bear management opportunity. Numerous studies

have proposed restricting human access may help reduce human-

induced grizzly bear mortality (e.g., [49,50]). We suggest

managing human access to grizzly bear habitat, for example by

closing roads following the conclusion of resource extraction

activities or restricting access to high quality habitat in parks and

protected areas, could lead to health benefits for individuals,

particularly females. As external environmental stressors can

negatively impact reproduction [30], the ability of females to

occupy low-stress environments with abundant food sources may

help ensure the long-term viability of populations. However,

potential physiological gains afforded by food resources associated

with anthropogenic disturbed habitats may be offset if grizzly bears

continue to experience high rates of human-induced mortality in

these areas (humans are responsible for upwards of 80% of

observed grizzly bear mortality in the area [48,49,112]).

Table 3. Mean values of the 10 most influential variables in
the total random models associated with lower, mid, and
upper quartiles of the predicted HCC levels in male and
female grizzly bears.

Variable HCC range (pg/mg)

0.16–0.45 0.46–1.62 .1.62

Males

pa 0.85 0.13 0.17

elev 2164.92 1277.83 1690.15

rd_dd 0.01 0.56 0.36

tri 33.87 10.67 21.32

dhi_cv 0.71 0.43 0.41

dhi_min 0.04 0.11 0.14

dhi_cum 6.02 11.11 10.13

cti 6.62 14.12 10.80

cc 17.22 43.66 48.76

rsf_s3 3 4 6

Females

pa 0.01 0.12 0.68

elev 940.91 1427.64 1980.69

rd_dd 0.69 0.55 0.12

tri 3.88 12.15 29.49

dhi_cv 0.43 0.53 0.65

dhi_min 0.11 0.11 0.06

dhi_cum 11.47 8.42 6.54

cblk_l 0.03 0.02 0.01

cc 47.10 39.54 30.76

rsf_s1 2 5 6

doi:10.1371/journal.pone.0083768.t003
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While one might expect habitats associated with high rates of

mortality to elicit a strong long-term stress response, human-

caused grizzly bear mortalities represent events characterized by

acute traumas and not the result of prolonged continued exposure

to stressors. Consequently, we hypothesize that observed low-to-

moderate stress levels associated with high-risk (e.g., high chance

of mortality) high-reward (e.g., food availability) habitat suggests a

willingness to risk human contact to optimize foraging opportu-

nities. Moreover, the observed stress profiles might also signal a

degree of habituation to such contact that potentially puts grizzly

bears at greater risk of mortality in low-stress environments.

Future research should consider whether observed long-term stress

levels influence the probability of grizzly bear mortality in human

influenced landscapes.

Conclusion

We have shown that the geographic dissimilarity in long-term

stress levels of grizzly bears appears to be both context-dependent

[21], and similar to northern spotted owls [20], gender specific.

Similar to black bears [46] and grizzly bears in other regions

[27,100] the availability and ability to procure resources appears

Figure 3. Geographic distribution of the predicted HCC levels from gender-specific total random forest models. Predicted HCC values
for (A) male and (B) female grizzly bears. Parks and protected areas are shown in red. Regions of non-habitat (e.g., rock and ice) are shown in grey.
doi:10.1371/journal.pone.0083768.g003

Table 4. Percent area of the bear management units (BMU) and study area classified as low, moderate, and high HCC based on the
geographic distribution of predicted male and female HCC values.

BMU

Low HCC
(0.16–0.45 pg/mg)

Moderate HCC
(0.46–1.62 pg/mg)

High HCC
(.1.62 pg/mg)

Male (%) Female (%) Male (%) Female (%) Male (%) Female (%)

Castle 2.93 6.83 95.67 58.90 0.73 33.58

Clearwater 22.17 10.22 75.92 49.34 1.76 40.61

Grande Cache 13.04 51.86 83.47 26.96 0.91 18.60

Livingstone 11.54 0.54 78.53 42.61 8.37 55.29

Yellowhead 13.04 34.37 74.60 27.95 1.30 34.77

Total study area 16.11 33.89 79.90 33.53 1.88 30.47

doi:10.1371/journal.pone.0083768.t004
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to impact spatial patterns of the modelled stress levels in Alberta

grizzly bears. Our results also reflect findings in species such as

squirrel gliders [21], ungulates [22,24], and wolves [25], where the

measured stress levels varied according to the density, distribution,

and perhaps most importantly, the nature of anthropogenic

disturbance and activities throughout their habitat. The method-

ology we present here extends an aspatial glucocorticoid metric to

a spatially local representation of potential long-term stress in

grizzly bears based on current environmental conditions. The

information provided highlights spatial variability in the long-term

stress levels of male and female grizzly bears. Future directions in

this and other wildlife systems include modelling the impacts of

individual behaviour and the effects of interaction on stress,

predicting changes in long-term stress based on future disturbance

patterns and climate change, and exploring spatial relationships

between stress and body condition. Our methods may also be

applicable in spatial analyses of point sampled stress metrics taken

from other far ranging wild animals (e.g., polar bears [113]).

Finally, while our models are specific to the grizzly bear

population in Alberta, many populations in western North

America occupy landscapes with similar environmental stressors.

Consequently, our findings may offer an indication of similar

interactions in other regions. Future species conservation efforts

should therefore attempt to better understand gender and spatial

Figure 4. Frequency distributions of predicted HCC values associated with conservation management units and habitat states.
Percent spatial coverage of predicted HCC values associated with (A – males; C – females) parks and protected areas, core conservation areas, and
secondary conservation areas, as well as (B – males, D – females) secure, sink, and non-critical habitat states.
doi:10.1371/journal.pone.0083768.g004
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based differences in the physiological response of wildlife to

landscape conditions.
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