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Abstract: Ischemic brain injury and Alzheimer’s disease (AD) both lead to cell death in the central
nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack
of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast
the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of
these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative
disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the
common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway
as a significant factor in the cell fate determination and cell survival in the diseased adult CNS.
Finally, we summarize the interesting findings that may improve or complement the current sparse
and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in
regenerative medicine.
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1. Introduction

Neuropathologies such as cerebral ischemia and Alzheimer’s disease (AD), negatively
influence the lives of a large number of people worldwide [1,2]. They both affect the
correct functioning of the central nervous system (CNS), and recently a plethora of links
between brain ischemia and AD have been identified. Among others, they also share
several environmental risk factors, such as physiological aging and unhealthy lifestyle.
Additionally, they are characterized by common pathological processes such as dysreg-
ulated expression of Alzheimer-related genes, neuroinflammation, reactive gliosis, and
aberrant mitochondrial function, which all lead to neurodegeneration [3,4]. Therefore, it is
crucial to study the processes that occur in both CNS pathologies to reveal potential new
treatments for them. In this review, we focus on the pathophysiology of cerebral ischemia
and AD, with their impact on CNS functioning, and summarize current knowledge about
ischemic injury to improve understanding of the onset and the course of AD. Moreover,
we introduce the Wnt signaling pathway, an important player in both ischemia and AD, as
a possible field of interest in pursuit of new therapeutic targets to cure neurodegenerative
diseases. Finally, we summarize the ongoing efforts that attempt to slow, stop, or even re-
verse the progression of these neuropathologies. Overall, we believe that a comprehensive
investigation into cerebral ischemia may lead to the development of a treatment for AD
patients, that overcomes the neurological problems that accompany the eventual loss of
cells associated with the disease.
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2. Ischemic Brain Injury

Cerebral ischemia is one of the leading causes of death and adult disability world-
wide [5]. It manifests through a number of symptoms that differ based on the type and
localization of the injury: from transient monocular visual loss, hearing loss, vertigo, and
dizziness, to difficulty speaking and sensory or motor symptoms affecting the limbs and
face [6]. Ischemic brain injury is caused by a reduction in the blood flow, typically due to
atherosclerotic disease, head trauma, or cardiac arrest, which then results in oxygen and
glucose deprivation of the brain tissue. The sudden loss of blood circulation in cerebral
ischemic injury can be restricted to a small area of the brain (focal cerebral ischemia (FCI)),
or it can affect the whole brain parenchyma (global cerebral ischemia (GCI)) [7]. Global
cerebral ischemia is characterized by the blood-brain barrier (BBB) disruption, cellular
swelling, neuronal death, and by numerous processes leading to overall changes in the
extracellular matrix, cellular morphology and behavior [8]. On the contrary, focal cerebral
ischemia starts with locally reduced blood flow and spreads through the adjacent brain
regions. Based on the functional studies, two distinct areas in the injured nervous tissue
were described: the ischemic core and the penumbra. In the ischemic core, the blood
flow is severely reduced and necrotic cell death occurs due to the total breakdown of
homeostasis [9,10]. This area is surrounded by structurally intact tissue with impaired
functions, the penumbra [9–11]. The cells in the penumbra are unable to maintain their
electrical activity; however, their energy supply is partially preserved, which is sufficient
for their survival. This area can be spared if the blood flow, together with the oxygen
supply, is fully restored; the permanent damage is then proportional to the duration of the
blood circulation loss. Alternately, the ongoing chemical processes in the cells result in the
blending of the penumbra with the ischemic core within the hours and days following the
ischemic injury [9,10,12,13].

The insufficient blood flow in the penumbral area forces the glial cells, such as astro-
cytes, to undergo numerous changes and to become reactive [14]. Reactive astrocytes have
a common feature of the high expression of glial fibrillary acidic protein (GFAP). In the
penumbra, astrocytes that become reactive change their morphology and functions; their
processes elongate and point towards the ischemic core and, in general, the cells become
hypertrophic with an increased diameter and volume of highly branched processes [15].
Aside from the morphological changes, the functions of reactive astrocytes are also altered.
Reactive astrocytes participate in the formation of the glial scar, which separates the is-
chemic core from the relatively healthy nervous tissue surrounding the ischemic lesion [16].
Moreover, reactive astrocytes participate in the removal of neuronal, and even immune cell
debris from the damaged tissue. The ability to enwrap and engulf detrimental particles,
also known as phagocytosis, is usually credited to microglia, the resident immune cells of
the CNS; nevertheless, ischemia causes molecular changes in astrocytes that enable them
to participate in these “cleaning processes”. However, it is worth mentioning that they
act slower and with lower efficacy than microglia [17]. Like astrocytes, microglia reach
an activated state in response to ischemic brain injury. In the early stages of ischemia,
they display the so-called M2 phenotype; if this phenotype is also maintained in the later
stages, microglia protect against neuronal damage. On the other hand, as the pathology
progresses, M2 microglia turn into M1 microglia, and the latter have an opposing effect,
contributing to neuronal damage and cell death [18–20].

Within the ischemic tissue, a set of chemical processes is triggered. This relay is called
the ischemic cascade and it begins with energy depletion, due to oxygen and glucose
deprivation. Since the energy production for the brain is highly dependent on oxidative
phosphorylation and glycolysis, the decreased supplies of oxygen and glucose cause
the acute failure of the adenosine triphosphate (ATP)-dependent transporting systems,
and lead to the disruption of ion homeostasis. The ionic imbalance causes spreading
depolarization in neurons and glial cells, which occurs within minutes following ischemic
injury [10–12,21]. Furthermore, the insufficient supply of oxygen activates anaerobic
glycolysis and leads to the accumulation of lactate in the ischemic nervous tissue and
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the cerebrospinal fluid (CSF), where it contributes to secondary neuronal damage [22].
At the same time, spreading depolarization causes the dysfunction of voltage-dependent
calcium (Ca2+) channels, strongly increases the intracellular levels of Ca2+, and results in
the release of glutamate and other excitatory amino acids into the extracellular space [7,12].
In addition, cerebral ischemia and subsequent reperfusion cause the profound generation
of reactive oxygen species (ROS) in mitochondria, which is stressful for most cells, and it
therefore contributes to the damage of the whole brain tissue [23]. Ischemic brain injury
leads to massive cellular damage, resulting in the apoptotic and necrotic cell death of
different cell types, and to the development of brain edema [24–26].

3. Alzheimer’s Disease

Alzheimer’s disease is a serious neurodegenerative disorder that primarily affects
the memory and cognitive functions and is the cause of 60–80% of all dementia cases
in the elderly [27]. Based on the recent meta-analyses, the prevalence of the disease is
approximately 1–3% in the 65–74 age group, 7–17% aged 75–84 and 22–32% in people over
85 years of age, and this is expected to almost double every twenty years [28–30]. These
numbers suggest that AD is a disease in which age plays a major role. Worldwide, the
average prevalence of the disease is between 5% and 7%, but there are differences between
countries and continents [31–33], which is mainly explained by different living standards,
quality of health care, and overall life expectancy [34,35]. Since AD is a disease that mainly
affects the elderly, its incidence correlates with the life expectancy of the population. As the
life expectancy is higher for women than for men [36], this is a likely explanation for the
slightly increased prevalence and incidence in women, compared to men [27,28]. Diagnosis
consists of demonstrating the cognitive or behavioral symptoms, or functional decline, and
excluding dementia from other causes. This is done by a combination of neuropsychological
tests, laboratory tests, genetic analyses, and imaging methods, namely magnetic resonance
imaging (MRI) and positron emission tomography (PET). Laboratory tests are used to
determine AD-specific biomarkers, such as amyloid β (Aβ) and tau protein, in the CSF or
plasma. The MRI analysis reveals specific cerebral atrophy, mainly in the hippocampus and
the medial temporal lobe, and the enlargement of the ventricles [37,38]. The PET imaging,
in combination with specific pharmaceutical tracers, provides the detection of characteristic
protein aggregates [39].

Two forms of AD have been described based on inheritance: familial (FAD) and
sporadic (SAD) form [40]. The very rare (less than 5%) FAD occurs in younger individuals
and is associated with mutations in causal genes such as amyloid precursor protein (APP)
and presenilins 1 and 2 (PSEN1, PSEN2). The SAD is more common and is caused by a
set of different factors including genetic predispositions and environmental risk factors.
The most important genetic factor is a member of the apolipoprotein E (ApoE) family,
namely the ApoEε4 allele. The role of ApoE in the AD pathology is related to the impaired
clearance and oligomerization of Aβ, with its subsequent accumulation in the brain [41–43].
The non-genetic risk factors include metabolic and cardiovascular disorders, immune
system dysfunction, infectious diseases, head injury, exposure to metals, or psychiatric
disorders [44,45].

The formation of extracellular amyloid plaques and intraneuronal neurofibrillary tan-
gles (NFT), is considered to be the primary feature of AD. These structures result from the
abnormal aggregation of misfolded Aβ proteins, and the phosphorylated form of the tau
protein. In the area of plaques, neurodegeneration, astrogliosis, and microglia activation
occur. The Aβ protein is also deposited in the blood vessels, where it causes amyloid
angiopathy [46]. To some extent, the overproduction of Aβ and tau may be successfully
regulated by phagocytosis and the proteases activity, or by clearance via the perivascular
circulation and the glymphatic system. The defective clearance is considered to be one of
the main causes of SAD [47,48]. Recent studies indicate that some Alzheimer’s-related brain
changes, including Aβ plaques and NFT, are present in healthy aged people who never de-
velop any clinical symptoms; however, it seems that only when they occur simultaneously,
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and are supported by other risk factors, AD may manifest [49–51]. The phosphorylated tau
directly affects the internal cell processes and is responsible for neuronal dysfunction and
cell death. Tau phosphorylation can be triggered by Aβ binding to neuronal receptors, and
by the activation of tau kinases that modify the protein at specific residues [52–54]. The Aβ

protein is a universal ligand that can bind to various receptors in different cell types and it
therefore activates the processes that ultimately lead to changes in the neuronal metabolism,
mitochondrial and synaptic function, inflammation, and neuronal loss, which results in
dementia. The synaptotoxic effect of Aβ is most likely activated in several different ways.
It includes the partial block of postsynaptic glutamate N-methyl-D-aspartate receptors
(NMDARs) due to the internalization or desensitization, resulting in weakened long-term
potentiation (LTP) and facilitated long-term depression (LTD) [55–57]. Additionally, the
activation of the α7 nicotinic acetylcholine receptors (α7-nAcChRs), metabotropic glu-
tamate receptors (mGluRs), or perisynaptic NMDARs results in the LTD facilitation via
calcineurin-STEP-cofilin, mitogen-activated serine/threonine protein kinase p38 MAPK
(p38 MAPK), and glycogen synthase kinase 3β (GSK3β) signaling pathways [55,58,59].
Furthermore, some other receptors that are likely to interact directly with Aβ, and affect
dendritic spine loss, synaptic dysfunction, and actin depolymerization, have been described
(e.g., cellular prion protein, ephrin receptors, and p75 neurotrophin receptor) [60]. The
Aβ protein is produced mainly, but not exclusively, in neurons from APP via the activity
of β- and γ-secretase. Importantly, the product is a mixture of variants differing in their
length, solubility, and biological and toxic properties. The most common variant in the
healthy tissue and in the tissue affected by AD is Aβ40, while in AD the Aβ42 variant
predominates. Recent results suggest that it is not amyloid plaques, but small soluble
oligomeric structures such as Aβ oligomers that bind to the receptors in the cell membrane,
and thus hinder cell signaling and other cellular functions [61–63]. Additionally, it has
been shown that they affect synaptic plasticity [64] and cognitive functions [57], following
the implantation into experimental animals, and these findings coincided with the onset of
the symptoms in the AD model [65].

Although for several years research on AD has been mainly focused on the events
leading directly to neurodegeneration, and has overlooked the function of other cell types,
it is now clear that the pathology of AD is a complex process that not only includes changes
in the distribution, function, and interactions among neurons, astrocytes, and microglia,
but also other cell types, such as oligodendrocytes or monocytes.

In the healthy organism, microglia function as protective cells that contribute to the
maintenance of the brain homeostasis. Due to their ability to phagocytose, they scavenge
waste products, excess or dead cells, and infectious agents. They are also able to phagocy-
tose synapses in a process called synaptic pruning, in which they remove dysfunctional
synapses and thus take an active part in the remodeling of the synaptic circuits [66–68].
In pathology, microglia become reactive and they usually occur in two phenotypes, one
produces pro-inflammatory factors while the other, the protective one, produces anti-
inflammatory cytokines and neurotrophins. In AD, microglia are recruited to the site of
neurodegeneration by molecules released by neurons (fractalkine), as well as by astrocytes
(glia-derived neurotrophic factor) [69–71]. The recruited microglia become activated, and
they transform into inflammatory mononuclear phagocytes; these then negatively affect
the neuronal function via several different mechanisms from the phagocytosis of axonal
projections, through complement-mediated lysis, to the cytokine-induced neuronal damage.
In AD, microglia typically produce pro-inflammatory cytokines, such as tumor necrosis
factor alpha (TNFα), interleukins (IL1β, IL1α, IL6), and interferon γ (IFN-γ), chemokines,
growth factors, and nitric oxide (NO), a typical marker of inflammatory activation [72–74].
The production of IFN-γ, TNFα, and IL1β, in turn triggers astrocyte proliferation and
activation [75,76]. In addition, microglia lose their ability to phagocytose Aβ with age,
which also contributes to their impaired clearance from the brain tissue. Two genes, which
are among the risk genes for AD, most likely play a role in the process of the uptake of
Aβ by microglia. The triggering receptor expressed on myeloid cells 2 (TREM2), is a trans-
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membrane receptor that has been shown to mediate microglial fagocytosis and activate the
anti-inflammatory cytokine profile [77], while myeloid cell surface antigen CD33 regulates
innate immunity [78].

Astrocytes are, under physiological conditions, homeostatic cells with a variety of
protective, supportive, and nutritional functions. Via numerous processes, they contact
and modulate neuronal synapses and form glia limitans of the BBB. In AD, astrocytes are,
similar to microglia, attracted to the place of neurodegeneration by C–C motif chemokine
ligand 2 (CCL2) and Aβ, produced not only by neurons and microglia, but also by activated
astrocytes [69,70,79,80]. The attracted astrocytes become reactive, as their morphology
and functions are altered. Morphological changes include the shortening of processes and
the reduction of branching, which can result in impaired metabolic support and synaptic
control. In return, reactive astrocytes produce increased amounts of chemokine ligands
such as CCL3, CCL5, CXCL10, which attract and activate microglia. Astrocytes contribute
to the overproduction of Aβ in several ways. Firstly, they produce exosomes that contain
excessive amounts of APP and β-site APP-cleaving enzyme 1 (BACE1), which are then
taken up by neurons, leading to the enormously increased Aβ42 production [81]. Sec-
ondly, reactive astrocytes themselves produce increased amounts of Aβ [76]. Additionally,
since astrocytes participate in the Aβ clearance through their aquaporin 4 (AQP4) water
channels, expressed on the processes surrounding cerebral vessels, changes in the AQP4
expression and polarization on astrocyte processes are likely to contribute to the impaired
Aβ clearance [82–84]. Finally, the processes of astrocytic internalization and degradation
of Aβ are malfunctioning, or at least limited, in AD [85]. One of the basic functions of
astrocytes is to maintain glutamate homeostasis. Most extracellular glutamate is taken up
by astrocytes via excitatory amino acid transporters (EAATs). Glutamate is then converted
to glutamine, by glutamine synthetase (GS) and shuttled back into the neuronal presynap-
tic terminals in the process called the glutamate-glutamine shuttle. If this mechanism is
impaired, neuronal NMDARs are overstimulated and synaptic dysfunction ensues. In AD,
a decreased expression of both glutamate transporters, glutamate transporter-1 (GLT-1)
and glutamate aspartate transporter (GLAST) has been observed in the immediate vicinity
of amyloid plaques, which resulted in decreased glutamate clearance [86]. The roles of
astrocytes in AD are summarized in more detail in [87] and [88]. Glial cells that are rather
neglected in connection with AD, are the cells of the oligodendroglial lineage. Myelin
loss has been reported in patients with AD, resulting in a progressive disconnection of
neural networks [89]. An increased proliferation of oligodendrocyte precursor cells (OPCs)
has been observed in a mouse model of AD, indicating the activation of the reparative
processes. However, a similar reaction was not observed in AD patients [90]. Interestingly,
OPCs can also phagocytose Aβ, and thus contribute to its clearance [91].

4. Common Features of Ischemic Brain Injury and Alzheimer’s Disease

Initially, it might appear that cerebral ischemic injury and AD are two completely
different disorders of the CNS. However, the last decades of research have revealed that they
not only begin at “similar predispositions”, but that they also share a common journey, with
a final destination at “cell death”. Recently, new observations have been made, unveiling
parallels in the pathophysiology of brain ischemia and AD, and their contribution to the
accumulation of Aβ peptide and subsequent neuronal death. Moreover, growing evidence
suggests that brain ischemia may be implicated in the etiology of AD [92].

Genetic and environmental predispositions represent a substrate for CNS disorders.
Ischemic brain injury and AD share several common risk factors; however, they have little in
common when it comes to genetic predispositions. About 70% of the risk of developing AD
is attributed to genetics. Mutations associated with the disease are predominantly identified
in the genes for APP, PSEN1, PSEN2, and ApoE [93]. On the other hand, recent studies
have reported a long list of candidate risk alleles for stroke. The most promising genes
were involved in neuroinflammation (tetraspanin 2), atherosclerosis (histone deacetylase
9), and lipid metabolism (ApoE, predominantly associated with hemorrhagic stroke);
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however, no risk alleles have been conclusively approved so far. This could be explained
by the probable multifactorial nature of the majority of stroke cases, with combined genetic
and environmental risk factors of minor influence [94,95]. Therefore, in our search for
common onset factors of cerebral ischemia and AD, it is more advantageous to assess the
environmental factors.

One of the factors that increases the susceptibility of the organism to diseases, and
triggers the pathophysiology, is physiological aging. This risk factor dramatically reduces
the lumen and increases the fibrosis of blood vessels [96], which, together with an age-
dependent decrease of brain ischemic tolerance, predetermine older age as one of the risk
factors for brain ischemia [97]. The age-dependent vascular changes are also a probable
pathogenic contributor in age-related dementia such as AD [98]. The aging of the human
brain as a reason for developing dementia can be substantiated by the fact that a normal
brain weight is approximately 1300 g, while the average brain weight of 100-year-olds
is under 1100 g [99]. Another recent finding comes from the research field of glial cells.
Habib et al. [100] identified a population of disease-associated astrocytes in a murine model
of AD, while similar cells were also found in aged wild-type mice, as well as in the aging
human brain.

Another significant environmental risk factor in the development of cerebral ischemia
and AD is an unhealthy lifestyle, such as an imbalanced, high-fat diet, poor physical
activity, and smoking. For example, dietary and lifestyle interventions may mitigate the
aging effects of ApoE4, an allele that elevates the risk of age-related disorders of the arteries
and the brain. On top of that, this allele is associated with glucose dysregulation and body
weight, which further increases the risk of neurodegeneration [101]. Furthermore, countless
studies have been conducted to assess the relationship between smoking and stroke, and
the data clearly show that smokers have an overall increased risk of stroke by ~92%, when
compared to non-smokers. Importantly, even passive smoking increases the overall risk
of stroke by ~45% [102]. Moreover, a higher AD prevalence among smokers has been
identified, which may be explained by the fact that cigarette smoke components interact
with Aβ, and thus promote its aggregation [103]. A great number of these environmental
factors are modifiable and, to prevent the complications associated with cognitive decline
or to improve quality of life, protective measures such as a healthy lifestyle should be
taken [93].

In addition to the above-mentioned risk factors, brain ischemia and AD share several
processes and mechanisms that lead to the loss of cells and the malfunctioning of the CNS.
One of the findings that connect brain ischemia and AD is the dysregulated expression
of Alzheimer-related genes upon ischemic injury, which makes stroke itself a risk factor
for late-onset of SAD [104,105]. Recent research clearly indicates that post-ischemic brain
injury is associated with the deposition of folding proteins such as Aβ and tau, and
that cerebral ischemia may be the triggering event of AD [106]. Initial, focally localized
ischemic episodes may spread to neighboring parts of the brain parenchyma, causing
ischemic degenerative changes that eventually turn into post-ischemic dementia with
the Alzheimer’s phenotype. A more profound accumulation of neurotoxic APP, and
the repressed recovery of neuronal growth-promoting microtubule-associated protein
1B (MAP1B) following FCI in aged rats, further suggested that brain ischemia may play
a prominent role in the etiology of AD [107,108]. Coherently, following GCI, APP is
predominantly stored in the hippocampus, the region of the brain most affected by AD [109].
Similarly, a significant accumulation of Aβ peptide and ApoE was identified in a mouse
model of cerebral hypoperfusion, as well as in ischemic patients, indicating a possible novel
therapeutic strategy for AD in the prevention of ischemic insults [110,111]. Following GCI,
an over-expression of APP caused a subsequent increase in the production of Aβ peptide,
which in turn promoted vascular dysfunction and degenerative changes in the function
of surviving neurons and the BBB, eventually leading to post-ischemic dementia with
Alzheimer’s phenotype [112]. The ischemic BBB may trigger the accumulation of neurotoxic
molecules such as phosphorylated tau protein, causing the formation of neurofibrillary
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tangles and thus interfering with the proper microtubule functions in neurons [113]. This
has also been observed in the hippocampal CA1 region of the rat [114]. Additionally,
the AD-associated proteins were not only identified in neurons, but also in glial cells.
Upregulated Aβ peptide was detected during reactive astrogliosis in the glial scar [112].
More specifically, brain ischemia temporarily induced Aβ over-expression in the cytoplasm
of reactive astrocytes, with peaks at seven days and six months after reperfusion [115].
Moreover, GCI is defined by delayed neuronal death in specific regions of the brain such
as the CA1 region of the hippocampus, and by reactive gliosis [8,116]. Interestingly,
the potential role of glial cells as targets for neuroprotection has been revealed, since it
was disclosed that the apoptosis of astrocytes contributes to the pathogenesis of AD and
several other degenerative disorders [117]. The role of glial cells in brain ischemia and
AD, corroborates another shared feature of the two CNS disorders. Neuroinflammation
and reactive gliosis are both associated with Aβ peptide storage in AD [115]. Similarly,
glutamate-related excitotoxicity, together with high levels of TNFα, are responsible for
inflammatory stimulation in brain ischemia [118], and together with glial activation and
proliferation [8,119], these aspects resemble those found in AD. The progression of AD and
brain ischemia are both characterized by the activation of glial cells and the upregulation
of neuroinflammatory signals [120], which may even persist two years after ischemia-
reperfusion brain injury [121]. Additionally, NG2 glia, an abundant population of glial
cells in the adult mammalian CNS, are capable of generating reactive astrocytes in the
lesioned brain [122]. Nevertheless, NG2 glia proliferate and only transiently differentiate
to astrocytes upon severe insults to the CNS, such as brain ischemia [123–125], while
only a negligible fraction of NG2 glia expresses GFAP, a marker of reactive astrocytes, in
chronic types of CNS injuries such as AD [124]. Similarly to cerebral ischemia, not only
gray but also white matter of the adult brain is affected by AD. Amino acid glutamate
is necessary for oligodendrocyte differentiation and maturation; nevertheless, aberrantly
elevated levels of this neurotransmitter under ischemic conditions lead to intracellular Ca2+

accumulation and mitochondrial dysfunction. This resulted in white matter injury in rats
and mice [126]. Despite the belief that AD is only responsible for pathological changes
in gray matter, degenerative abnormalities in white matter were also identified. The
observed degeneration of oligodendrocytes, compensated by a higher incidence of NG2 glia
(also known as OPCs), was associated with markedly decreased amounts of myelin basic
protein, myelin proteolipid protein, and cyclic nucleotide phosphohydrolase, all indicating
demyelination [127]. Moreover, the crosstalk between the dysfunctional mitochondria
and the endoplasmic reticulum is disturbed in cerebral ischemia and AD, interfering with
proper energy metabolism, and Ca2+ and lipid homeostasis, and increasing inflammation
and autophagy [128]. The selective degradation of damaged mitochondria by autophagy
is called mitophagy. This mechanism is vital for maintaining mitochondria homeostasis
and has been related to ischemic injury [129,130] as well as neurodegenerative diseases
including AD [131]. Interestingly, it has been disclosed that mitophagy inhibits Aβ and
tau pathology, reversing memory impairment and preventing cognitive deficits in animal
models of AD [132]. Therefore, mitophagy may represent a viable therapeutic intervention.

The ability of astrocytes to respond to pathological stimuli, together with the function
of glutamate transporters, is compromised in the aged hippocampus [133]. As stated above,
ischemia triggers glutamate excitotoxicity that is characterized by a cell membrane depolar-
ization, Ca2+ overload, and extracellular accumulation of glutamate. These processes are
accompanied by the formation of free radicals, oxidative stress, edema, inflammation, and
the loss of synapses [7], and may cause cell death during various brain pathologies [134].
In AD, synaptic glutamate NMDARs promote cell survival, while extrasynaptic NMDARs
initiate cell death and thus contribute to the etiology of the disease [135]. Moreover, fol-
lowing the accumulation of abnormally folded Aβ protein, an early synaptic dysfunction
was observed [136]. Additionally, Kulijewicz-Nawrot et al. [137] disclosed a reduced ex-
pression of GS, an astrocyte-specific enzyme that converts glutamate to glutamine, in a
triple-transgenic mouse model of AD (3xTg-AD). This decrease compromises glutamate
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homoeostasis, which may result in failures in synaptic connectivity, leading to deficient
cognition and memory. Therefore, the use of NMDARs antagonists such as memantine or
dizocilpine (also known as MK801), might represent a new treatment for AD [86,138].

Another common feature of cerebral ischemia and AD is that they afflict specific CNS
structures. A cell type highly susceptible to global ischemic injury is the CA1 pyramidal
neuron of the hippocampus [139]. This region is also preferentially related to brain atrophy
and memory deficits observed in the elderly diagnosed with AD [140]. Besides the hip-
pocampus, another brain structure that undergoes harmful age-related changes is the BBB.
This structure forms a physiological interface between the brain parenchyma and the vascu-
lature. In health, it effectively mediates the exchange of vital substances in the CNS, while
preventing the influx of detrimental solutes [141]. In cerebral ischemia, its disruption and
subsequent increased permeability are the critical pathological processes compromising
normal neuronal functions. As a result, dysregulated water and ion homeostasis leads to
cerebral edema, and infiltrating leukocytes aggravate inflammatory responses commenced
by residing microglia [142,143]. Additionally, it has been proposed that together with
the selective neurodegeneration of vulnerable neurons, chronic changes in the BBB may
accelerate the progression of the ischemic brain tissue pathology leading to post-ischemic
dementia [112]. Moreover, traumatic brain injury (TBI) has been identified as a predispos-
ing risk factor for AD and cerebral ischemia [144]. Alterations in the BBB permeability after
TBI lead to the invasion of immune cells and, more importantly, to the accumulation of
aggregation-prone molecules that are implicated in the progression of neurodegenerative
diseases with dementia [145]. Transient receptor potential cation channel subfamily V
member 4 (TRPV4), was found to be one of the therapeutic targets for TBI [146]. Impor-
tantly, water channel AQP4 and ion channel TRPV4, are expressed on astrocyte endfeet and
regulate water and ion fluxes through the walls of blood vessels [147,148]. Interestingly,
an increased expression of both channels in astrocytes following cerebral ischemia was
observed [149,150], while alterations in their distribution were also confirmed during aging
and AD progression [151,152]. Therefore, a better understanding of the pathophysiological
roles of the AQP4 and TRPV4 channels is vital for pursuing new therapeutic strategies.

To emphasize, it is crucial to identify where brain ischemia and AD go their separate
ways and where their paths cross. Indeed, these reunions of the two runaways from the
normal, physiological functioning of the CNS are of great importance, since these “cross-
roads” (Figure 1) may help us decipher what is important and what might be useful for the
prospective therapeutic purposes. Moreover, all cellular processes are largely dependent
on intrinsic and extrinsic molecular signals, such as growth factors or various components
of cellular signaling pathways. On top of that, it is important to realize that these molecular
inputs regulate cellular processes not only in health, but also during the pathological states
of the CNS [125,153]. There are several cellular signaling pathways that may represent such
“crossroads”, connecting brain ischemia and AD; recent research has indicated candidates
such as Notch, signal transducer and activator of transcription 3 (Stat3), or Wnt signaling.
Numerous studies have linked mutations in Notch 3 receptor to progressive disorder cere-
bral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy,
the most common form of hereditary stroke. Notch signaling is also implicated in learning,
synaptic plasticity and neurogenesis, as well as in the modulation of APP and the produc-
tion of Aβ in neurons, all processes dysregulated in the progression of AD [154,155]. Stat3,
on the other hand, has been associated with reactive astrogliosis in stroke and AD. The
upregulation of this pathway has been identified at the border of the infarction zone and
its conditional deletion, specifically in reactive astrocytes, was neuroprotective three days
after transient middle cerebral artery occlusion (MCAO) [156]. Interestingly, Stat3 was also
activated in reactive astrocytes around the plaques in AD. The inhibition of Stat3-mediated
astrogliosis reduced Aβ levels and plaque burden, while it increased microglial amyloid
phagocytosis, which resulted in ameliorated spatial learning and memory decline in a
mouse model of AD [157]. Importantly, another cellular signaling, the Wnt pathway, is
heavily influenced by aging [158,159], the main risk factor of both brain ischemia and AD.
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Moreover, Wnt signaling is also implicated in the processes such as glutamate signaling
and synapse modulation, while active Wnt signaling positively regulates cell survival,
and also the proliferation and differentiation of neural cells in humans [159,160]. Our
previously published results, together with unpublished data, also suggest that Wnt5a,
Wnt7a, and Wnt7b ligands and several downstream components of Wnt signaling, such
as low-density lipoprotein receptor-related protein 5/6 (Lrp5/6), axis inhibition (Axin2),
T-cell factor 7-like 2 (Tcf7l2), and tumor necrosis factor receptor superfamily, member 19
(Troy), play an important role in physiology and pathology of the CNS and in the cell fate
specification [123,124,161,162]. Therefore, from our point of view, Wnt signaling acts as the
common denominator of the two neuropathologies. Additionally, the Wnt pathway has
been found to be active in the cells residing in the hippocampus, the region that is compro-
mised in cerebral ischemia and AD. For these reasons, we further direct our attention to
Wnt signaling, and discuss its functions in the two CNS disorders.

Figure 1. Common journey of neural cells through ischemic brain injury and Alzheimer’s disease.
Despite diverse genetic predispositions, cerebral ischemia and Alzheimer’s disease (AD) share
common risk factors and pathophysiological processes and mechanisms, all leading to cell death.
For more information, please refer to the main text and the publications indicated by the reference
numbers in square brackets. Abbreviations: ApoE, apolipoprotein E; APP, amyloid precursor protein;
CNS, central nervous system; PSEN1/2, presenilin 1/2.

5. Wnt Signaling in Ischemic Brain Injury and Alzheimer’s Disease

In the adult CNS, Wnt signaling has been identified as an important factor affecting
the cell fate and survival of neural cells [161,163]. Wnt proteins are members of a group of
cysteine-rich secreted proteins that modulate the intercellular communication among cells
in the vicinity, in an autocrine or paracrine manner [164]. They activate different cascades
of Wnt signaling [165]; so far, three well characterized Wnt signaling pathways have been
described the canonical Wnt pathway and two non-canonical branches of Wnt signaling:
the planar cell polarity (PCP) pathway and the Wnt/Ca2+ pathway (Figure 2; [166,167]).
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Figure 2. Participation of Wnt signaling in ischemic brain injury and Alzheimer’s disease. The
scheme depicts three Wnt signaling pathways: two non-canonical branches, the planar cell polarity
(Wnt/PCP) pathway and the Wnt/calcium (Ca2+) pathway, and the canonical, Wnt/β-catenin
pathway. Wnt signaling is implicated in several processes associated with brain ischemia (indicated by
blue outlines of the proteins) and Alzheimer’s disease (indicated by red outlines of the proteins). For
more information, please refer to the main text. Abbreviations: Aβ, amyloid β; APC, adenomatous
polyposis coli; APP, amyloid precursor protein; AXIN, axis inhibition; BACE, β-site APP-cleaving
enzyme 1; BCL, B-cell lymphoma; C-JUN, transcription factor C-JUN; CaMKII, Ca2+/calmodulin-
dependent protein kinase II; CDC42, GTPase CDC42; CK1, casein kinase 1; DAAM1, DVL-associated
activator of morphogenesis 1; DAG, diacylglycerol; DKK1, dickkopf 1; DVL, disheveled; FZD,
frizzled receptor; GSK3β, glycogen synthase kinase 3β; IP3, inositol trisphosphate; JNK, c-Jun
N-terminal kinase; LRP, low-density lipoprotein receptor-related protein receptor; NFAT, nuclear
factor of activated T-cells; NLK, nemo-like kinase; P, phosphorylation; PIP2, phosphatidylinositol
4,5-bisphosphate; PKC, protein kinase C; PLC, phospholipase C; RAC1, Rac family small GTPase
1; RhoA, small GTPase Ras homolog family member A; ROCK, Rho-associated kinase; ROR/RYK,
tyrosine kinase receptors RYK/ROR; sFRP, secreted frizzled-related protein; TCF/LEF, transcription
factors T-cell factor/lymphoid enhancer-binding factor; Wnt, Wnt protein/ligand.

In the canonical Wnt pathway, the signal is relayed via β-catenin, the principal com-
ponent of this Wnt branch. The signaling is initiated by the binding of a Wnt ligand to
the extracellular domains of the frizzled (FZD) receptor and the LRP5/6 receptors, which
attracts intracellular proteins disheveled (DVL) and AXIN to the cellular membrane [168].
These events prevent the formation of the so-called destruction complex, and result in
β-catenin stabilization, with its subsequent translocation to the nucleus. In the nucleus,
β-catenin binds to the transcription factors TCF/lymphoid enhancer-binding factor (LEF),
which activates the transcription of Wnt-responsive genes. On the other hand, in the
absence of the Wnt signal, the destruction complex consists of adenomatous polyposis coli
(APC), AXIN, and two protein kinases: GSK3β and casein kinase 1 (CK1). The kinases are
responsible for β-catenin phosphorylation and subsequent ubiquitination, leading to the
degradation of β-catenin in the proteasome [169].

The non-canonical Wnt/PCP pathway consists of the FZD receptor and tyrosine
kinase receptors of the RYK and ROR families [170]. Similarly to the canonical pathway,
the signal from receptors is transduced to DVL; however, instead of β-catenin, the signal
is carried by the small GTPase Ras homolog family member A (RhoA) or the Rac family
small GTPase 1 (RAC1). One branch of this pathway relays the signal via DVL-associated
activator of morphogenesis 1 (DAAM1). This protein is necessary for RhoA activation,
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which, together with Rho-associated kinase (ROCK), mediates actin polymerization. The
other branch of the Wnt/PCP pathway is mediated by RAC1 which activates c-Jun N-
terminal kinase (JNK). This kinase is responsible for the rearrangement of the cytoskeleton
and for the phosphorylation of the C-JUN transcription factor, affecting cell proliferation,
differentiation, and apoptosis [171,172].

In the Wnt/Ca2+ pathway, the signal is transmitted from DVL to phospholipase C
(PLC) which is responsible for the hydrolyzation of phosphatidylinositol 4,5-bisphosphate
(PIP2) to inositol trisphosphate (IP3) and diacylglycerol (DAG). Inositol trisphosphate
promotes the release of intracellular Ca2+ from the endoplasmic reticulum. The elevated
concentrations of Ca2+ together with DAG lead to the activation of protein kinase C (PKC),
which cooperates with another GTPase, CDC42, and causes the rearrangement of the
cytoskeleton. The release of Ca2+ is also responsible for the activation of calcineurin and
Ca2+/calmodulin-dependent protein kinase II (CaMKII). Calcineurin interacts with the
nuclear factor of activated T-cells (NFAT) transcription factor, regulating cell proliferation
and differentiation, while CaMKII leads to the inhibition of the canonical branch of Wnt
signaling via nemo-like kinase (NLK). For a more detailed description of the three Wnt
signaling pathways, please, refer to [173,174], and [175].

Importantly, the activity of Wnt signaling can be modulated at several subcellular
levels. For example, secreted frizzled-related proteins (sFRPs) act as biphasic modulators of
Wnt signaling. On the one hand, they function as negative modulators of the pathway in the
extracellular space and on the other hand, they affect the signaling in two opposing ways
intracellularly. The nuclear form of sFRPs interacts with β-catenin and either promotes
or suppresses Wnt signaling, depending on the binding site of the protein. Binding to
the N-terminus of β-catenin represses the recruitment of TCF4 and thus inhibits Wnt
signaling, while binding to the C-terminus of β-catenin upregulates the pathway [176].
Moreover, another extracellular protein, dickkopf 1 (Dkk1), antagonizes Wnt signaling
by binding to the LRP co-receptor, which reduces the availability of the co-receptor to
Wnt ligands [177,178]. Additionally, lithium chloride (LiCl) acts as an activator of the
Wnt signaling pathway. Its mechanism consists in the inhibitory effect on the activity of a
negative Wnt pathway regulator GSK3β. This rescue mechanism increases the abundance
of cytoplasmic β-catenin, which leads to its translocation to the cell nucleus and hyper-
activation of the pathway [179].

Recently, Wnt signaling has been associated with a plethora of neurological dysfunc-
tions, including cerebral ischemia and AD [180–184]. Cerebral ischemia stems from a
reduced cerebral blood flow and causes glutamate excitotoxicity, followed by neuronal
death [7]. The only available means of treating brain ischemia is rapid vessel recanalization
by the mechanical or pharmaceutical removal of the thrombus [185]. However, the benefi-
cial roles of active Wnt signaling, especially its neuroprotective effects and stimulation of
neurogenesis, were observed in ischemic brain injury [173].

It has been shown that Dkk1, a blocker of the canonical Wnt signaling pathway, con-
tributes to the pathophysiology of neuronal death in a rat model of FCI. The Dkk1 protein
was abundant in neurons of the ischemic core and the penumbra, following transient as
well as permanent FCI. Moreover, the higher expression of Dkk1 protein was accompa-
nied by reduced levels of β-catenin, while the treatment with lithium ions, which activate
Wnt signaling, reversed this phenotype and showed a protective effect. These results
indicate that the canonical Wnt pathway may play an important role in neuroprotection
in stroke [186]; this effect can be explained by an indirect positive regulation of the anti-
apoptotic protein B-cell lymphoma 2 (Bcl2) by β-catenin [187]. Importantly, higher plasma
levels of Dkk1 have also been confirmed in patients with acute ischemic stroke, providing
evidence that Wnt signaling is also implicated in the etiology of cerebral ischemia in hu-
mans. Interestingly, no correlation was identified between Dkk1 levels and the severity of
the stroke [188,189]. The protective effect of the canonical Wnt pathway was also revealed
in endothelial cells, where the treatment with LiCl or exogenous Wnt3a protein significantly
decreased apoptosis induced by oxygen-glucose deprivation (OGD) [190]. Wnt signaling
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exerts its neuroprotective effect by blocking the activity of caspase 3 and thus preventing
the apoptosis, not only in ischemia but also in AD [191]. Conversely, downregulated Wnt
signaling led to more severe stroke and motor deficits that stemmed from mitochondrial
dysfunction and neuroinflammation, developed under ischemic conditions. Nonetheless,
these deleterious processes were reverted by the pharmacological inhibition of GSK3β;
this activation of Wnt signaling also activated microglial autophagy after ischemic brain
injury [192,193].

It is worth mentioning that high levels of estrogen in females act as an endogenous
neuroprotective agent in stroke [194]. The mechanism behind this effect was revealed in
hippocampal neurons, as it dwells in preventing the post-ischemic elevation of Dkk1 and,
at the same time, activates canonical Wnt signaling [195]. Coherently with these findings,
estrogen in ischemic animals subjected to GCI resulted in decreased levels of Dkk1, which
correlated with increased levels of Wnt3a and an active nuclear form of β-catenin. In
addition, it was demonstrated that even low physiological levels of estrogen protect the
hippocampal CA1 region against GCI, while they also attenuate tau hyperphosphorylation,
one of the hallmarks of the AD pathology [196]. These findings might have the power to
unearth promising future implications of hormone therapy.

Ischemic stroke has been demonstrated to increase the proliferation potential of neural
stem and progenitor cells (NSPCs) in the two neurogenic regions of the adult mammalian
brain: the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) of
the lateral ventricles (LVs). Adult hippocampal neurogenesis was also observed in hu-
mans [197]. Under ischemic conditions, a higher activity of Wnt signaling coincides with an
increased proliferation and reduced apoptosis of NSPCs, which results in higher numbers
of newly derived neuroblasts [198,199]. Moreover, Piccin and Morshead [200] disclosed
upregulated Wnt signaling in response to stroke. This upregulation led to the switch from
the asymmetric to the symmetric division of neural stem cells (NSC), while blocking the
Wnt pathway inhibited their expansion. These observations suggest a mechanism by which
Wnt signaling regulates the pool of NSC. A deeper investigation into this mechanism
also revealed an increased expression of hypoxia-inducible factor 1α (HIF1α); either the
knockdown of this factor or Wnt signaling inhibition counter-acted the hypoxia-induced
proliferation of NSC [201]. In even more detail, ischemic injury/hypoxia stimulates the
production of peroxynitrite, which in turn enhances the proliferation as well as neuronal
differentiation of NSPCs via the activation of HIF1α and Wnt signaling [202]. Consistent
with these findings, Zhang et al. [203] showed a significantly decreased differentiation
of NSPCs to neuronal cells caused by the downregulation in the β-catenin expression.
Concomitantly, in our study, we observed Wnt-signaling-driven differentiation of ischemia-
activated adult NSPCs to neuroblasts. More specifically, we detected fewer neuronal
precursors differentiated from NSPCs in vitro after Wnt signaling inhibition, while Wnt
signaling hyper-activation increased the numbers of proliferating cells and neuroblasts in
the SVZ in vivo [161]. Importantly, a decisive role of Wnt signaling in the promotion of
adult neurogenesis, leading to enhanced functional recovery in a mouse model of FCI, was
observed by Shruster et al. [204]. The above-mentioned observations in NSPCs may seem
to contrast with the previously described notion about the increased expression of Dkk1
protein in stroke; however, Wnt signaling may affect terminally differentiated neurons and
dividing NSPCs in the neurogenic niches differently, and an insult in the form of ischemic
injury may be sufficient to awaken the dormant or quiescent multipotent cells residing in
the adult brain.

Several studies disclosed that the activity of the canonical Wnt signaling pathway
is required for postnatal vascular formation and maintaining the BBB integrity [205,206].
In the postnatal CNS, β-catenin signaling supports angiogenesis. This was documented
by its depletion in genetically modified mice, which resulted in hypo-vascularization due
to the deficient proliferation and sprouting of endothelial cells [207]. Consistent with the
previous finding, an impaired and delayed vascularization in the retina of transgenic mice
with inhibited canonical Wnt signaling was observed by Peghaire et al. [208]. Moreover,
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Wnt signaling has been identified as a link between brain angiogenesis and BBB formation,
since the proper transition from vascular formation to BBB maturation is regulated by the
temporal activity of this signaling [209]. Furthermore, Wnt/β-catenin signaling has been
shown to be critical for promoting the expression of the BBB-specific glucose transporter 1
(GLUT1) and the tight junction protein claudin 5 [207], and together with its downstream
target sex-determining region Y-box 17 (Sox17), it influences the maintenance and the
permeability of the BBB [210]. Thus, these data suggest an indisputable function of Wnt
signaling in angiogenesis and BBB maintenance, which might be helpful in the approaches
trying to alleviate the damaging impacts of cerebral ischemia.

Besides ischemic stroke, the Wnt signaling pathway has also been identified as an
important factor in AD. This signaling affects multiple aspects of the disease [211]. Similar
to brain ischemia, alterations and dysregulations of Wnt signaling have been observed in
both animal models of AD as well as in patients. Lower levels of proteins associated with
active Wnt signaling were observed in the hippocampus of a mouse model of AD [212]. In
accordance with this, changes in the activity of the Wnt signaling pathway components
were observed in the prefrontal cortex of AD patients [213], and significantly higher levels
of active GSK3β were detected in the neurons derived from AD patients [214]. Exceeding
that, the proteins that are associated with the development of AD, namely PSEN1 and
ApoE, were shown to interact with the Wnt signaling pathway components [215,216].
Similarly to ischemia, a high expression of Wnt signaling inhibitor Dkk1 was observed
in autoptic samples of AD patients, also further indicating the importance of the Wnt
signaling pathway in humans [217]. Thus, we believe that the dysregulation of Wnt
signaling in AD is of utter importance and should be studied in more detail. Our belief
may be seconded by the observation that the pivotal Wnt signaling kinase, GSK3β, has
been associated with the production of Aβ and tau hyperphosphorylation. An increased
production of Aβ42 and elevated levels of Aβ oligomers were observed after the inhibition
of Wnt signaling, while its activation led to reduced levels of the Aβ42 aggregates [218].
Furthermore, a GSK3β-specific inhibition led to the reduced expression of β-secretase,
which suppressed the cleavage activity of APP, and thus reduced the Aβ production. The
decreased deposition of Aβ reduced plaque formation, and rescued memory deficits were
observed after GSK3β inhibition in double transgenic AD mice [219]. Inhibitors of GSK3β,
such as lithium or valproic acid, caused the decreased production of Aβ in vitro as well as
in mice [220]. Interestingly, the effect of lithium probably depends on the progression of
AD, since the treatment with this element promoted neurogenesis in two-month-old AD
mice, but exerted no effect in six-month-old animals [221]. Additionally, the inhibition of
the GSK3β activity decreased the expression of BACE1, which led to a reduced cleavage
rate of APP and a lower production of Aβ [219]. It is worth mentioning that the crucial
role of Wnt signaling in AD was also disclosed in the preclinical stage of the disease [222],
which might pave the way to early detection and treatment.

The involvement of the Wnt pathway and GSK3β kinase was also documented in
tau hyperphosphorylation. In neurons derived from AD patients, a higher activity of
GSK3β was observed, which was associated with the elevated levels of phosphorylated
tau [214]. In accordance with this observation, the loss of GSK3β inhibition was observed
in aged transgenic mice and coincided with increased tau phosphorylation. Moreover,
the pharmacological inhibition of GSK3β antagonized the age-dependent increase in tau
phosphorylation [223]. Analogously, a decreased phosphorylation of virally introduced
human TAU protein was detected in hemi-knockouts in the Gsk3b gene, when compared to
wild-type mice. In these animals, the spread of TAU among neurons was also decreased.
This suggests that the decrease in the GSK3β activity represses the induction of neu-
rodegenerative changes exerted by tau, and that GSK3β might be a potential therapeutic
target [224].

Importantly, the interactions between the Wnt pathways and the AD pathology are
not merely unidirectional but they rather form a cycle where Wnt signaling affects the
production of Aβ, while Aβ, in turn, influences Wnt signaling which results in a feedback
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loop [225,226]. One such mechanism was observed in cultured neurons that were exposed
to Aβ. This caused a higher expression of Dkk1, while the knockdown of Dkk1 decreased
the tau phosphorylation, together with the neuronal apoptosis induced by Aβ [217]. Tau
also probably contributes to this loop, since the ablation of this protein prevented the
activation of GSK3β by Aβ and, as a result, abolished the detrimental effect of Aβ on
the axonal transport [227]. Alternatively, Aβ potentiated the tau hyperphosphorylation
by GSK3β via a norepinephrine-dependent mechanism. The changes in norepinephrine
signaling resulted in a huge 50- to 100-fold higher sensitivity of GSK3β to Aβ [53]. Overall,
emerging evidence shows that Wnt signaling, Aβ, and tau protein are intertwined in a set
of feedback regulations.

Nevertheless, the role of GSK3β is not only limited to the regulation of Aβ production,
but it also plays a role in the neurotoxicity of amyloid plaques. Adding Aβ oligomers to
neuronal cultures increased the activity of GSK3β and, at the same time, promoted apopto-
sis. However, the treatment with GSK3β inhibitors prevented Aβ-induced cell death [228].
The involvement of the Wnt signaling pathway was further demonstrated by the ob-
servation, showing that the Aβ synaptotoxicity is Dkk1-dependent. On top of that, Aβ

synaptotoxicity was also increased by the activity of the non-canonical Wnt/PCP pathway,
mediated by its branch regulating actin cytoskeletal dynamics via the DAAM1 protein [229].
In agreement with this, the blockage of Dkk1 by neutralizing antibodies led to suppression
of Aβ-induced synaptic loss in mouse brain slices [230], and the downregulation of the
Wnt/PCP downstream targets had a protective effect against the Aβ neurotoxicity [231].
However, it should be noted that the Dkk1-driven induction of the Wnt/PCP pathway
only regulated Aβ toxicity in AD but failed to induce tau phosphorylation [231]. Therefore,
it seems that Wnt signaling might also be involved in the neurotoxicity induced by Aβ

plaques as a negative regulator.
Wnt signaling has been associated with memory improvement in AD mice and exhib-

ited neuroprotective effects. To support these observations, the pharmacological inhibition
of the GSK3β activity had a beneficial effect on neurogenesis, learning, and memory [232],
and led to the decreased astrogliosis and microgliosis in animal models of AD [233]. The
inhibition of Wnt signaling, on the other hand, resulted in cognitive deficits, increased
tau phosphorylation, and elevated Aβ levels, which subsequently caused the abundance
of larger senile plaques. Interestingly, the Wnt signaling inhibition also evoked similar
pathological changes in wild-type mice [222]. Furthermore, the GSK3β inhibition led not
only to reduced levels of phosphorylated tau in AD mice, but also to improved memory
and slower progression of the disease [234]. Additionally, the inhibition of GSK3β by LiCl,
or by genetic manipulation, led to an improved performance in the water maze, helped
preserve the dendritic structure in the frontal cortex and the hippocampus, and decreased
tau and APP phosphorylation, which also resulted in a decreased Aβ production [235].
This corroborates the findings in a model of early-onset AD showing that the deficien-
cies of presynaptic functions and the length of synapses were restored by Wnt signaling
activators [236], while in vivo activation of the pathway improved synaptic functions
and episodic memory, and enhanced LTP [237]. Similar effects were observed after the
treatment with selenomethionine. This compound reduced Aβ deposition and decreased
tau hyperphosphorylation, while improving the cognitive functions in 3xTg-AD mice.
Selenomethionine has been linked to Wnt signaling; more specifically, it inhibited GSK3β
and activated β-catenin/cyclin-D signaling, which promoted NSC proliferation. This led to
increased numbers of hippocampal neurons; however, it also resulted in decreased counts
of astrocytes [238]. Neurogenesis is a process that is orchestrated by the Wnt signaling
pathway. The activation of Wnt signaling was observed in chronic hypoxia and, interest-
ingly, this condition also led to an increased neurogenesis in double transgenic AD mice,
suggesting a possible, and perhaps slightly unorthodox, therapeutic potential of mild hy-
poxia in the treatment of AD [239]. Additionally, the activation of canonical Wnt signaling
inhibited the production of Aβ protein, and reduced the apoptosis in hippocampal neurons
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of 3xTg-AD mice. This observation indicates another possible way of utilizing the Wnt
signaling pathway and its beneficial effects in the AD therapy [240].

Wnt/β-catenin signaling regulates the BBB formation, integrity, and function [178].
Simultaneously, the BBB breakdown is an early biomarker of human cognitive impairments
in AD and has been associated with abnormal Wnt signaling. Importantly, ApoE, a major
genetic risk factor for AD, promotes the degeneration of endothelial cells and hampers
the clearance of Aβ exerted by pericytes. Moreover, brain endothelial cells connected by
tight junctions and their main constituents, claudins, are Wnt/β-catenin target genes [241].
In line with this, Wnt7a and β-catenin knockouts in adult mice decreased the expression
of claudins, which was accompanied by inflammation, insults to the CNS vasculature,
and the dysregulated BBB maintenance. The loss of pericytes in human AD was also
markedly higher in ApoE4 carriers, and it was associated with the BBB dysfunction [242].
Additionally, a decreased expression of GLUT1 at the BBB has been linked with the elevated
Aβ accumulation and memory deficits. Interestingly, the Wnt pathway was associated with
the correct functioning of the BBB-specific GLUT1 and glucose metabolism in an AD mouse
model [243]. Specifically, the Wnt-induced activation of glucose metabolism resulted in an
improved cognitive performance, while the downregulation of glucose uptake partially
inhibited the beneficial effects of active Wnt signaling on learning and memory [244]. These
findings indicate that the malfunctioning of Wnt signaling may contribute to a glucose
metabolism deficiency in AD, revealing its potential therapeutic use [226].

Overall, recent research has suggested a common journey of neural cells through
ischemic brain injury and AD. Physiological aging has been identified as a starting point
with the strongest impact, while an unhealthy lifestyle is a modifiable environmental factor
that can be prevented. Moreover, brain ischemia and AD are characterized by several
common processes that occur in the specific CNS structures, while the neurodegeneration
affects both gray and white matter. These CNS disorders share features such as neuroin-
flammation, reactive gliosis, excessive glutamate accumulation, or dysregulated cellular
signaling pathways. Among them, accumulating evidence has fitted Wnt signaling into
the role of a significant player in the pathophysiology and prevention of cerebral ischemic
injury and AD. Together with its considerable functions in neuroprotection, stimulation
of neurogenesis, maintaining the BBB integrity, and modulating the expression of AD-
related genes, several components of the Wnt pathway (preferentially Dkk1 and GSK3β)
may contribute to the development of therapies leading to better outcomes of the CNS
neuropathologies. However, these still emerging, yet promising, hypotheses need to be
validated. For a summary of the participation of Wnt signaling in brain ischemia and AD,
please refer to Figure 2. Importantly, it is worth mentioning that while the roles of the Wnt
pathway in ameliorating the negative effects of ischemia or AD seem very attractive, one
should also consider that modulating this pathway means dealing with tumor suppres-
sor genes and proto-oncogenes, and Wnt signaling hyper-activation may thus cause an
aberrant growth of cells, which leads to the development of tumors [245,246].

6. Future Perspectives

To date, no definitive cure exists for either brain ischemia or AD. These two neu-
ropathologies differ in the pace of their progression; on the one hand, AD develops
relatively slowly and typically spans several stages [247]; on the other hand, brain ischemia
starts as an acute injury, and neuronal cells die within minutes or days after the onset of
the condition [8]. For this reason, it is crucial to develop an effective treatment for brain
ischemia, as the intervention has to be prompt.

Currently, ischemic patients can be treated with tissue plasminogen activator (tPA),
a protein that dissolves blood clots and thus restores the blood flow in the brain regions
affected by a stroke. Moreover, tPA also has a neuroprotective effect [248]; however, its
administration is only effective for a short time window following the onset of ischemia,
and it poses an additional risk of hemorrhagic transformation [249].
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Although several mechanisms involved in the pathology of AD have already been
proposed, there is still a need to piece these together, once they are all discovered. Therefore,
the treatment of AD is currently limited to alleviating symptoms and slowing the progres-
sion of the disease. These also include comorbidity control, diet modification, physical
activity, and cognitive stimulation. Therapeutic approaches focused on the symptoms
include cholinesterase inhibitors, which lessen dyskinesia and mood swings, or NMDAR
antagonists, such as memantine, with a slight beneficial effect on cognition. However,
these approaches neither slow the progression of AD, nor improve memory and cogni-
tive performance. Treatment targeting the etiology of the disease includes, among others,
secretase modulators, amyloid binders, and compounds preventing the Aβ aggregation.
Several experimental attempts reducing Aβ and tau levels have been transferred to clinical
trials; however, these studies failed to be successful [250,251]. As mentioned before, the
original hypothesis of the amyloid cascade, which considered the high levels of Aβ and tau
to be the main cause of AD, has already been re-evaluated and the pathological properties
of Aβ are determined rather by qualitative changes in the spectrum of Aβ peptides than
quantitative increases [61]. Therefore, it seems more effective to target the therapy to Aβ

oligomers [252–255]. It is mainly immunotherapy with anti-Aβ oligomers or antagonists of
toxin receptors, such as sigma 2/progesterone receptor membrane component 1, that results
in the blockage of Aβ oligomer binding and the prevention of synaptotoxicity [256,257].
High expectations are also placed on stem cell therapy. Stem cells have not only the ability
to migrate to the site of injury and differentiate to various types of neural cells, but they also
produce neurotrophic factors and other protective molecules that can activate the defensive
and regenerative processes [258–260]. Additionally, drugs that are targeted to glial cells
are also considered a promising therapeutic approach. In astrocytes, these are mainly
substances that increase the expression of EAATs, and thus reduce the glutamate overstim-
ulation in neurons. To name a few, β-lactam antibiotics, ampicillin [261], ceftriaxone [262],
estrogen [263], insulin [264], and riluzole [265] all appear to be effective. Regarding the
development of inflammation in AD, the effects of various anti-inflammatory agents have
also been investigated. Some studies showed that long-term users of non-steroidal anti-
inflammatory drugs, such as ibuprofen or tarenflurbil, have a lower risk of developing
AD [266]. However, clinical studies once again refuted these results [267,268]. Moreover,
some other promising inflammation-targeting drugs are etanercept, a TNFα inhibitor [269],
and neflamapimod, a selective inhibitor of the α isoform of p38 MAPK [270]. In addition,
azeliragon or pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist,
have also been shown to be promising, but failed in the clinical trials [271]. Additionally, in
AD patients, a novel treatment with the monoclonal antibody aducanumab, which targets
Aβ, has been proposed; however, an intense discussion about the merits of this medica-
ment is still ongoing [272–274]. Since the exact molecular mechanisms and processes in the
triggering and progression of AD are still not fully explored, no other cure exists at this
time. Nevertheless, the utilization of the resident neurogenic cell populations in the brain,
such as NSPCs or even NG2 glia, might prove useful to replace the lost cells [122,161].

As mentioned before, the fate and survival of neural cells depend to a great extent on
the activity of cellular signaling pathways. Importantly, the Wnt signaling pathway plays a
crucial role in both ischemic stroke and AD (Figure 2). Furthermore, the risk of these disor-
ders is increased in the elderly and, at the same time, Wnt signaling ceases with age [159].
Additionally, since this cellular signaling pathway is known for its neuroprotective [275],
anti-inflammatory [276], and neurogenic properties [162], while it can also improve cogni-
tive functions [237], we stress the following Wnt-signaling-linked chemical compounds that
may represent possible treatments of brain ischemia and AD. The first promising results
come from in vitro studies, where the treatment with Wnt3a ligand increased cell survival
after the administration of several toxic agents, including Aβ, and thus protected neural
cells against apoptosis [277]. A means of activating canonical Wnt signaling for therapeutic
purposes may represent the utilization of small-molecule inhibitors that antagonize the
interaction between the Dkk1 blocker and the LRP co-receptor. Importantly, this approach
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does not affect the binding of the Wnt ligands to their Wnt receptors [278]. Moreover, Dkk1
attenuation reduces apoptosis [279] and prevents the loss of synapses in an AD cell culture
model [280]. Therefore, restoring canonical Wnt signaling represents a promising thera-
peutic tool for AD [178,225]. Additionally, the activation of the non-canonical Wnt/Ca2+

signaling pathway by Wnt5a led to the modulation of mitochondrial dynamics, which
prevented the alterations induced by Aβ oligomers [281].

It is noteworthy that several Wnt-signaling-affecting drugs have also already been
tested in ischemia and AD. One such compound is the immunosuppressant rapamycin.
This compound was observed to ameliorate the AD pathology via inhibiting GSK3β and
elevating the expression levels of Wnt3a [282]. In addition, a glutamate modulator riluzole,
which is used in the treatment of amyotrophic lateral sclerosis, is capable of activating
the Wnt pathway, and therefore ameliorating oxidative stress and neuroinflammation
in AD [283]. Moreover, the combination of the non-steroidal anti-inflammatory drug
ibuprofen and the cholinesterase inhibitor octyl-pyridostigmine, suppresses the activity of
GSK3β and protects cells against the Aβ neurotoxicity in AD [284]. Concerning ischemic
stroke, exogenous estradiol administration might prove to be beneficial, since it acts via
Wnt signaling and reduces the tissue damage resulting from experimental ischemic stroke
in both females and males [194]. The antidiabetic medication liragitude has also been
observed to exert neuroprotective properties in both cerebral ischemia and AD, and one
of its putative targets is GSK3β [285]. Interestingly, nicotine is capable of stabilizing β-
catenin, which might be relevant in therapeutic approaches dealing with AD [286]. Two
drugs used in the treatment of bipolar disorder, valproic acid and lithium, are widely
used in experimental settings as inhibitors of GSK3β. Both compounds were also used in
experiments on animal models of ischemic injury and AD. In ischemia, lithium exhibited
neuroprotective effects against excitotoxicity [287]. Similarly, in models of AD, lithium
played a protective role, as it prevented spatial memory deficits after the injection of Aβ

fibrils into the rat hippocampus [180]. It was noteworthy that the ability of lithium to
stimulate cognitive functions and neurogenesis in the subgranular zone of the hippocampus
in a transgenic murine model of AD was lost in the aged transgenic mice [221], possibly
due to the depletion or quiescence of NSCs in the later stages of ontogeny [161,288].
The breakdown of the BBB after ischemic stroke can also be alleviated by upregulating
the Wnt signaling pathway in endothelial cells via the administration of lithium [289].
Lithium has already been used in a clinical trial as a possible post-ischemic treatment.
Notably there was a significantly better improvement observed in the lithium-treated
patients with cortical stroke, compared to the placebo group, and almost half of the
lithium-treated patients showed an enhanced motor recovery [290]. Regarding AD, a few
completed or ongoing studies on the effect of lithium or other, novel inhibitors of GSK3β
on the prevention of cognitive impairments, are listed on the website of the U.S. National
Library of Medicine [291]. However, it is important to note that lithium is not an exclusive
activator of the canonical Wnt signaling pathway, but it also acts independently of Wnt
signaling [292].

Recently, natural substances ameliorating the outcomes of neuropathologies have
come to light. Among others, curcumin has been shown to induce neurogenesis and
neuroprotection following brain ischemia, while it also prevents age-related aggregation
of the Aβ peptide and tau protein in post-ischemic dementia and AD [293,294]. The
neuroprotective effect of curcumin is based on the induction of autophagy of misfolded
proteins [295], and involves the inhibition of GSK3β, which activates the Wnt/β-catenin
signaling pathway. This mechanism was confirmed by its repression with the Dkk1 Wnt
blocker [296].

Understanding the molecular mechanisms that are implicated in the etiology of neu-
rodegenerative diseases may have a prospect of developing novel therapeutic approaches.
Recent findings identified the Wnt pathway as an important factor in the pathophysiology
of ischemic brain injury and AD; however, clinically relevant modulation of this cellular
signaling pathway is still to be developed. Therefore, a greater understanding of the precise
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mechanisms of Wnt signaling in the onset and progression of neuropathologies may pave
the way for the treatment of the diseased adult CNS.
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