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Abstract

Independent component analysis (ICA) is an unsupervised learning method popular in functional 

magnetic resonance imaging (fMRI). Group ICA has been used to search for biomarkers 

in neurological disorders including autism spectrum disorder and dementia. However, current 

methods use a principal component analysis (PCA) step that may remove low-variance features. 

Linear non-Gaussian component analysis (LNGCA) enables simultaneous dimension reduction 

and feature estimation including low-variance features in single-subject fMRI. A group LNGCA 

model is proposed to extract group components shared by more than one subject. Unlike 

group ICA methods, this novel approach also estimates individual (subject-specific) components 

orthogonal to the group components. To determine the total number of components in each 

subject, a parametric resampling test is proposed that samples spatially correlated Gaussian noise 

to match the spatial dependence observed in data. In simulations, estimated group components 

achieve higher accuracy compared to group ICA. The method is applied to a resting-state fMRI 

study on autism spectrum disorder in 342 children (252 typically developing, 90 with autism), 

where the group signals include resting-state networks. The discovered group components appear 

to exhibit different levels of temporal engagement in autism versus typically developing children, 

as revealed using group LNGCA. This novel approach to matrix decomposition is a promising 

direction for feature detection in neuroimaging.
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1. Introduction

Independent component analysis (ICA) is a popular unsupervised learning method 

to identify brain networks in functional magnetic resonance imaging (fMRI) studies 

(Beckmann, 2012). In fMRI experiments, the observed fMRI data represent a combination 

of neural activity and nuisance-related variation across many different source signals. 

Assuming that latent signals are statistically independent and have non-Gaussian 

distributions, ICA linearly decomposes the observed fMRI data into independent spatial 

maps and corresponding time courses. The maps related to neural activity are commonly 

called resting-state “networks.” Previous studies have used group ICA to examine 

differential levels of intrinsic engagement between neurotypical and atypical individuals, 

for example, in schizophrenia (Calhoun et al., 2009; Du et al., 2017, 2019). Group ICA 

of fMRI relies upon a PCA step that may discard low variance features. In ICA, a low 

variance feature is a spatial component that has a time course with small variance. Low 

variance features contained in the “noise” subspace in PCA may be related to neural activity, 

and in particular may exhibit differential levels of engagement in neurological disorders. In 

contrast to ICA with PCA, linear non-Gaussian component analysis (LNGCA) can extract 

low-variance features and has been successfully applied to single-subject fMRI data (Risk 

et al., 2019). LNGCA was recently extended to discover novel non-Gaussian features shared 

by multiple types of neuroimaging data (Risk and Gaynanova, 2021). Functionally related 

brain regions tend to correspond to sparse images, and these vectorized images are highly 

non-Gaussian. Hence, estimating the signal subspace by maximizing non-Gaussianity can 

offer new insights. However, most fMRI studies involve data from multiple subjects, and it is 

unclear how to extend LNGCA to such a setting.

Extending non-Gaussian matrix decomposition methods to group analyses has been 

challenging because considerable between-subject variability exists in both the spatial 

configuration and the temporal engagement of the estimated functional brain networks. 

Some approaches to ICA-based group inference model between-subject variability in the 

temporal domain while assuming spatial signals are equal across all subjects (Calhoun et al., 

2001; Guo, 2011; Eloyan et al., 2013). Models allowing subject-specific spatial deviations 

from the group components have been proposed (Beckmann et al., 2009; Guo and Tang, 

2013; Mejia et al., 2019; Du and Fan, 2013), but in practice, all of these options are preceded 

by a dimension reduction step using PCA to alleviate computational demands. Hereafter, 

when we say group ICA, we are referring to this process of performing PCA prior to 

estimating independent components for each subject.

PCA processing prior to ICA (PCA+ICA) can be problematic because principal components 

are ranked in terms of variance explained during dimension reduction. Hence, PCA+ICA 

may discard important low-variance spatial signals. As an alternative, LNGCA can 
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simultaneously perform dimension reduction and extract latent signals by non-Gaussianity 

(Risk et al., 2019). Because components are ranked in terms of how non-Gaussian they 

are instead of by how much variance they explain during dimension reduction, LNGCA is 

able to recover low variance non-Gaussian signals which would otherwise be discarded by 

PCA+ICA.

We propose group linear non-Gaussian component analysis (group LNGCA) to extract 

spatial signals from fMRI data that are common across subjects, as well as signals unique 

to each subject. The proposed model is an extension of LNGCA to multi-subject data, 

comprising two stages where the first stage applies LNGCA to each subject to extract the top 

non-Gaussian signals, and the second stage decomposes each subject’s non-Gaussian signals 

into group signals and individual signals. Compared with current group ICA methods, the 

proposed group LNGCA model has the following advantages. (1) The proposed model 

can recover low-variance group signals that may contain important biological structure by 

using subject-level LNGCA for dimension reduction instead of PCA. (2) The proposed 

model allows subject-specific spatial deviations by decomposing non-Gaussian components 

into group and individual signals at the second stage. It is hypothesized some of the 

individual components will correspond to artifacts that are unique to each subject, such 

as motion artifacts that have subject-specific spatial features. These individual components 

can also capture subject-specific deviations from group components. We also propose a new 

approach to estimate the number of non-Gaussian signals in each subject that accounts for 

the spatial correlation existing in fMRI data. Existing approaches to dimension estimation 

either assume a Gaussian model (Li et al., 2007; Beckmann and Smith, 2004; Minka, 2001) 

or ignore the spatial correlation inherent to fMRI data (Nordhausen et al., 2017a; Jin et 

al., 2017). Through simulation studies, we show that ignoring spatial correlation led to 

overestimates of the number of signals, while the proposed method achieved more accurate 

estimation.

In Section 2, we introduce the proposed group LNGCA model, its estimation mechanism 

and the proposed test of the number of non-Gaussian signals. In Section 3, we use 

simulations to assess model performance in terms of group components extraction and 

non-Gaussian signal subspace dimension estimation. In Section 4, we use group LNGCA to 

estimate components from resting-state fMRI data collected from 342 school age children, 

including 90 with autism and 252 typically developing, and we compare our results with 

those obtained from group ICA estimated using GIFT software.

2. Methods

2.1. Group non-Gaussian component analysis model

We propose a group LNGCA model for multi-subject fMRI data, which decomposes non-

Gaussian (NG) signals into group signals and individual signals for each subject. Let i = 

1, …, k index subjects, t = 1, …, T index time points, and v = 1, …, V index voxels 

(volumetric pixels). Let xi(v) ∈ ℝT  be a data vector of observed fMRI data from subject i at 

voxel v.
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2.1.1. Subject-level LNGCA model—To extract group signals, we first decompose 

observations into an orthogonal NG subspace and a Gaussian subspace for each subject. 

Specifically, the LNGCA model decomposes observation xi(v) as

xi(v) = Mi
ssi(v) + Mi

nni(v),  for v = 1, …, V , (1)

where si(v) ∈ ℝqi is a vector of mutually independent NG signals with 1 ≤ qi ≤ T, and 

ni(v) ∈ ℝT − qi is a Gaussian noise vector. The number of NG signals qi may vary across i. 

Mixing matrices Mi
s ∈ ℝT × qi, Mi

n ∈ ℝT × T − qi  satisfy that Mi
s, Mi

n  has full rank for any 

i. Here, {xi(v)}v=1,…,V are observed while {si(v)}v=1,…,V and {ni(v)}v=1,…,V are latent. We 

assume E si(v) = 0 with E si(v)si′(v) = I. Additionally, assume E ni(v) = 0 such that E xi(v) 

= 0 and ni(v) has unit variance for identifiability. In practice, data are centered by their 

sample mean followed by pre-whitening, which enforces orthogonality of NG components, 

as described in Section 2.2. We call si(v) NG signals and ni(v) Gaussian noise.

PCA+ICA projects observations into a smaller dimensional subspace spanned by the top 

principal components and extract top NG signals from that subspace. In contrast, subject-

level LNGCA directly projects observations into a smaller subspace spanned by the top NG 

signals, which are ordered by a measure of non-Gaussianity. Thus LNGCA can capture NG 

signals that have small variance that may be discarded in the PCA step in PCA+ICA. Notice 

the key difference between LNGCA and PCA+ICA is how they search for a low rank space, 

and they are equivalent if there is no dimension reduction.

2.1.2. Group-level LNGCA model—Assume there is at least one group signal. We 

further decompose si(v) into orthogonal group signals sg(v) and individual signals sI,i(v),

Mi
ssi(v) = Mi

gsg(v) + Mi
IsI, i(v),  for v = 1, …, V , (2)

where sg(v) ∈ ℝqg is a vector of mutually independent group signals with 1 ≤ qg ≤ mini 

qi, sI, i(v) ∈ ℝqI, i is a vector of mutually independent individual signals with qI,i = qi − 

qg. Group signals sg(v) are shared across all subjects. Combining (1) and (2), we have the 

complete decomposition, which we call the group linear non-Gaussian component analysis 

model (group LNGCA):

xi(v) = Mi
gsg(v) + Mi

IsI, i(v) + Mi
nni(v) . (3)

In subject-level LNGCA, the NG signals and the mixing matrix in (1), i.e. si(v) = [sg(v)′, 

sI,i(v)′]′ and Mi
s = Mi

g, Mi
I , are identifiable up to sign and permutation (Risk et al., 2019). 

Consider the matrix of subject-level components for the ith subject: Si ∈ ℝqi × V , with rows 

[sij(1), …, sij(V)] for j = 1, …, qi. Then the group components are matched rows from 

different subjects, and individual components are rows that are not equal.
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Risk et al. (2019) define an estimator and conditions for consistency in single-subject 

LNGCA when V → ∞. It follows immediately that in the group LNGCA model, the 

estimate Mi
s
 from a single-subject analysis is a consistent estimator of Mi

s. As described 

in Section 2.2, we will use the logistic non-linearity, which is consistent for most super-

Gaussian distributions. The family of consistent distributions is defined by Assumption 5 in 

Risk et al. (2019) with additional details for the logistic density in their Web Supplement 

B. A key observation is that Mi
ssi(v) can have smaller variance than Mi

nni(v), such that in 

a sample v = 1, …, V, extracting the “signal” subspace with the PCA step in group ICA 

will discard the non-Gaussian components. In our framework, this means that some brain 

components may be missed by group ICA.

In practice, we will use a singular value decomposition of the concatenated subject-level NG 

components (subspaces of ℝV ) to find the group subspace, where the size of the singular 

values characterizes the extent to which a direction of the non-Gaussian subspace is present 

across subjects; this is discussed in the next section. In applications, if a group component is 

prominent in one subgroup but reduced in another subgroup, then this can be captured with 

a group component in which the variances of the subject-specific time courses (columns 

of Mi
g) reflect differing roles, as explored in Section 4. We expect that subject-specific 

components will arise from components that are unique to a subject, such as certain types 

of motion artifacts. Additionally, subject-specific components may arise from deviations in 

spatial patterns of common resting-state networks that are unique to a subject. For example, 

in fMRI, different subjects may have similar, but not identical, default mode networks 

(DMNs) (Braga and Buckner, 2017).

2.2. Estimation

In the population formulation of group LNGCA, the decomposition for each subject 

following (3) is a re-labeling of the subject components in (1) into group and individual 

NG components. In a sample of observations, the subject-specific LNGCAs will result in 

noisy estimates of the population signals, and we propose a scalable algorithm to extract the 

group components. We summarize our estimation procedure in Algorithm 1.

In Step 1, we estimate NG signals for each subject. We first center and scale the rows 

of each subject’s T × V data matrix, take the right singular vectors, and then multiply by 

V − 1. The resulting data matrix, denoted Xi, satisfies Xi1 = 0 and 1
V − 1XiXi′ = I. This 

pre-whitening is common in ICA (Beckmann and Smith, 2004). Then the initial subject-

level NGs are estimated by finding a semiorthogonal matrix, called the unmixing matrix, 

that achieves dimension reduction by maximizing non-Gaussianity. We use the logistic 

non-linearity as our measure of non-Gaussianity with the fastICA algorithm (Hyvarinen, 

1999) modified for LNGCA because the logistic non-linearity is used in Infomax and 

performs well in fMRI (Correa et al., 2007; Plis et al., 2014). We find this algorithm works 

well for the super-Gaussian distributions found in fMRI (see simulations in Section 3), 

and it is computationally tractable and less sensitive to initializations. Our approach can be 

adapted to more flexible (but typically computationally costly) non-linearities that also allow 
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the estimation of sub-Gaussian densities, for example, ProDenICA (Hastie and Tibshirani, 

2003), if applied to other applications with sub-Gaussian distributions.

In Step 2, we construct the subspace spanned by all NG signals across subjects by 

concatenating the subject-level NGs. To estimate the group non-Gaussian subspace, we 

conduct an SVD and extract the first qg singular vectors, which is equivalent to performing 

PCA on the concatenated subject NGs. Insight into this step can be gained by viewing the 

SVD as a principal angle analysis. For ease of notation in what follows, rescale the NG 

components to have norm equal to 1 prior to concatenation. Assume observations v = 1, …, 

V from k subjects, and let Si, d
g ∈ ℝ1 × V  be the dth group component in the ith subject. In 

the concatenated NG components, this group component has multiplicity k. Then the size of 

the singular value from a group component shared by all subjects is equal to k. In practice, 

this group subspace will be an average of the information shared across subspaces. For two 

subjects, the principal angles between their subspaces are equal to arccos σd
2 − 1 , d = 1, …, 

(q1 + q2), where σd is the dth singular value and qi is the number of NG components in 

the ith subject. In the case of q1 = q2 = 1, the first right singular vector is the average of 

the NG components, and σ1
2 − 1 is the correlation (for mean centered data). The use of the 

SVD is similar to the approach in Feng et al. (2018) in which joint structure is extracted 

from multiple datasets, but here we apply the procedure to the concatenated NG signals from 

multiple subjects to obtain a subspace that is shared across multiple subjects.

We discuss how to estimate {qi}i=1,…,k in Section 3.2. Determining qG is beyond the scope 

of this work but discussed in Section 5. Notice the choice of qG is more of a practical 

consideration for large noisy fMRI data, since those data usually do not admit a clear gap 

between group and individual components. With small qG, only a small portion of NG 

signals can be estimated, but fast and accurate. With large qG, the returned components are 

likely to contain all NG signals, although with slow computation, and visual inspection is 

required to exclude noise components. We show such phenomena through simulation study.

In Step 3, we search for the orthogonal transformation of the group subspace that maximizes 

non-Gaussianity using noise-free ICA. This produces an estimate of the group components.

In Step 4, we estimate the subject-specific signal subspace as the orthogonal complement 

of the group signal subspace in the estimated NG subspace for that subject. Then we apply 

LNGCA to the subject-specific subspace to extract subject-specific NG signals.

2.3. Comparison with group ICA model and algorithm

A major difference between group ICA and group LNGCA is that LNGCA is conducted for 

subject dimension reduction rather than PCA. In simulations, we examine how this impacts 
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the estimation under different signal variance regimes. Although both algorithms use PCA 

for the group stage dimension reduction, it is performed on distinct subspaces. For group 

LNGCA, as long as the NG signals are extracted in many subjects, they will be the top 

principal components in the concatenated NG components. For group ICA, there is no such 

guarantee. An NG signal is included in the top principal components only when it has 

relatively large variance and thus is not largely discarded in the subject PCA step. Although 

one could keep a very large ratio of variance in the subject PCA step to avoid the issue, 

that would result in challenges to accurately conduct the group stage PCA (usually through 

iterative methods) due to much larger data size compared to group LNGCA. When there is 

no dimension reduction on the subject data, the group LNGCA algorithm is equivalent to 

group ICA algorithm as in Calhoun et al. (2001).

In addition to the difference in how the group subspace is defined, group LNGCA estimates 

individual signals, which is useful for examining non-Gaussian signal that is not captured in 

the group component. In contrast, group ICA discards all information not captured by the 

group components.

2.4. Test the dimension of the non-Gaussian signals subspace

To estimate the NG subspace dimension qi for each subject, recently proposed methods 

(Nordhausen et al., 2017a; Jin et al., 2017) sequentially test the dimension of the NG 

subspace:

H0
k : There are at most k NG signals . versus HA

k : There are at least k + 1 NG signals .

for 0 ≤ k ≤ T −1. Suppose the true dimension is k0. With increasing sample size, we expect a 

good test to perform as: (1) for k < k0, the power of the test for H0
k approaches one; (2) for k 

= k0, the size of the test for H0
k0 approaches prespecified α; and (3) for k > k0, the rejection 

probability for H0
k tends to be smaller than α.

Denote the p-value associated with H0
k by pk. The estimate is k = k ∣ pk ≤ α, pk − 1 > α . 

It is very expensive to test H0
k for all possible k. However, using a binary search in k, we 

can expect no more than ⌈log2 T⌉ tests for dimension T (Jin et al., 2017). The estimated 

k then relies on multiple tests, which may be problematic for large T. One may consider 

adjusting the obtained p-values using Bonferroni correction or FDR control. However, the 

sequential tests result in a set of nested hypotheses that are highly dependent in that: for 

any k1 < k2, when H0
k1 holds, H0

k2 must hold. Adjusting p-values without considering this 

special dependence structure may largely decrease the power of sequential tests and damage 

the estimated k. Thus we use the original p-values and show through simulations in Sec 3.2 

that we obtain accurate estimation of k.

2.4.1. Motivation—Suppose D(·) is some non-Gaussianity measure for a signal, e.g., 

skewness, excess kurtosis, or the Jarque-Bera statistic. For a matrix Y ∈ ℝT × V , sort 
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Y = Y(1)′ , ⋯, Y(T )′ ′ such that D(Y(1)) > ··· > D(Y(T)), where Y(t) ∈ ℝV  is a row vector of 

Y, for t = 1, …, T. In this section, we drop the subject index, but in practice, these tests 

are applied separately to each subject. We will use this sorting (rank) notation for other data 

matrices below. Motivated by Jin et al. (2017), we assume Y j1  is more non-Gaussian than 

Y j2  in terms of D(·) for j1 < j2. Consequently, under H0
k, Y(1)′ , …, Y(k)′ ′ are NG signals 

and Y(k + 1)′ , …, Y(T )′ ′ are Gaussian noise. Jin et al. (2017) proposed an algorithm to test 

H0
k based on a max-min estimator which maximizes the non-Gaussianity of k components 

while minimizing the non-Gaussianity of the (T − k) Gaussian components. The key idea is 

to extract the NG signals and Gaussian noise from the original data, then generate new data 

samples mixed from the extracted NG signals and new sampled Gaussian noise. However, 

for every generated new sample, the algorithm conducts a full rank ICA-like algorithm on a 

matrix of size V × T, which is very expensive. To overcome such computational burden, we 

choose to only sample the Gaussian noise rather than the whole data set. The computation 

time of our procedure is over 100 times faster than the approach in Jin et al. (2017).

2.4.2. Resampling test for dimension estimation—We propose an algorithm based 

on the sample distribution of the maximum component-wise non-Gaussianity, i.e. D(G(1)), 

when ICA is applied to T − k Gaussian components G. We state our method in Algorithm 2.

Now in each repetition, the ICA is implemented on a matrix with only T − k components at 

Algorithm 2 step 3(b), to extract the component SG, (1)
(b)

 with highest D(·) among orthogonally 

transformed (T − k)-variate Gaussian components. We assume that S(k + 1) shares the same 

distribution as SG, (1)
(b)

. As a result, D S(k + 1)  and D SG, (1)
(b)

 have the same distribution.

To implement our proposed algorithm, we use FOBI (Cardoso, 1989) with D(·) equal 

to kurtosis. Unlike other methods, FOBI has a closed-form solution, which makes it 

computationally scalable and avoids the need for multiple restarts. Although in theory other 

more computationally intensive methods could be used, our goal is to develop a method that 

can be applied to real fMRI data. Previous approaches without spatial correlation have found 

FOBI works well for dimensionality tests (Nordhausen et al., 2017a). Note the goal here is 

to estimate the dimensions, rather than accurate components.

2.4.3. Spatially correlated Gaussian noise—For fMRI data, the pre-processing 

steps may apply Gaussian smoothing, and interpolation steps also introduce smoothness 

(Chen and Calhoun, 2018; Coalson et al., 2018). For example, suppose G ∈ ℝ(T − k) × V

has each row generated from a Gaussian random field. Then unmixing these components 

can result in disk-like features in spurious NG components (Risk et al., 2019). As we will 

show, methods assuming independent entries in Gaussian noise can overestimate k0, and 
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consequently too large k0 cannot help achieve dimension reduction. We can account for the 

spatial autocorrelation by adjusting Algorithm 2 step 3(a).

When there is no spatial correlation, we generate row vectors Gl
(b)i . i . d .N 0, IV  for l = 1, 

…, T − k. When there is spatial correlation, we can modify Step 3(a) in Algorithm 2. 

We first specify or estimate the spatial correlation matrix Σ ∈ ℝV × V , then generate row 

vectors Gl
(b)i . i . d .N 0, Σ  for l = 1, …, T − k. In practice, we can generate random fields 

by applying smoothers to iid Gaussian data, as implemented in neuRosim (Welvaert et al., 

2011). Such modification ensures a component is only classified as NG signal when it is 

more non-Gaussian than the spatially correlated Gaussian noise.

3. Simulations: spatio-temporal signals

We evaluate the performance of group LNGCA versus group ICA (Calhoun et al., 2001) 

in a simulation study with twenty subjects. We also compare the performance of our NG 

subspace dimension test with those proposed in Nordhausen et al. (2017a). All algorithms 

are repeated with 30 random initializations. Our code is available at https://github.com/

yuxuanzhao2295/Group_LNGCA_for_Neuroimaging.

3.1. Data generation

For each of the twenty subjects, we used 3 group signals, 22 individual signals from 

gamma random fields, and 25 Gaussian noise components from Gaussian random fields. 

Example components are depicted in Fig. 1. The group signals have active pixels in the 

shape of a “1”, “2 2”, or “3 3 3” with values between 0.5 and 1 and inactive pixels as iid 

normal with mean 0 and variance 0.001. These generate mean logistic non-linearities (log 

logistic density with scale parameter equal to 3/π) equal to −1.09, −1.08, and −1.11. For 

reference, Gaussian data have mean logistic non-linearity equal to −1.43, and in our real 

data application, the 59 group components ranged from −1.36 to −0.92. Random fields (RF) 

were simulated using the R package neuRosim (Welvaert et al., 2011). For both gamma 

and Gaussian random fields, the full-width at half maximum of the Gaussian kernel, which 

controls spatial correlation, was set to 9. For the marginal distributions of the individual 

signals, we selected gamma parameters (shape parameter 0.02, rate parameter 10−4) that 

resulted in individual signals with mean logistic non-linearity ranging from −1.17 to −0.87. 

The corresponding range found in our real data application is from −1.39 to −0.82. We do 

not strictly enforce orthogonality of components, but the areas of activation in the group 

components are disjoint and the random individual components are independent, such that 

the model assumptions are approximately met. For the columns of the mixing matrix, we 

simulate AR(1) processes per subject with ϕ = 0.37, estimated from our real data application 

(detailed in the Web Appendix Section S.1.1. The scaling of the columns was chosen to 

result in variance proportions detailed below.

To control signal and noise strength, we define the subspace variance ratio (SVAR) 

among the group NG subspace, individual NG subspace, and Gaussian noise subspace. 

Fixing the subscript i, let λ1, …, λqg be the nonzero eigenvalues from the eigenvalue 
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decomposition (EVD) of the covariance matrix of Mi
gSg; μ1, …, μqi − qg be the nonzero 

eigenvalues from the EVD of the covariance matrix of Mi
ISI, i; and v1, …, vT − qi be the 

nonzero eigenvalues from the EVD of the covariance matrix of Mi
nNi. The SVAR is defined 

as ∑l = 1
qg λl: ∑l = 1

qi − qgμl: ∑l = 1
T − qiνl. We can also normalize these values by the total variance, 

and then this is equivalent to the proportion of variance from the group signals, individual 

signals, and Gaussian noise. Here, we focus on the variance ratio of the group NG subspace, 

so we designed three simulation settings corresponding to a high SVAR large ∑l = 1
qg λl , a 

medium SVAR, and a low SVAR in the group NG subspace. In the discussion that follows, 

we refer to the variance of a component as the sum of squares of the corresponding column 

of the mixing matrix.

First, we describe how we allocated the variance in a given subspace to the components in 

that subspace. For all settings, we assumed the SVAR was equal for all 20 subjects. Then in 

the group subspace, we defined a low variance component, a medium variance component, 

and a higher variance component using the 0.1, 0.5, and 0.9 quantiles of the variance of the 

group signals estimated in the real data application (15.4% : 29.8% : 54.8%, based on the 

59 group components estimated from 342 subjects). This is designed to examine whether 

signals with lower variance may be discarded by group ICA. In the individual NG subspace 

and the Gaussian subspace, we assumed all components had equal variance.

Next, we describe how we allocated the total variance to each subspace. To determine 

the high SVAR scenario, we calculated the proportion of variance in each of these 

subspaces for each subject in the real data application, wherein we estimated 59 group 

signals and 85 total NG signals with either 128 or 156 time points, see Section 4. We 

then calculated the median across subjects and re-scaled the proportions to sum to one 

∑l = 1
qg λl: ∑l = 1

qi − qgμl: ∑l = 1
T − qiνl = 33.5 % :29.9 % :36.6 % . Note this distributes the variance of 

the NG subspace formed from 59 signals to 3 signals, and thus these signals have a 

proportionately very large variance. For the low SVAR scenario, we set the variance of 

each of the group signals equal to the 0.1, 0.5, and 0.9 quantiles of the variances of the 59 

group signals. This results in a much lower variance relative to the high SVAR scenario: 

∑l = 1
qg λl: ∑l = 1

qi − qgμl: ∑l = 1
T − qiνl = 1.7%:46 % :52.3 %. For the medium SVAR scenario, we set 

∑l = 1
qg λl to be half of the sum of that in high and low SVAR scenario. Thus we have medium 

SVAR: ∑l = 1
qg λl: ∑l = 1

qi − qgμl: ∑l = 1
T − qiνl = 17.6 % :38.6 % :43.8 %.

3.2. Non-Gaussian subspace dimension estimation

We implemented our test in Algorithm 2 with spatially correlated Gaussian noise, denoted 

as FOBI-GRF, and compare its performance with tests FOBIasymp and FOBIboot from the 

R package ICtest (Nordhausen et al., 2017b). For each test, we apply a binary search to 

estimate the NG subspace dimension. For each SVAR setting, one experiment contains 20 

subjects and the experiment is repeated 40 times, thus 800 subjects in total. The true NG 
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subspace dimension is 25 for all settings. We report the results under the medium SVAR 

setting in Fig. 2. The results under the high and low SVAR settings are very similar and 

appear in Web Appendix Fig. S.2.

FOBIasymp and FOBIboot do not consider the spatial correlation, and they clearly 

overestimate the dimension. FOBIboot is a parametric bootstrap method that simulates 

Gaussian noise with iid entries. We see FOBIboot estimates almost all components as 

NG when the assumption is violated. Our test FOBI-GRF performs the best in terms of 

accuracy and stability. Sometimes our test underestimates the number of NG components, 

but as we will show in the next section, group LNGCA is still able to extract all group 

NG components. The underestimation can occur due to the event of “unmixed” Gaussian 

RF components having higher non-Gaussianity than gamma RF components. This is similar 

to the gap between signal and noise eigenvalues in principal component analysis (Zhu and 

Ghodsi, 2006). In our context, a smaller gap between the NG signals and transformations 

of the spatially correlated Gaussian signals can result in a decrease in the accuracy of 

our testing procedure. In applications, the individual components tend to correspond to 

structured artifacts or individual resting-state networks, which may be more distinct from 

Gaussian RFs than the gamma RFs used in our simulations. The choice of gamma RFs here 

is to allow computational scalability, since it is difficult to generate 22*20 individual NG 

components.

We comment here the NG subspace dimension is a challenging problem, and in particular 

is more difficult for higher dimensions. Suppose we have a fixed number of NG 

signals and linearly mix them with Gaussian components. As the number of Gaussian 

components increase, there will also be more components displaying high non-Gaussianity 

among extracted independent components. Bickel et al. (2018) showed the projection of 

multivariate Gaussian distribution can approximate any non-Gaussian distribution for large 

T, in particular, for T > V. Here, it appears that with low frequency some components 

estimated from Gaussian RFs can be more non-Gaussian than the NGs. Thus when 

estimating the NG subspace dimension k, one could consider using a higher value of α with 

increased dimension T, as the NG component can be hidden between spurious components. 

In practice, a visual inspection may suffice to identify the spurious, disc-like components 

that arise from maximizing non-Gaussianity of Gaussian RFs.

3.3. Group and individual non-Gaussian components extraction

Using the estimated subject NG subspace dimension from our test as reported in Sec 

3.2, we implement group LNGCA as in Algorithm 1 to estimate the group signals. For 

group ICA, we conducted the subject-level PCA with the number of signals selected to 

retain at least 82% of the variance (selected to be consistent with the real data application, 

detailed in Section 4) for each subject. For both group LNGCA and group ICA, we first 

examine their performance with correctly specified group NG subspace dimension qg = 3. 

After extracting group signals, we matched them to true signals using a modification of 

the Hungarian algorithm (Risk et al., 2014), and then calculated the correlation between 

matched signals, for each method respectively. For group LNGCA, we also calculate the 

correlation for 22 individual components. To be consistent when computing the correlation 
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for individual components, we implement Step 4 of Algorithm 2 with the number of 

individual components equal to 22 for all subjects. The simulation is repeated 40 times 

for each setting. The computation time for group LNGCA for each repetition is 3–4 minutes 

on a laptop with an Intel i5 3.1 GHz processor with 8 GB RAM. We report the results, 

the correlation between matched components, in Fig. 3, and the estimated signals from the 

repetition associated with the median matching error (with true signal) in each setting are 

depicted in Fig. 4.

When SVAR is high, both methods can recover three group signals with high accuracy. 

However, accuracy across methods diverges as SVAR decreases. Group ICA failed to 

recover the low variance group signal in the medium SVAR setting and failed to extract 

any group signals under the low SVAR setting, while group LNGCA was highly accurate 

under all three SVAR settings. Note that these group LNGCA estimates used the estimated 

subject-level subspaces from Section 3.2 with the estimated qi, which were often less than 

the true qi = 25 (Fig. 2). Even in these cases, the group components are accurately estimated. 

Although we do not examine the case where we deliberately mis-specify qi > qi, we expect 

similar results in that setting, since the subject-level subspace would contain the group 

signal. Also notice group ICA is better able to estimate group signals with larger variance, 

which is consistent with the fact it reduces the data dimension by signals’ variance and may 

lose low variance signals.

Overall, group LNGCA extracts most individual components with high accuracy (right 

column Fig. 3). Group LNGCA appears to occasionally miss one or two individual 

components in a subject, represented by the outliers in the boxplot. Since the individual 

components are randomly generated from gamma random fields, some realizations can be 

closer to Gaussian than others. At the same time, some linear combinations of the Gaussian 

random fields can result in non-trivial non-Gaussianity. Then these individual components 

can be missed by group LNGCA, which appear as outliers in Fig. 3. However, this is 

uncommon (< 0.2% of the 22*20*40 individual components’ correlations were less than 

0.5).

3.4. Additional simulations evaluating robustness

In Web Appendix Section S.2.1, we examine robustness to mis-specifying the number of 

group components. When qg = 4, all three group signals can still be recovered with high 

accuracy (Figs. S.3 and S.4). When qg = 2, two of the three group signals can be recovered 

with high accuracy (Figs. S.5 and S.6).

In Web Appendix Section S.2.2, we examine accuracy when we vary the number of time 

points to T = 30 and T = 70, by changing the number of Gaussian random field components. 

This is similar to changing scan duration in fMRI scans. Group LNGCA is accurate in both 

settings (Fig. S.7 and Fig. S.8).

In Web Appendix Section S.2.3, we create subject-specific deviations from the group 

components in two subjects, as detailed in Fig. S.9. Group LNGCA is able to recover both 

the group signal, which corresponds to the group feature shared across all subjects, and also 

the subject deviations, which are captured as individual components.
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4. Resting-state fMRI data example

We applied group LNGCA and group ICA to resting-state fMRI data from 342 school-

age children, ages 8 through 12 years, recruited at the Kennedy Krieger Institute (PI: S. 

Mostofsky) including 90 with autism spectrum disorder (ASD) and 252 typically developing 

(TD) controls. Resting-state fMRI was acquired during either a 5 min 20 s- or 6 min 30 s-

long scan on a 3.0 T Philips scanner using a single-shot, partially parallel, gradient-recalled 

echo planar sequence (repetition time 2500 ms, echo time 30 ms, flip angle = 75°, SENSE 

factor of 2, 3-mm axial slices with no slice gap, in-plane resolution of 3.05 × 3.15 mm 

resulting in 84 × 81 × 47 voxels). Data were registered to MNI space and smoothed using a 

6-mm FWHM Gaussian filter. Each participant’s preprocessed data were mean-centered and 

variance normalized on a voxel-wise basis. Additional details on preprocessing and motion 

exclusion criteria are provided in the Web Appendix Section S.3.1.

4.1. Subject-level and group-level dimension reduction

We applied our test in Algorithm 2 to six participants. Gaussian RFs were generated using 

the estimated FWHM of the data from 3dFWHMx in AFNI. The estimated dimension was 

65, 38, 89, 47, 73 and 83, corresponding to participants with 128 time points for first three 

participants and 156 for last three participants (detailed in the Web Appendix Section S.3.2). 

Thus the number of components varied by participant, but in general indicated the NG signal 

was contained in a lower-dimensional subspace. The test is applied to only six participants 

because it is computationally intensive on fMRI data (approximately two hours per subject, 

Web Appendix Table S.1), and we only need to get a ballpark number here.

For the subject-level PCA in group ICA, we performed dimension estimation on each 

participant’s preprocessed data using an information theoretic approach implemented within 

GIFT (Li et al., 2007), which calculates minimum description length (MDL) assuming a 

Gaussian model. The maximum of the estimated number of PCs from the 342 datasets 

was 59. Following recommendations from Erhardt et al. (2011), we conservatively chose 

to use 85 components for all subjects. This kept at least 82% of the variance in each 

subject’s data. We note that this approach retains more variance than suggested using 

GIFT’s dimensionality tests, and in this respect will make our results with group LNGCA 

more similar to group ICA. For group LNGCA, we also chose 85 NGs for all participants, 

to make fair comparison between two methods. Notice 85 is also near the maximum of our 

estimated NG dimension from the six participants.

For the group-level PCA, we retain 59 components for both group LNGCA and GIFT to 

make fair comparison. As mentioned above, 59 is the maximum estimated number of PCs 

across all subjects.

4.2. Group ICA and group LNGCA

For group ICA, participant-specific PCs were temporally concatenated and a second PCA 

was performed to extract group-level PCs. Noise-free ICA was repeated on the group-

level PCs 100 times using the Infomax algorithm (Bell and Sejnowski, 1995) and the 
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ICASSO toolbox (Himberg et al., 2004) with randomized initial conditions in GIFT. Group 

components from GIFT were labeled using ICs from (Allen et al., 2011).

For group LNGCA, we used 40 randomized initializations for each subject-level LNGCA 

and 100 in the group-level ICA. We used the logistic (Infomax) non-linearity. The main 

computational expense is the subject-level LNGCA (Step 1 in Algorithm 1). We run the 40 

random starts for each subject in parallel using 20 cores on a high-performance computing 

cluster, which takes 35–40 minutes for each subject and is not memory intensive for our 

datasets (T = 128 or 156). We performed the SVD (Step 2 in Algorithm 1) using power 

iterations on a laptop with 8 Gb of RAM. We matched the components in GIFT and group 

LNGCA using the Hungarian algorithm. The majority of components were very similar, 

with correlations greater than 0.8; twenty components had correlations less than 0.8, and of 

those twenty, five had correlations less than 0.5.

The variance of subjects’ time series corresponding to extracted group components may 

reveal different levels of intrinsic activity between children with autism and healthy controls. 

For a given subject, it represents the energy that a component exhibits. If a component is 

orthogonal to the subjects’ data, then the variance will be zero. If a component is more 

intrinsically active in children with ASD compared to TD children, then we expect the 

variance of that component to be higher on average in the former. For each estimated 

group component (59 from group LNGCA and 59 from GIFT), we applied t-tests to the 

log variance of the corresponding subject time series between two groups after controlling 

the age and sex. After adjusting the p-values for 118 hypothesis tests using FDR control, 

we found six tests were significant at alpha=0.01: ordered by their p-values, component 59 

in group LNGCA (p = 9e−5, all p-values FDR corrected), component 47 in group ICA (p 

= 2e−4), component 57 in group LNGCA (p = 3e−3), component 32 in group ICA (p = 

3e−03), component 11 in group ICA (p = 3e−03), and component 11 in group LNGCA (p 

= 6e−03). We report the log-variance of subjects’ time series of these components matched 

across methods in Fig. 5, which depicts means +/− 2SE and violin plots of the densities for 

each group.

In Fig. 6, we see that component 59 differs greatly between the two methods, component 

47 is highly similar, components 57 and 32 have some differences between methods, and 

component 11 appears similar. Component 59 is particularly poorly matched across methods 

(cross method correlation = .26); the group ICA version of this component was labeled as 

artifact, while the group LNGCA version is more easily identified as part of the DMN. The 

group LNGCA result suggests that component 59 is less intrinsically active in the ASD 

group than the TD group (Fig. 5 bottom right). Extant ASD research (Padmanabhan et al., 

2017) has implicated disruptions in intrinsic activity within the DMN, which purportedly 

contributes to ASD-associated difficulties integrating information about the self in the 

context of others. The group difference we observed was consistent across methods for 

component 47. The spatial representations of this component were very similar across group 

ICA and group LNGCA (correlation=0.91, Fig. 6 middle panel). Component 47, which 

was labeled as belonging to the frontoparietal network, was less engaged in the ASD 

group than in the TD group using estimates from both group ICA and group LNGCA 

(Fig. 5 left). This finding is also consistent with existing literature (Yerys et al., 2019) 
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implicating reduced connectivity within the frontoparietal network in children with ASD. 

The spatial representation of component 57 is moderately similar between the two methods 

(cross method correlation = .62) and also appears to be driven by regions of the DMN, 

but the group LNGCA version is slightly more left-lateralized. Consistent with the group 

LNGCA result for component 59, the log variances of the subject-specific time courses for 

component 57 suggest it is less intrinsically engaged in the ASD group compared to the 

typically developing group, as shown in Fig. 5. Component 32 contains portions of the task 

positive network in the inferior temporal gyrus, and additionally, the group ICA component 

contains prominent negative weights in the posterior cingulate cortex of the default mode 

network. The log variance in component 32 was significantly lower in group ICA but not 

group LNGCA. Arguably, the large weights in the posterior cingulate cortex highlighted in 

group LNGCA component 59 conform better with a distinct default mode network, rather 

than the combined task positive and default mode network in group ICA component 32. 

Finally, the cerebellum had large weights in component 11, and was significant in both 

methods. We also examined subject-specific (individual) components (Web Appendix Fig. 

S.10). The subject specific components include motion-related artifacts characterized by 

activation near the edge of the brain (first and third rows), as well as other scanner artifacts. 

Recall subject specific components are not part of the group ICA model.

5. Discussion

We propose a method to extract group non-Gaussian components from hundreds of subjects. 

We demonstrate in simulations that our method can extract low variance features that are 

discarded using group ICA. Our method involves a first-stage LNGCA for each subject. 

In this stage, we present a novel test of the number of non-Gaussian components in the 

presence of spatially correlated noise that improves upon methods assuming uncorrelated 

noise, which dramatically overestimate the dimensionality. We apply group LNGCA to an 

rsfMRI study and discover components that exhibit different levels of activity in children 

with ASD as compared with typically developing children. This provides an example of 

how information extracted using non-Gaussianity in group LNGCA may be relevant to 

neurological disorders. Group LNGCA component 59 explained a median of 1% (range: 

0–2%) of the variance in each participant. Despite this small variance, it had the smallest 

p-value in Fig. 5 and was not extracted by group ICA. In general, methods emphasizing 

non-Gaussianity in dimension reduction can be useful in neuroimaging studies.

Group LNGCA divides each subject’s components into group, individual, and Gaussian 

noise components. Current group ICA methods generally calculate the subject time courses 

using the group components, including back projection and dual regression, and these time 

courses can then be used to re-calculate subject versions of the group components (e.g., 

Erhardt et al., 2011). Subject-specific deviations of group components are modeled using 

random effects in hierarchical ICA (Guo and Tang, 2013). Unlike these other approaches, 

the subject-level (individual) components are orthogonal to the group components in group 

LNGCA. In our data example, the individual components include subject-level artifacts, 

and the subject-level LNGCA step appears to separate artifacts from neuronally related 

components. In theory, our algorithm can allow subject-specific deviations to be captured 

by individual components. We illustrated this in Web Appendix Fig. S.9. This is related 
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to partially shared structure, for example, as modeled in Gaynanova and Li (2019). As a 

consequence, qi (the rank of the non-Gaussian subspace for the ith subject) may not be equal 

to qg (the number of group components) plus the rank of the subject’s individual subspace. 

In our Algorithm, Step 2 averages “noisy” estimates of the group components. We suggest 

this will tend to average out subject differences and allocate those differences to individual 

components. Our data example involved large voxel sizes and spatial smoothing, which may 

reduce subject-specific deviations. Moreover, the scan times were relatively short (5.33–6.5 

minutes), and longer scans may be necessary to uncover individual differences in rsfMRI 

studies (Gordon et al., 2017). Future research should examine whether subject-specific 

deviations are captured in individual components in higher spatial resolution and longer 

rsfMRI scans.

Lower dimensional PCA in PCA+ICA can mistakenly aggregate features, as examined in 

Risk et al. (2019), although here we have compared LNGCA to PCA+ICA with relatively 

high dimensional PCA. In some respects, our formulation is more flexible since it can 

detect components unique to one subject. Our framework is related to Joint and Individual 

Variation Explained (Lock et al., 2013) and Common Orthogonal Basis Extraction (COBE) 

(Zhou et al., 2015). Individual subspaces in rsfMRI improved the prediction of behavior 

(Kashyap et al., 2019). Ideally, one would simultaneously estimate all individual and group 

signals, but this is computationally infeasible with LNGCA. We subtract the projected group 

components treating the estimated non-Gaussian subject subspace as fixed, and then conduct 

LNGCA to estimate individual components, as in Algorithm 1. Alternatively, one could 

modify Step 4 and formulate an objective function treating the group components as fixed 

while estimating the non-Gaussian subspace from the full data, which would result in a new 

estimate of the individual subspace that may improve estimation of individual components. 

These are promising directions for future research in group LNGCA.

In GIFT, there is arguably no clear guidance how to select the number of PCs for both the 

subject and group level. For the subject-level, it is often selected as many as the computation 

can afford, but not smaller than the estimated number from the MDL-based method, which 

assumes Gaussianity. In group LNGCA, our proposed test can be used to determine the 

number of components to be kept for the subject level. Determining the number of group 

components is unresolved in the group ICA literature and is beyond the scope of this work. 

Methods from JIVE could be examined to determine whether subject-level non-Gaussian 

components are noisy estimates of group components (Lock et al., 2013; Feng et al., 2018).

In our study, we use the variance of the subject-specific time course for each group 

component to summarize the participant’s brain activity. Future research should examine 

temporal dynamics, which may provide additional insights into the autistic mind. Tang 

et al. (2021) propose a Bayesian latent factor model in which the presence or absence 

of subject-specific spatial loadings (what we call components) are governed by population-

level probabilities, although applications to high spatial resolutions may be challenging. 

Their model allows the variances of the latent factors to change across time similar to 

volatility modeling of financial markets. As an alternative to working with the time series of 

locations or components, models for dynamic connectivity may use time varying correlation 

matrices between predefined regions of interest calculated for each time point using sliding 
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windows (Ting et al., 2021b) or time varying adjacency matrices calculated by thresholding 

these correlations (Ting et al., 2021a). One possible advantage of group LNGCA is that 

it allows a study-specific estimation of voxels that co-activate, which are described by the 

non-Gaussian components. This can be especially useful in studies with children, such as 

ours, since regions of interest defined using conventional atlases are based on adult brains. 

The time courses of the group LNGCA components could then be utilized to generate the 

connectivity matrices and input into the aforementioned models of dynamic connectivity.

Lastly, our application to resting-state fMRI may be a conservative illustration of the 

difference between group ICA and group LNGCA. We chose 85 PCs and 85 NGs for 

group ICA and group LNGCA, respectively, which is higher than suggested by GIFT’s 

criterion, and hence is higher than would be used in many neuroimaging studies. Even 

with this conservative approach, we find important differences in resting-state networks. 

Most notably, the component 59 showed significantly greater activity in the ASD versus 

typically developing group in group LNGCA, but these differences were not detected using 

the matched component from group ICA. We hypothesize that greater dimension reduction 

in the subject-level analyses would lead to larger differences in the estimated resting-state 

networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Simulated non-Gaussian and Gaussian components. First row depicts 3 group NG signals. 

Second row depicts 3 (of 22) individual NG signals. Last row depicts 3 (of 25) Gaussian 

noise components. Each component is a 33 × 33 image corresponding to V = 1089.
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Fig. 2. 
Estimated non-Gaussian subspace dimension across 800 subjects under medium SVAR 

setting. The significance level α = 0.05 Dashed line indicates true dimension 25. The most 

frequently selected dimension using our test, FOBI-GRF, corresponds to the true dimension. 

Although the test underestimated the dimensions in many simulations, this was due to 

possibly missing individual components, while it always retained the group components, as 

described in Section 3.3.
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Fig. 3. 
Correlation between estimated components and their corresponding true components. The 

plot for individual components is over all 22 individual components in 20 subjects across 

all 40 repetitions (17, 600 in total). The correlation on three group components under all 

settings for group LNGCA concentrates at a high correlation value with vanishing variance. 

The percentage of extracted individual components with low correlation (< .5) is below 

0.2% for all SVAR settings.
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Fig. 4. 
The estimated group components from a representative simulation (median matching error) 

when qG = 3. Left three columns display results from group LNGCA, while right three 

columns display results from group ICA. For each method, the allocated variance increases 

from left to right among three signals. Three rows represent high, medium and low SVAR 

settings respectively, from top to bottom.
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Fig. 5. 
Five components with significantly different log variance between ASD and TD children. 

The corresponding spatial maps are shown in Fig. 6. 1) Group LNGCA component 59 (p = 

9e−5, all p-values FDR corrected), its matched group ICA component 59 is not significant 

(p = 0.1); 2) group ICA component 47 (p = 2e−4), its matched group LNGCA component 

47 is also significant (p = 0.01); 3) group LNGCA component 57 (p = 0.003), its matched 

group ICA component 57 is not significant (p = 0.4); 4) group ICA component 32 (p = 

0.003), its matched group LNGCA component is not significant (p = 0.6); 5) group ICA 

component 11 (p = 0.003), its matched group LNGCA component is also significant (p = 

0.006). Horizontal line marks the mean across all children.
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Fig. 6. 
Comparison of group LNGCA (left) and matched group ICA components (right) associated 

with the five most significant ASD versus TD differences in log variance. References to 

significance and the direction of effects are from Fig. 5. Color bars are based on the second 

and ninety-eighth percentiles for the positive and negative values of each component. Top 

to bottom: Component 59: Group LNGCA characterizes the default mode network while 

the matched group ICA component may be related to motion (high activation near the 

edges), and significantly lower engagement in ASD than TD in log variance is only observed 

for group LNGCA (Fig. 5). Component 47: For both methods, this component is the 

frontoparietal network and is significantly less engaged in ASD vs TD children. Component 

57: Contains portions of the default mode network for both methods but is more left-

lateralized for group LNGCA, and we only observe significantly lower ASD engagement 

versus TD for group LNGCA. Component 32: Large weights in the inferior temporal 

gyrus from the task positive network in both methods, and the group ICA component also 

contains large negative values in the posterior cingulate cortex in the default mode network, 
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including portions that were allocated to component 59 by group LNGCA. Significantly 

lower engagement in ASD is observed in group ICA but not group LNGCA. Component 11: 

Includes portions of the cerebellum and has significantly greater engagement in ASD in both 

methods. (For interpretation of the colors in the figure(s), the reader is referred to the web 

version of this article.)
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