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Abstract: This paper presents the design and validation of a model-based H∞ vehicle lateral controller
for autonomous vehicles in a simulation environment. The controller was designed so that the
position and orientation tracking errors are minimized and so that the vehicle is able to follow a
trajectory computed in real-time by exploiting proper video-processing and lane-detection algorithms.
From a computational point of view, the controller is obtained by solving a suitable LMI optimization
problem and ensures that the closed-loop system is robust with respect to variations in the vehicle’s
longitudinal speed. In order to show the effectiveness of the proposed control strategy, simulations
have been undertaken by taking advantage of a co-simulation environment jointly developed in
Matlab/Simulink © and Carsim 8 ©. The simulation activity shows that the proposed control
approach allows for good control performance to be achieved.

Keywords: autonomous vehicles; automotive control; H∞ control; lateral control; linear matrix
inequalities; path tracking; steering angle control

1. Introduction

Vehicle safety is a major human challenge. The World Health Organization (WHO)
reports more than one million fatalities in traffic accidents and around 20–50 million injuries
each year worldwide. The WHO estimates that approximately one-half of the fatalities
involve what are referred to as “vulnerable road users” i.e., pedestrians, cyclists, and
motorbikes [1]. A general system approach that accounts for the interactions between
humans, vehicles, and the environment and provides the necessary countermeasures in
preventing crashes is required to tackle this problem.

With respect to this problem, the automotive industry has made relevant strides, and
at the same time, governments around the world have increased safety regulations. Passive
and active systems have been developed throughout the years to enhance vehicle safety [2].
Moreover, further research efforts have been devoted to investigating the main causes of
road accidents and to designing mathematical models in charge of predicting and reducing
the damage caused by road accidents on the basis of statistical analysis of “correlate factors”
such as driver gender and age, alcohol use, vehicle type, etc. [3,4]. In recent years, research
on Advanced Driving Assistant System (ADAS) and intelligent vehicles have attracted
a lot of attention due to technological progress in the fields of sensing, communication,
and information processing. This interest pertains not only to the intelligent functions that
support a driver during driving but also to automated driving. As road accidents occur
frequently and result in property damages, injury, and even death, all of which impose a
high cost to societies, the main aim in developing new and more sophisticated functions for
ADAS systems is to improve road safety, to mitigate traffic issues, and to improve driving
comfort [5,6].

ADAS can be viewed as real-time systems able to react quickly to multiple inputs
and to prioritize incoming information to prevent accidents. ADAS can be categorized

Sensors 2021, 21, 4072. https://doi.org/10.3390/s21124072 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5148-8638
https://orcid.org/0000-0003-2356-9817
https://orcid.org/0000-0001-9482-8041
https://orcid.org/0000-0002-4216-4201
https://doi.org/10.3390/s21124072
https://doi.org/10.3390/s21124072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124072
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124072?type=check_update&version=2


Sensors 2021, 21, 4072 2 of 20

and divided into six levels based on the amount of automation. This scale is provided by
the Society of Automotive Engineers (SAE) and has been designed to clarify and simplify
the SAE standard J3016 of Levels of Driving Automation: the standard defines six levels
of driving automation, from SAE Level 0 to SAE Level 5 [7,8]. In Level 0 (No Driving
Automation), ADAS cannot control the car and can only provide information for the drivers
to interpret the current situation on their own: parking sensors, traffic signs recognition,
lane departure warning systems, etc. belong to this level. Levels 1 and 2 are very similar in
that they both let the driver make most of the decisions. The difference is that, at Level 1
(Driver Assistance), the ADAS can take over the control of one functionality (e.g., adaptive
cruise control, emergency brake assist, etc.). On the other hand, at Level 2 (Partial Driving
Automation), the ADAS can take over the control of multiple functionalities to aid the driver:
autonomous obstacle avoidance, autonomous parking, etc. At Level 3 (Conditional Driving
Automation), vehicles have “environmental detection” capabilities and can make informed
decisions for themselves, such as accelerating past a slow-moving vehicle. However, they
still require human override. The driver must remain alert and ready to take control if
the system is unable to execute the task. The key difference between Level 3 and Level 4
is that, at Level 4 (High Driving Automation), drivers can intervene if things go wrong or
there is a system failure. In this sense, these cars do not require human interaction in most
circumstances. However, a human still has the option to manually override the system. At
level 5 (Full Driving Automation), vehicles do not require human attention: the “dynamic
driving task” is eliminated.

In this respect, lane-detection (LD) and lane-keeping (LK) systems are important
challenges. An autonomous driving car can be viewed as a vehicle that is able to drive
in different driving scenarios by replacing human actions at different levels. Then, au-
tonomous cars must be equipped with all of the necessary functionalities to solve three
main tasks [9]:

• Environmental perception. Due to the fact that the environment in which cars are
used must be considered partially unknown, a vision system (cameras and sensors
such as radar, lidar, etc.) must be used to detect road boundaries, various objects (e.g.,
obstacles and pedestrians), and other vehicles. In this way, it is possible to provide a
dynamic map of the environment around the autonomous vehicle.

• Trajectory generation. This task concerns the generation of a reference trajectory (or
reference path) in the navigable environment.

• Vehicle control. This task consists of designing control algorithms for longitudinal
and lateral control, which use available actuators (accelerator pedal, brakes, steering
wheel, etc.) to track the reference trajectory.

In order to achieve these goals, the autonomous vehicle has to use a number of well-
placed sensors that detect and continuously observe the location and movement of other
vehicles, people, traffic lights, etc.

This paper focuses on the second and third items of the aforementioned steps and
relies on the implementation of a lateral controller that automatically acts on the steering
wheel to track a reference trajectory. It is important to note that the design of the vehicle’s
longitudinal controller is beyond the scope of this work. Observe in fact that the later and
longitudinal dynamics are practically decoupled so that the longitudinal controller can be
designed separately.

Due to the high non-linearity of the system, the uncertainty in the model parameters,
and the presence of disturbances, robustness of the controller is an important goal. There
is rich literature that reports relevant research efforts to provide suitable lateral guidance
in autonomous vehicles. Beside standard (PI-PID) control approaches [10–14], approaches
based on Model Predictive Control (MPC) have attracted considerable attention in trajectory
following applications. In [15], an MPC algorithm that is in charge of generating smooth
and collision-free trajectories for a given predicted velocity profile was presented. In [16],
an MPC controller was designed so that the front steering angle is computed in order
to follow the trajectory on slippery roads at the highest possible entry speed. The MPC
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controller was designed by assuming that the trajectory is known over a finite horizon.
A model predictive controller that uses a speed-dependent adaptation of the prediction
model and cost function weights to ensure a stable and precise path tracking performance
was presented in [17]. An important issue was related to the fact that the performance of a
path tracking controller can be affected by system malfunctions due to internal factors (e.g.,
sensors and electronic device faults) or to the road (e.g., marking quality, etc.), light, and
weather conditions. In this respect, in [18,19], the LD system performance and probability
of fault were investigated with special focus on the effects of the physical infrastructure
related to road characteristics and conditions. In [20], a robust fault-tolerant path tracking
control algorithm based on adaptive MPC was proposed. The main drawback in the use of
MPC control strategies was in the computation time that, for high-speed driving, becomes
too large for real-time operations. Other control strategies have also been used for lateral
control purposes: a H∞ robust lateral controller for differential GPS-based autonomous
vehicle was adopted in [21] whilst a H∞ path-tracking control problem of network-based
autonomous vehicles was presented in [22]. Specifically, the controller has been shown to
be robust with respect to parameter uncertainties and external disturbances and to allow
for good performance in the presence of delays and packet dropout. In [23] and in [9],
Linear Quadratic Regulator (LQR) and sliding mode control approaches were presented,
respectively.

In this paper, the main goal is to design a control system able to perform the trajectory
following task for an autonomous vehicle. The control architecture accounted for is modular
and exploits information from onboard sensors and vision systems. The designed control
architecture is in charge of the following:

• Determining a reference trajectory in real-time on the basis of the output of a lane-
detection procedure that elaborates the environment information acquired by a
camera and

• Allowing for path following by controlling the steering angle.

A particularly complex problem arises when the road strips are incomplete or totally
missing and, hence, the camera is unable to suitably define the boundaries of the driv-
ing lane (e.g., country roads lacking suitable road signage, vehicle/queue management
when approaching toll gates or motorway connections, etc.). Furthermore, another im-
portant issue is guaranteeing the performance of the overall control system at various
vehicle speeds.

In this respect, this paper proposes a control architecture that is capable of verifying if
the lane-detection procedure is able to provide a lane estimation and, at the same time, to
provide a control action robust with respect to disturbances and variation in the vehicle
speed. The lane-detection procedure is designed according to [24], and the control action
exploits an optimal H∞ tracking controller that is computed by solving a convex LMI
optimization problem [25].

The paper is organized as follows. Section 2 describes the steering control architecture
and all of its subsystems: the lane-detection and the trajectory-generation modules and
the model of the vehicle lateral dynamics. In Section 3, the robust H∞ lateral controller is
presented, whilst in Section 4, the simulation results regarding two driving scenarios are
reported. Some conclusions end the paper.

2. Steering Control for Autonomous Vehicles

Steering control for autonomous vehicles is a control architecture that combines
various active safety systems and allows for a vehicle to follow a path computed in real-
time on the basis of the road conditions (Figure 1):

• Camera module, which records the current view of the road. The camera is directed
towards the front of the vehicle;

• Lane-detection module, which is in charge of detecting lane strips in an image. It
makes use of the detected strips in order to compute an estimation of the car position
within the lane;
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• Trajectory-generation module, which is in charge of computing the reference trajec-
tory (ψdes) on the basis of the lane estimation provided by the lane-detection module;

• Controller, which provides the necessary control actions to guarantee that the vehicle
follows the reference trajectory; and

• Vehicle lateral dynamics, which is the module that implements the mathematical
model of lateral vehicle motion.

Lane Detection

Module

Vehicle Lateral

Dynamics

Camera Module

Trajectory

Generation

Controller

Ψdes

Vx δ

[Ψ, Vy]’

Frame Lane estimation

Figure 1. Steering control schematic.

By taking into account the steering control schematic reported in Figure 1, the design
procedure was accomplished by considering two main tasks:

1. Designing and testing a video-processing algorithm in charge of providing an estima-
tion of the car position within the lane in a real application context and

2. Designing and validating a steering controller that allows the car to follow a reference
trajectory in a co-simulation environment.

In what follows, all of the devices and modules that pertain to the steering control
architecture are briefly described.

2.1. Camera Module

An autonomous vehicle can be equipped with various types of sensors (e.g., radar,
lidar, camera, etc.) located anywhere outside or inside the vehicle [1].

The monocular camera is a standard vision sensor used in automated driving appli-
cations. This type of sensor can be useful in object- and lane-boundary detection and in
object-tracking applications. As highlighted in Figure 2a, the camera coordinate system is
described by a standard Cartesian representation with the origin located at the cameras’
optical center. On the other side, the yaw, pitch, and roll angles are referenced according to
the ISO convention (refers to Figure 2b). The camera used in our application is a CMOS
FireFly MV camera (Figure 3a) [26,27]. Figure 3b shows the installation of the camera on
the car windshield. Note that, in the setup of the camera system, the parameters reported
in Table 1 were accounted for. The camera, with a specified rate, acquired the frames that
were outputted to the lane-detection module.
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(a) (b)

Yaw Pitch

Roll

Figure 2. Camera module: reference coordinates (a) and ISO convention (b).

Table 1. Camera parameters.

Parameter Description Value

X(m), Y(m) X-axis and Y-axis positions of the camera
in the vehicle coordinate system. [0.83, 3.8]

Height(m) Height of the camera above the ground. 1.2 m

Focal length (X,Y) Horizontal and vertical point at which
the camera is in focus. [0.83, 6.2]

Image Height and Width Horizontal and vertical point camera
camera resolution (in pixel). 752 × 480

Principal Point X and Y Horizontal and vertical image
center (in pixel). [376, 240]

Update Interval Camera updating frequency. 61 FPS

(a)

(b)

Figure 3. CMOS FireFly MV camera (a) and camera vehicle mounting (b).

2.2. Lane-Detection and Trajectory-Generation Modules

The lane-detection module is in charge of estimating the strips and road lanes. The
typical steps for lane strip identification are reported in Figure 4: the camera acquires
an image frame, and a preprocessing module in charge of improving the quality of the
frame starts (e.g., improves the image contrast, reduces the image noise, etc.). Then, the
processed image is further elaborated to extract the contours and to identify the pixels
belonging to the lane strips. A Kalman filter is used to predict and track the lane strips
over consecutive frames.

Finally, a fitting process procedure is accomplished to aggregate different groups of
pixels potentially belonging to the same strip and to provide the strip coordinates and an
estimate of the curvature. The strip-fitting problem could be made more efficient if one
knows that certain forms are present in the image and a good mathematical model (e.g.,
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linear, linear parabolic, polynomial, clothoid, and spline models) is available to describe
them. Here, lane-strip determination is based on a linear–parabolic (LP) fitting [28].

The basic idea is to separate the frame into two fields, near field and far field (Figure 5a),
using a fixed threshold xm and to perform a linear fitting in the first one and a quadratic
fitting in the second one. The curve that represents the strips is given by the following:

f (x) =
{

a + b(x− xm) x > xm
a + b(x− xm)x + c(x− xm)2 x ≤ xm

(1)

In order to accomplish such an LP fitting, the first step is to identify the two areas of
interest (Lane Boundary Region of Interest (LBROI)) within the current frame (Figure 5b).

Lane Detection

Image

Acquisition

Image

Preprocessing

Edge Extraction

Stripes

Identification

Line Fitting

Lane Tracking

Kalman

Filter

Figure 4. Lane-detection and tracking algorithm.

x

y

Far Field

Near Field
xm

(a)

LBROI

(b)

Figure 5. Linear–parabolic fitting: near and far field image separation (a) and LBROI (b).

The parameters a, b, and c of Equation (1) are determined by a linear fitting minimizing
the weighted quadratic error E:

E =
m

∑
i=1

Mni [yni − f (xni )]
2 +

n

∑
j=1

M f j

[
y f j
− f (x f j

)
]2

(2)

where (xni , yni ), with i = 1, . . . , m, represents the mth pixel coordinates and where Mni

represents the corresponding magnitudes (only for the pixels 6= 0). Similarly, (x f j
, y f j

) and
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M f j
, with j = 1, . . . , n, represent the same quantities for the n pixels in the far field with

magnitudes 6= 0.
The E error is minimized analytically by finding a solution to the following linear

system of equations:
ATWAC = ATWB (3)

where

A =



1 xn1 − xm 0
...

...
...

1 xnm − xm 0
1 x f1 − xm (x f1 − xm)2

...
...

...
1 x fn − xm (x fn − xm)2


, W =



Mn1
. . .

Mnm

M f1
. . .

M fn


(4)

C =
[

a, b, cT
]

, B =
[
yn1 , . . . , ynm , y f1 , . . . , y fn

]
(5)

The procedure is applied to both strips of the lane.
In Figure 6, the various phases of the lane-detection process are shown on a real

road frame.

(a) (b)

(c)

Figure 6. Lane detection: image acquisition and preprocessing (a), edge extraction (b), and line
identification (c).

Details about the implementation of the lane-detection algorithm can be found in [24].
At the end of the lane-detection procedure, the trajectory-generation computation task

starts. The trajectory-generation phase consists of finding the trajectory and of computing
its curvature on the basis of the information on the lane strips coming from the previous
step. In general, the reference trajectory consists of the curvature of the lane centerline
(refers to Figure 7) and can be computed as the average value between the left strip of the
lane and the right one. Furthermore, since the controller needs to receive the necessary
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information to generate the control action, the computed curvature needs to be recast in
terms of the desired yaw angle (ψdes). In this respect, the following are highlighted [29]:

• The reference angular velocity of the vehicle can be defined as ψ̇des = V/R, where V
is the vehicle speed at the center of gravity and R is the radius of curvature.

• The radius of curvature R can be computed as the inverse of the absolute value of the
curvature k at a point: R = 1/|k|.

Y

X

x

y

O

Lane

centerline

Ψdes

Ψ

Right Lane

Left Lane

Figure 7. Road representation used in lateral control, highlighting the lane centerline, and the left
and right lanes.

With reference to Equation (1) and Figure 8, in order to compute the curvature k, it
is necessary to consider the osculating circle, that is, the circle with radius R centered at
the curvature center. This circle allows one to locally approximate the curve up to the
second order. Then, the curvature k can be expressed in terms of the first- and second-order
derivatives of the curve f as [30]:

k =

∣∣ f̈ ∣∣
[1 + ḟ 2]3/2

(6)

Then, the desired yaw angle can be computed as follows:

ψdes =
∫ t

0
V|k|dt (7)

Center of curvature

Osculating 

circleRadius of 

curvature

1/k

α(t)

Figure 8. Osculating circle and radius of curvature.
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It is important to note that, due to the fact that it is preferable that the vehicle always
stays at the lane centerline, this task plays a key role in the overall steering control process.
Since the lane detection algorithm (Algorithm 1) can fail and the detection algorithm cannot
perform correct lane-strip identification, four cases must be accounted for in the reference
trajectory computation:

1. Both the left and right strips are detected.
2. Only the left strip is detected.
3. Only the right strip is detected.
4. The left and right strips are not found: in this case, a safe driving condition (limp

home driving mode) must be activated in order to avoid dangerous events from
taking place.

Then, the following logic is included in the computation of the curvature k for the
trajectory-generation procedure where r, kl , and kr are a constant indicating the half-lane
dimension (r = 1.8 [m]) and the curvature of the left and right strips, respectively.

Algorithm 1 Curvature computation

1: procedure CURVATURE(kl , kr)
2: if kl & kr then . Both the left and right strips are detected.
3: k = (kl + kr)/2
4: else if kl & !kr then . Only the left strip is detected.
5: k = kl/(1− kl ∗ r)
6: else if kr & !kl then . Only the right strip is detected.
7: k = kr/(1 + kr ∗ r)
8: else . The left and right strips are not found.
9: disable autonomous guidance and activate “limp home” strategy

10: end if
11: end procedure

The lane-detection and trajectory-generation algorithms were implemented via the
Image Processing and Computer Vision Toolbox available in Matlab/Simulink. In order to
build up a prototypal setup, the Matlab/Simulink code of the video-processing algorithm
was coded in the C language, suitable for the Board EVM TMS320DM642. This evaluation
module (Figure 9) is a low-cost standalone development platform that enables users
to evaluate and develop applications for the TI C64xx Digital Signal Processor (DSP)
family [31].

Figure 9. Board EVM TMS320DM642.
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2.3. Vehicle Lateral Dynamics

In the design of a model-based lateral controller for autonomous cars, knowledge
of the car model plays a key role in the design of the path planning and path-tracking
modules. Under certain assumptions (e.g., for low longitudinal speed of the vehicle), a
kinematic model can be considered for vehicle lateral motion. When this type of modeling
approach is adopted, it is possible to provide a mathematical description of the vehicle
motion without considering the forces that influence the motion. The motion equations are
simply based on geometric relationships.

In order to compute the motion equations for the kinematic model, the bicycle model
reported in Figure 10 is usually used [32]. In this figure, two coordinate systems are
highlighted: the world coordinate system (X, Y) and the body-fixed coordinate system (x, y).
The major assumption in the correct use of the kinematic model is that the velocities at
the points A and B are always oriented in the direction of the wheels’ orientation, i.e., this
corresponds to assuming that the wheel slip angles are zero, a condition that almost holds
true at low speeds. The total lateral force needed to ride a circular road of radius R is given
by the following:

A

B

C

k

k

x

y

Figure 10. Vehicle bicycle model.

Fy =
mv2

R
(8)

where m and v are the vehicle mass and the vehicle speed, respectively. The motion
equations for the kinematic model are given by the following [29]:

ẋk = vcos(ψ + β)

ẏk = vsin(ψ + β)

φ̇z = vcos(β)
l f +lr

(tan(δ f )− tan(δr))

(9)

where

• xk and yk are the trajectories;
• φz is the yaw angle;
• ψ is the vehicle orientation;
• β is the slip angle;
• l f and lr are the distances of points A and B from the center of gravity (C), respec-

tively; and
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• δ f and δr are the front and rear wheels steering angles, respectively. Note that the
steering angle of rear wheel is assumed to be δr = 0.

It is important to note that the kinematic model (9) is not accurate at higher longitudi-
nal vehicle speeds due to the fact that the previous assumption is no longer true. In this
case, a dynamic model of the lateral vehicle model should be accounted for.

The dynamic model can be derived by taking into account the two-degrees-of-freedom
bicycle model depicted in Figure 10, where the degrees of freedom are represented by the
vehicle lateral position (y) and the vehicle yaw angle (ψ). Then, starting from Newton’s
second law for motion along the y-axis and by computing the moment balance around the
vertical z-axis, the following model can be derived for the vehicle lateral dynamics: may = Fy f + Fyr

Izψ̈ = l f Fy f − lrFyr
(10)

in which

• ay is the inertial acceleration of the vehicle at the center of gravity in the y-axis
direction;

• Fy f and Fyr are, respectively, the lateral tire forces of the front and rear wheels; and
• Iz is the inertia of the vehicle around the z-axis.

In Equation (10), two terms contribute to the lateral acceleration (ay): the acceleration
due to the motion along the y-axis (ÿ) and the centripetal acceleration (vxψ̇). Furthermore,
the lateral tire forces are proportional to the slip angle that is defined as the angle be-
tween the orientation of the tire and the orientation of the velocity vector of the wheel
(see Figure 11).

Longitudinal axis of 

the vehicle

V

Tire

δ

θvf

Figure 11. Slip angle.

Then, Equation (10) can be written as follows: m(ÿ + ψ̇vx) = 2Cα f (δ− θv f ) + 2Cα f (−θvr)

Izψ̈ = l f 2Cα f (δ− θv f )− lr2Cα f (−θvr)
(11)

Furthermore, by assuming small-angle approximation [29],

θv f ≈
ẏ− l f ψ̇

vx
, θvr ≈

ẏ− lrψ̇

vx
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the following state-space model can be derived.

d
dt



y

ẏ

ψ

ψ̇

 =



0 1 0 0

0 −2
Cα f +Cαr

mvx
0 −vx − 2

Cα f l f−Cαr lr
mvx

0 0 0 1

0 −2
Cα f l f +Cαr lr

Izvx
0 −2

Cα f l2
f−Cαr l2

r
Izvx





y

ẏ

ψ

ψ̇

+



0

2Cα f
m

0

2Cα f l f
Iz


δ (12)

Since the objective is to design a steering control for automatic lane keeping in au-
tonomous vehicles, it is useful to consider a state-space model where the state variables
are the position error (e1, i.e., the distance of the center of gravity of the vehicle from the
centerline of the lane) and the orientation error with respect to the road (e2). Then, by
introducing the following error variables,

ė1 = ẏ +
∫

vx ė2dt, e2 = ψ− ψdes (13)

and by substituting them in Equation (11), the state-space model expressed in terms of the
traking error variables can be obtained:

d
dt



e1

ė1

e2

ė2

 =



0 1 0 0

0 −2
Cα f +Cαr

mvx
2

Cα f +Cαr
m −2

Cα f l f−Cαr lr
mvx

0 0 0 1

0 −2
Cα f l f +Cαr lr

Izvx
2

Cα f l f +Cαr lr
Iz

−2
Cα f l2

f−Cαr l2
r

Izvx





e1

ė1

e2

ė2

+



0

2Cα f
m

0

2Cα f l f
Iz


δ+

+



0

2Cα f
m

0

2Cα f l f
Iz


d +



0

− 2Cα f l f−2Cαr lr
mvx

− vx

0

2Cα f l2
f−2Cαr l2

r
Izvx


ψ̇des (14)

where δ = δ f is the front steering angle and d is a disturbance signal. Furthermore, by
assuming the following, it is possible to define the rate of change in the reference orientation
of the vehicles as ψ̇des =

vx
R :

• The vehicle rides at longitudinal velocity vx on a curved road of radius R.
• R is sufficiently large so that the small angle assumption holds true.

Then, by integrating the latter expressions, it is possible to compute the reference yaw
angle ψdes.

Remark 1. The position of the vehicle in the global (world) coordinates (X, Y) can be computed
from the body-fixed coordinates (ẋ, ẏ) as follows: X =

∫ t
0 (vxcos(ψ)− ẏsin(ψ))dt

Y =
∫ t

0 (vxsin(ψ) + ẏcos(ψ))dt
(15)

The lateral dynamics model given by Equation (14) is a function of the longitudinal vehicle
speed vx, which can be assumed to be a known varying parameter. The value of vx can be obtained
through a standard feedback control law (e.g., PI control) in charge of providing the control action
to track a desired speed vd

x.
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3. Problem Statement and Controller Design

In general, a lane-following system is a control system that allows the vehicle to
ride along a lane while maintaining a reference-set velocity and a safe distance from the
preceding vehicle. This type of system combines longitudinal and lateral control for the
following:

• Maintaining a driver-set velocity and to maintain a safe distance from the preceding
car by adjusting the acceleration of the vehicle (longitudinal controller), and

• Ensuring the vehicle travels along the centerline of the lane by regulating the steering
angle (lateral controller).

Within the above-described context, the control objective is to make the autonomous
vehicle track a desired reference trajectory via regulation of the steering angle δ. To proceed
to the controller design, the following compact state-space model of the vehicle lateral
dynamics is introduced. We denote the following:

• x = [e1, ė1, e2, ė2], the plant state;
• u = [δ], the manipulable input;
• ξ = [d, ψ̇des], the plant disturbance;
• y = x, the system output; and
• z = [e1, e2, ], the performance output signals.

Thus, the dynamic model (12) can be rewritten in the following parameter-dependent
state-space representation:

Σ :


ẋ(t) = A(vx(t)) + Bu(t) + Dd(vx(t))ξ(t)

y(t) = Cx(t)

z(t) = Czx(t)

(16)

where the system matrices depends on the varying parameter vx(t) that is assumed to be
bounded as

vx ≤ vx ≤ vx (17)

The goal of the proposed controller is to reduce the position and the orientation error
by controlling the steering angle. Another important issue in the controller design is related
to minimization of the effects of the disturbance term ψ̇des that causes the tracking errors
to not converge to zero when the vehicle rides along a curve. Then, by assuming that the
longitudinal velocity is bounded as described by Equation (17), it is possible to consider
static state-feedback control laws as possible controller candidates,

u(t) = Kx(t), (18)

to be computed by solving a H∞ optimal control synthesis problem that can be formulated
as a convex LMI optimization problem in the unknown matrices X = XT and Y [25]:

minX,Y,γ γ
s.t. AiX + BY + XAT

i + YT
i BT

i Ddi
XCT

z
DT

di
−γI 0

CzX 0 −γI

 < 0, i = 1, 2

X = XT > 0

(19)

where each vertex i = 1, 2 corresponds to the system matrices computed for vx = vx and
vx = vx. If solvable, the optimal H∞ control gain is given by K = YX−1.
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4. Simulations

In order to verify the effectiveness of the proposed approach, some simulations have
been undertaken under different guidance scenarios. In this respect, in order to consider
realistic driving scenarios, a co-simulation environment based on the joint use of the
MATLAB/Simulink © and Carsim 8 © packages was set up. The Carsim 8 software allows
one to simulate and test autonomous driving systems by providing the possibility to add
onboard vision systems as well as sensor fusion algorithms, path planning routines, and
vehicle controllers. Visualization features also include the bird’s-eye-view plot, sensors
(e.g., camera, radar, lidar, etc.) simulation and scope for sensor coverage, detections, and
tracks (Figures 12 and 13). The co-simulation environment model is depicted in Figure 14.
Essentially, five modules have been included in this model:

1. The Vehicle Model, which models the longitudinal and lateral dynamics of the car.
The inputs of the model are the longitudinal acceleration and the steering angle; the
outputs of the model are the lateral and longitudinal velocities, the XY positions and
velocities, the yaw angle, and the yaw rate of the vehicle;

2. The Carsim Module, which allows us to include all features related to the simulation
of a driving scenario in the simulation environment. This module enables us to
configure the vehicle parameters (Figure 12) and the camera point of view (Figure 13a).
All of the outputs of the vehicle model are inputs of this module; the outputs of the
module is a video containing the current scene (Figure 13b);

3. The Longitudinal Controller, which implements the control of longitudinal vehicle
speed (vx) through a PI controller. It computes the acceleration and deceleration
commands on the basis of the current reference longitudinal speed. In particular, the
controller implements the Stanley method, for which the details can be found in [14].

4. The Lane Detection and Trajectory Generation Module, which implements the algo-
rithm reported in Section 2.2 and provides an estimation of the reference yaw angle;

5. The Lateral Controller, which implements the H∞ controller described in Section 3
and provides the steering angle command to the vehicle model. The control algorithm
was designed in Matlab/Simulink, and the optimization problem (19) was solved
using the SeDuMi Matlab toolbox.

Figure 12. Carsim 8: vehicle parameter configuration.
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(a) (b)

Figure 13. Carsim 8: camera point of view configuration (a) and camera front view (b).

Longitudinal Controller

Lateral Controller

Carsim Module

Vehicle Model

Lane Detection

and

Trajectory Generation

Figure 14. Co-simulation environment.

The value reported in Table 2 were used as vehicle parameters.

Table 2. Vehicle parameters.

Parameter Value Description

M 1.575 Kg Vehicle mass
Iz 2.875[1.2] Inertia

l f 1.2 m Distance of the front tire from the
vehicle center of gravity

lr 1.2 m Distance of the rear tire from the
vehicle center of gravity

Cα f 19.000 N/rad Cornering stiffness of front tire
Cαr 33.000 N/rad Cornering stiffness of rear tire

Furthermore, in all scenarios accounted for (Figure 15), we considered longitudinal
speed always in the range 5 ≤ vx ≤ 30 m/sec.
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Figure 15. Simulation scenarios: scenario 1 (a) and scenario 2 (b).

4.1. Scenario 1

The first simulation scenario refers to a driving condition where the autonomous
vehicle must turn left on a road. Details about this scenario are reported in Figure 15a.
In this condition, the autonomous vehicle must be able to perform the necessary actions
allowing the car to ride on the road without taking risks. Then, the onboard electronic
devices and the electronic control unit must accomplish the following tasks:

• Estimate the road lane;
• Compute the reference trajectory; and
• Perform the control actions thanks to which the vehicle can follow the computed trajectory.

The results related to this scenario are reported in Figures 16 and 17. In particular,
Figure 16 shows a comparison between the reference and the vehicle trajectories in the
world coordinates. From this figure, it is evident that the proposed algorithm allows for
good performance to be achieved in terms of trajectory followed. This result is also evident
in Figure 17a,b, where a comparison between the reference and the measured yaw angle (a)
and the position and orientation errors (b) is reported. A more quantitative comparison
is reported in Table 3, where the error variables (Equation (13)) averaged along all the
simulation time steps are reported.

Table 3. Scenario 1: relative errors.

e1 (%) e2 (%)

Scenario 1 4.46 5.79
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Figure 16. Simulation scenario 1: vehicle and reference trajectories.

0 2 4 6 8 10 12 14 16 18

Time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[r
a
d

]

Yaw Angle

Yaw Angle

Reference Yaw Angle

(a)

0 2 4 6 8 10 12 14 16 18

Time [sec]

0

0.05

0.1

0.15

[m
]

Position error

0 2 4 6 8 10 12 14 16 18

Time [sec]

0

5

10

15

[r
a
d

]

10-3 Orientation error

(b)

Figure 17. Simulation scenario 1: comparison between reference and measured yaw angles (a) and
position and orientation errors (b).

4.2. Scenario 2

In order to test the proposed method in a more complex driving condition, the scenario
depicted in Figure 15b was taken into account. This scenario describes a driving condition
where three consecutive road curves must be faced. The results related to this second sce-
nario are reported in Figures 18 and 19. It is evident that, in this case, the controller allows
for good performance to be achieved in terms of the trajectory followed. Furthermore, as
expected, Figure 19 shows small position and orientation errors, which tend toward zero
when the curve ends and a straight road begins. As for the previous scenario, a quantitative
performance evaluation was performed In this respect, Table 4 reports the error variables
(Equation (13)) averaged along all the simulation time steps.
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Table 4. Scenario 2: relative errors.

e1[%] e2[%]

Scenario 2 5.06 6.19
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Figure 18. Simulation scenario 2: vehicle and reference trajectories.
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Figure 19. Simulation scenario 2: comparison between reference and measured yaw angles (a) and
position and orientation errors (b).

Remark 2. Video clips related to validation of the lane-detection algorithm in a real scenario and to
the assessment of the steering control algorithm can be found, respectively, at the following links:

• Lane detection algorithm in a real application scenario: https://youtu.be/4mcSdDFoivU
(accessed on 5 June 2021).

• Steering control test in the co-simulation environment: https://youtu.be/CNrHAG6a4QU
(accessed on 5 June 2021).

5. Conclusions

In this paper, a procedure for lateral control of an autonomous vehicle was developed.
The proposed approach consists of the design of a controller that is robust with respect to
disturbance and variations in longitudinal vehicle speed. The control law was designed

https://youtu.be/4mcSdDFoivU
https://youtu.be/CNrHAG6a4QU
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by solving a convex optimization problem and allows for a good trajectory-following
performance to be achieved with low online computations. In fact, the optimization prob-
lem used for the synthesis is solved offline and only the computed controller gain enters
the state-feedback control architecture. The simulations undertaken considered different
driving conditions, and the results demonstrate the robustness of the designed control law.
Despite these promising results, further efforts must be dedicated to improving the design
of both longitudinal and lateral controllers in order to provide an integrated solution. In
fact, this work focused on the design of a lateral control based on the assumption of an a
priori knowledge of the longitudinal speed. Moreover, the approach only addresses how
to eliminate orientation and position errors according to the desired path but does not
take into account coupling with the longitudinal dynamics. In this respect, future work
will address the design of a coupled lateral and longitudinal controller taking into account
the linear parameter varying (LPV) framework as a possible solution [33]. The choice of
the LPV framework is convenient in that it allows one use a single model to globally de-
scribe the dynamics of a nonlinear system subject to transitions between different working
points and conditions, related to changes of some fundamental system parameters [34] and
amenable for direct use for control synthesis purposes.
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