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Abstract: Pulse compression techniques are commonly used in linear frequency modulated (LFM)
waveforms to improve the signal-to-noise ratios (SNRs) and range resolutions of pulsed radars,
whose detection capabilities are affected by the sidelobes. In this study, a sidelobe reduction filter
(SRF) was designed and implemented using software defined radio (SDR). An enhanced matched
filter (EMF) that combines a matched filter (MF) and an SRF is proposed and was implemented.
In contrast to the current commonly used approaches, the mathematical model of the SRF frequency
response is extracted without depending on any iteration methods or adaptive techniques, which
results in increased efficiency and computational speed for the developed model. The performance
of the proposed EMF was verified through the measurement of four metrics, including the peak
sidelobe ratio (PSLR), the impulse response width (IRW), the mainlobe loss ratio (MLR), and the
receiver operational characteristics (ROCs) at different SNRs. The ambiguity function was then used
to characterize the Doppler effect on the designed EMF. In addition, the detection of single and
multiple targets using the proposed EMF was performed, and the results showed that it overcame
the masking problem due to its effective reduction of the sidelobes. Hence, the practical application
of the EMF matches the performance analysis. Moreover, when implementing the EMF proposed in
this paper, it outperformed the common MF, especially when detecting targets moving at low speeds
and having small radar cross-sections (RCS), even under severe masking conditions.

Keywords: sidelobe reduction filter; linear frequency modulated; enhanced matched filter

1. Introduction

Pulse compression techniques for linear frequency modulation (LFM) waveforms
are commonly used with surveillance and tracking radars. Since the LFM waveforms
have high Doppler tolerance, LFM pulse compression is accomplished by applying fre-
quency modulation to a long pulse before transmission. A pulse compression technique
is considered an essential feature in radar systems [1,2], where it is used for wide pulses
with low peak power to achieve a detection range and resolution that are provided by
narrow pulses with high peak power [3]. To achieve high range resolution, the compressed
wide pulse should have large spectral bandwidth. That same concept used for radar LFM
waveforms has been applied to ultrasonic guided waves [4], active thermal non-destructive
testing [5], and truncated-correlation photothermal coherence tomography [6]. A matched
filter (MF) is usually used to compress the received LFM signal and to improve the signal-
to-noise ratio (SNR) by adding compression gain to the received pulse [7]. The output
signal from the MF contains a peak spike, called the mainlobe, along with surrounding
low spikes, called sidelobes, as shown in Figure 1a [8]. Detection of a single target in the
line-of-sight of the radar using MF should be a simple process due to the absence of clutter.
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However, the signal received from a single target with a low radar cross-section (RCS)
can be dissimulated either by other signals due to various sources of clutter, including
clouds, mountains, and large buildings; or by a neighboring target with a large RCS, as
shown in Figure 1b [9]. This is due to the fact that the peak sidelobe ratio (PSLR) is close
to the nominal value of −13.2 dB for an LFM waveform [9]; i.e., the amplitude of the
first sidelobe is (10−13.2/20)× 100 ≈ 21.88% of the mainlobe. This was the main idea that
motivated us to design and implement an effective sidelobe reduction filter for pulsed LFM
radar that eliminates the sidelobes and solve the target’s dissimulating problem. Typical
scenarios include detecting vehicles beside a mountain or hill, and detecting unmanned
aerial vehicles (UAVs) masked by airplanes having large RCSs.

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

D el a y ( c ell)

- 4 0

- 3 0

- 2 0

- 1 0

0

A
m
pl
it

u
de

 (
d

B)

m ai nl o b e

Si d el o b es

(a)

100 150 200 250 300
Delay (cell)

-40

-30

-20

-10

0

A
m

p
li

tu
d

e 
(d

B
)

Detected target
Masked target

(b)

Figure 1. (a) Mainlobe and sidelobes of Matched Filter (MF) for a stationary target. (b) Masked target
within the sidelobes of a detected target.

Several methods are used for sidelobe reduction: In [10], the complementary method
was applied for LFM waveform to completely remove the sidelobes, where sequential
complementary codes (pulse-to-pulse) are transmitted sequentially. However, this method
has many barriers in real applications [11,12]. Other methods use a waveform that has good
autocorrelation function (ACF) properties with low autocorrelation sidelobe levels and
reduced impulse response width (IRW). Such a waveform can be obtained by using binary
codes [13], polyphase codes [14], Costas codes [15], and nonlinear frequency modulation
(FM) [16–18]. Another method uses powerful convex optimization to generate a waveform
that has a strong ACF and a PSLR of around −46 dB; see [19]. A new polyphase-code
with a good ACF with a PSLR value of around −40.2 dB was introduced in [20]. Although
these methods generate strong ACFs, they are limited for sidelobe reduction to specific
waveforms generated with optimized parameters only. Moreover, the sidelobe reduction
efficiency is affected by any change in the parameters of the waveform, which is considered
as a main drawback of these methods. Another technique that also has a good ACF is
applied to sonar waves, aiming to reduce levels of the sidelobes by using LFM–Costas
and generalized sinusoidal frequency-modulated trains which depend on the genetic
algorithm [21]. Depth and resolution optimization for thermal wave radar imaging by
generating good ACFs using frequency-phase modulated waveforms was performed in
one study [22], and adjustable frequency bandwidths and frequency chirp repetition rates
were optimized for LFM waveforms in [23].

An alternate solution to the sidelobe reduction by multiplying the output signals
from the MF with a prober window function, such as a Blackman, Flattop, Hanning, or
Hamming one, is discussed in [24]. In general, the Hamming window (HW) usually has
the best performance among the aforementioned techniques, since it reduces the level
of the sidelobes to lower than −40 dB. However, the IRW will increase, leading to a
degraded resolution; e.g., IRW = 1.33 bin [25]. Additionally, the level of the mainlobe
will be reduced. Window function optimization for sidelobe reduction after chirp signal
compression and for the design of FM signals was covered in [26]. In an ultrasonic
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nondestructive evaluation using LFM, combined windowed optimization tended to be
the best solution for narrowband systems when very low sidelobe levels were needed,
at the cost of reduced IRW [27]. The frequency domain weighting function for sidelobe
reduction to LFM by using double spatially variant apodization was applied in [28]. The
main drawback of the aforementioned windowing functions is the reduction of both the
resolution and mainlobe energy [9,29].

Other research approaches to reduce the sidelobe level include: the mismatched filter
(MMF), the Rihaczek and Golden (R-G) filter, and adaptive algorithms. In the first approach,
the MMF is designed by using the least-mean-square (LMS) criterion, where the MMF
follows the MF with a multiple-stage finite impulse response (FIR) or infinite impulse
response (IIR) filter to reduce the sidelobe level [30]. In [31], MMF minimizes the integrated
sidelobe level (ISL) by minimizing the sidelobes’ energy. In [32], MMF was applied for
LFM waveforms, resulting in a reduction of both mainlobe energy and resolution. In [33],
a proposed least-square MMF (LS-MMF) was applied to an FM waveform, resulting in
a PSLR enhancement of 8 dB. In [34], convex optimization was used with MMF for a
polyphase Barker with a PSLR of −46 dB. On the other hand, the second approach applied
an R-G filter [35], which operated in the frequency domain, to reduce the complexity of
a digital processor. An R-G filter improved by reducing its complexity based on a linear
programming algorithm is introduced in [36]. A modified R-G filter for binary codes that
reduces the sidelobe level to −40 dB through an optimization operation is discussed in [37].
However, the R-G filter has not been implemented for the LFM waveform.

In the third approach, several adaptive algorithms are used to reduce the sidelobes in
range direction. These adaptive algorithms include: the Wiener filter, the CLEAN algorithm,
and the adaptive pulse compression (APC) algorithm. The Wiener filter relies on space-time
adaptive processing to maximize the signal-to-interference ratio through clutter or jamming
interference cancellation [38]. The Wiener filter is also used for continuous LFM waveforms
in range direction [39,40]. The CLEAN algorithm removes interference from large scatterer
by adaptively removing its sidelobes via sequential subtraction process [41]. The CLEAN
algorithm was applied in [42] to remove the sidelobe interferences when expressing target
range profiles for wideband binary coding signals. The CLEAN algorithm has one main
drawback, which is that the Doppler effect must be removed before using the MF, which
is a complex process. In the APC algorithm, the sidelobes in the range direction are
reduced by applying a unique pulse compression filter for each range cell [43]. An APC
technique depending on the reiterative minimum mean-square error (RMMSE) algorithm
was used in [44]. The practical execution of this algorithm is limited by highly complex
calculations and sensitivity to Doppler mismatching. A modified MMF filter combined
with APC and least-squares for polyphase-code FM is presented in [45]. Recently, an
iterative deconvolution time-reversal method that can remove the blur caused by the
channel using the time-reversal method was shown in [46].

In the inverse filter technique for the LFM waveform, implemented in [47], the sidelobe
reduction is performed for the case of a zero-centered frequency LFM, where only the
peak value of the mainlobe will pass. This technique was then applied in [48] for synthetic
aperture radar (SAR) processing in range direction. Additionally, sidelobe reduction Barker–
LFM was utilized in [49]. The sibelobe reduction for squarer length polyphase codes by
using inverse filter technique was employed in [50,51]. For any type of length of waveform,
general sidelobe reduction was executed in [52] depending on phases of the waveform.

In this paper, all the calculations associated with the sidelobe reduction filter of
the designed and implementated enhanced matched filter (EMF) are dependent on the
parameters of the waveform, and hence the time of calculation is considerably reduced
compared to the phase-dependent technique used in [52]. Additionally, compared to the
results obtained in [47], which is applied only for the zero-centered frequency LFM, the
SNR is enhanced due to the reduced bandwidth of the sidelobe reduction filter of the EMF.
Additionally, the general formula that represents the filter is improved for the cases of
zero-centered and zero-started frequency LFM.
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Here, a sidelobe reduction filter (SRF) is modeled and implemented using software
defined radio (SDR). The proposed EMF combines the MF and the SRF. The performance
analysis of the filter was verified by the measurement of four different metrics including the
PSLR, IRW, mainlobe loss ratio (MLR), and receiver operational characteristics (ROCs) at
different SNRs. The designed EMF was then tested for the detection of single and multiple
targets using indoor and outdoor datasets. The obtained results showed that the proposed
EMF successfully overcame the masking problem due to its effective reduction of sidelobes.

Therefore, the main contributions in this paper include:

1. An EMF, combining the MF and the SRF, for LFM waveforms is proposed.
2. A derived formula for the frequency response of the SRF is presented, depending on

the parameters of the LFM signal and without using any iteration methods or adaptive
techniques as used previously in the literature, where the operational principle of
the MMF, R-G, Wiener, CLEAN, and APC algorithms depends on either an iteration
using least-squares, or optimization of an algorithm parameter to reduce the sidelobes.
Additionally, other techniques combine both iteration and optimization methods to
reduce the sidelobes [45].

3. Since the windowing functions and MMF [8] increase the IRW more than an MF, the
proposed EMF keeps the IRW equivalent to that resulting from an MF, hence reserving
the resolution. Additionally, it provides a considerable reduction in sidelobes.

4. The proposed EMF maintains the peak level of the mainlobe as MF does, while the
windowing function, MMF [8], and APC [53], reduce the peak value.

The paper is organized as follows: Section 2 presents the structure of the proposed EMF
and the mathematical model of the SRF. Section 3 investigates the performance of the
developed EMF, and also comparing its performance with previous work in the field.
Section 4 illustrates the real implementation and testing of the LFM radar with the proposed
EMF. Finally, conclusions are presented in Section 5.

2. Derivation of the Sidelobe Reduction Filter (SRF)

The usage of the conventional MF in processing the received discrete LFM signal in the
frequency domain is shown in Figure 2. The general form of the transmitted single-pulsed
LFM waveforms in discrete time form sN(n), is expressed by [54]:

sN(n) = A exp
(

jωon + j k π n2) n =

{
−N/2 6 n 6 N/2 zero-centered frequency

0 6 n 6 N − 1 zero-started frequency
(1)

where ωo = 2π fo/ fs is the discrete angular frequency shift, with fs and fo being sampling
frequency and frequency shift, respectively; A is the amplitude; k = Br/(N fs) is the
LFM chirp rate, where Br is the chirp bandwidth, and N is the number of samples in the
transmitted LFM waveform pulse.

Received 

signal
FFT

Reference signal or 

transmitted pulse  Ns n

IFFT

     N N NXr Sr S   

 NS 

 NS 

FFT

conjugate

Matched Filter ( MF )

 Nsr 
 NSr 

Mainlobe
sidelobes

 Nxr m

Figure 2. Block diagram of the conventional MF.
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The received signal srN(η) that is acquired from a single target can be presented as:

srN(η) = Ar sN(η − nd), (2)

where Ar is the amplitude of the received signal, nd is the delay received signal from target
due to two-way traveling, and η = {0, 1, 2, . . . , Nr − 1} is the received samples, with Nr
total samples in range direction. In the frequency domain, both the transmitted signal
sN(n) and the received signal srN(η) are converted using the fast Fourier transform (FFT)
to be SN

(
ω
)

and SrN
(
ω
)
, respectively. SrN

(
ω
)

and its conjugate, S∗N
(
ω
)
, are multiplied

together to obtain the correlation signal in frequency domain XrN
(
ω
)
. The resulting signal

XrN
(
ω
)

is converted into time domain signal xrN(m) by using the inverse FFT (IFFT),
which is the output of the MF, as shown in Figure 2.

The output xrN(m) of the MF is a compressed signal with m = 0, 1, . . . , M− 1, where
M = N + Nr − 1 is the total number of samples at MF output. The amplitude response
of MF for pulsed LFM is plotted for fs = 200 MHz, Br = 20 MHz, N = 500, Nr = 1024,
and nd = 200. The sidelobes at the MF output, due to the compression process, have
a significant effect on the detection of low RCS targets. The first sidelobe peak value
represents 21% of the mainlobe peak value .

To reduce these sidelobes, we propose an EMF which is shown in Figure 3. The
construction of the EMF includes a basic MF in addition to the SRF and IFFT blocks. Here
XrN

(
ω
)

is multiplied by HSRF
(
ω
)
, which is the frequency response of the SRF, to obtain

YSRF
(
ω
)
. IFFT is then applied to YSRF

(
ω
)

to obtain ySRF(m).

Received 

signal
FFT IFFT

 SRFy m

     SRF N SRFY Xr H   

 SRFH 

Sidelobe 

Reduction Filter

Enhanced-Matched Filter ( EMF )

Reference signal or 

transmitted pulse  Ns n

 NS 

 NS 

FFT

conjugate

 NXr  Nsr 
 NSr 

Mainlobe

Figure 3. Block diagram of the proposed EMF.

Figure 4 clarifies the concept of the SRF using the proposed EMF according to the
following scenario:

1. The parameters for pulsed LFM include: fs = 264 MHz, Br = 90 MHz, fo = 10 Mhz,
N = 147 sample size, and Nr = 441 sample size.

2. These parameters are used in Equation (1) to generate the LFM waveform.
3. The generated LFM waveform is then up-converted by the transmitter, and is then

propagated by means of the transmit antenna towards three targets (T1:T3). The time
domain of base-band transmitted signal, sN(n), and the absolute of its FFT, SN

(
ω
)
,

in Figure 5a,b, respectively. The transmitted signal, sN(n), is a complex signal that
contains the In-phase (I) and quadrature phase (Q) components.
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Figure 5. The transmitted signal in time and frequency domains:(a) sN(n); (b)
∣∣SN

(
ω
)∣∣.

4. The three reflected echoes from the three targets are summed up at the receive antenna;
then the receiver down-converts the received signal into a baseband. The amplitude of
the reflected echoes, having different RCSs and being located at different ranges, have
normalized amplitudes: Ar1 = 0.3162, Ar2 = 1, and Ar3 = 0.1. Consequently, the
received signals are time delayed by numbers of samples: nd1 = 53, nd2 = 141, and
nd3 = 265, which correspond to the ranges: d1 = 30 m, d2 = 80 m, and d3 = 150 m,
respectively.

5. The received signal after down-conversion at receiver, srN(η) is the sum of echo signal
from the three targets, and is expressed by:

srN(η) = Ar1 sN
(
η − nd1

)
+ Ar2 sN

(
η − nd2

)
+ Ar3 sN(η − nd3) (3)

6. In the frequency domain, the received signal SrN
(
ω
)

is expressed by:

SrN
(
ω
)
=Ar1 SN

(
ω
)

exp
(
−jωnd1

)
+ Ar2 SN

(
ω
)

exp
(
−jωnd2

)
+ Ar3 SN

(
ω
)

exp(−jωnd3)
(4)

The time domain of baseband received complex signal, srN(η), and the absolute of its
FFT,

∣∣SrN
(
ω
)∣∣, are shown in Figure 6a,b, respectively.
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7. The conjugate of the transmitted signal S∗N
(
ω
)

is then multiplied by the received
signal, SrN

(
ω
)
, to get the correlation signal in frequency domain, XrN

(
ω
)
:

XrN
(
ω
)
=
[
Ar1 SN

(
ω
)

exp
(
−jω nd1

)
+ Ar2 SN

(
ω
)

exp
(
−jω nd2

)
+ Ar3 SN

(
ω
)

exp(−jω nd3)
]
× S∗N

(
ω
)

= Ar1 XN
(
ω
)

exp
(
−jω nd1

)
+ Ar2 XN

(
ω
)

exp
(
−jω nd2

)
+ Ar3 XN

(
ω
)

exp(−jω nd3)

(5)

where XN
(
ω
)
= SN

(
ω
)
× S∗N

(
ω
)

is the Fourier transform of the autocorrelation
function of the transmitted signal.

8. Applying IFFT to XN
(
ω
)

to get xN
(
m
)
, which is the output of the MF in time domain.

The absolutes of XrN
(
ω
)

and xrN
(
m
)

are shown in Figure 7a,b, respectively.
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Figure 7. The matched filter output in frequency and time domains: (a)
∣∣XrN

(
ω
)∣∣; (b)

∣∣xrN
(
m
)∣∣.

9. The proposed frequency response of the SRF, HSRF
(
ω
)
, is given by:

HSRF
(
ω
)
=

DSRF
(
ω
)

XN
(
ω
) (6)

where DSRF
(
ω
)

is the frequency response of the desired output. DSRF
(
ω
)

is ob-
tained by selecting the mainlobe of xN(m) and zeroing the rest of samples to obtain
dSRF(m), and then applying FFT to dSRF(m). The desired outputs in frequency and
time domains, DSRF

(
ω
)

and dSRF(m), are shown in Figure 8a,c, respectively. The
autocorrelation functions of the transmitted signal in frequency and time domains,
XN
(
ω
)

and xN(m), are shown in Figure 8b,c, respectively. Figure 8e, is shown the
frequency response of the SRF, HSRF

(
ω
)
. The denominator, XN

(
ω
)
, represents the

MF output in frequency domain for a single target. XN
(
ω
)
, DSRF

(
ω
)
, and HSRF

(
ω
)



Sensors 2021, 21, 3835 8 of 35

are real signals as shown in Figure 8a,b and e, respectively. Detailed derivations of the
general form of the HSRF

(
ω
)

are shown in Appendix A for even and odd numbers of
samples. Accordingly, the result of applying on the MF output is the reduction of the
sidelobes without considering the transmitted or received LMF waveform.
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Figure 8. The sidelobe reduction filter: (a) DSRF
(
ω
)
, (b) XN

(
ω
)
, (c) dSRF(m), (d)

∣∣xN(m)
∣∣,

(e) HSRF
(
ω
)
.

10. The output of the SRF, YSRF
(
ω
)
, is given by:

YSRF
(
ω
)
=
[
Ar1 XN

(
ω
)

exp
(
−jωnd1

)
+ Ar2 XN

(
ω
)

exp
(
−jωnd2

)
+ Ar3 XN

(
ω
)

exp(−jωnd3)
]
× HSRF

(
ω
) (7)

From Equations (6) and (7):

YSRF
(
ω
)
= Ar1 DSRF

(
ω
)

exp
(
−jωnd1

)
+ Ar2 DSRF

(
ω
)

exp
(
−jωnd2

)
+ Ar3 DSRF

(
ω
)

exp(−jωnd3)
(8)

11. Finally the output of the EMF in the time domain, ySRF(m), is obtained via IFFT of
YSRF

(
ω
)
:

ySRF(m) = Ar1 dSRF(m− nd1) + Ar2 dSRF(m− nd2) + Ar3 dSRF(m− nd3) (9)
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The absolutes of YSRF
(
ω
)

and ySRF(m) are shown in Figure 9a,b, respectively.
Figure 9b shows that the PSLR corresponding to the proposed EMF is less than
that of the MF output shown in Figure 7b.
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Figure 9. The enhanced matched filter output in frequency and time domains: (a) YSRF
(
ω
)
,

(b) xrN(m), and ySRF(m).

The derivation of the mathematical formula for HSRF
(
ω
)

is explained in detail in
Appendix A. The general formulas of HSRF

(
ω
)

for odd N and HSRF,O
(
ω
)
, and even N and

HSRF,E
(
ω
)
, are given by:

HSRF,O
(
ω
)
=

Hno
(
ω
)

Hdo
(
ω
) (10)

where

Hno
(
ω
)
= N +

Nu
2 +1

∑
a=1

FON +

Nu
2

∑
a=1

FEN ,

Hdo
(
ω
)
= N + 2 cos((N − 1) Ωo ) +

N−1
2

∑
a=1

FON +

N−1
2 −1

∑
a=1

FEN ,

FON = 4

 N+1
2 −a

∑
b=1

ON

 cos((2a− 1)Ωo) , FEN = 2

 N−1
2 −a

∑
b=1

EN + 1

 cos(2a Ωo) ,

Nu = b fs/Brc , ON = cos((2a− 1)(2b− 1)π k) , EN = 2 cos(4 π a b k) ,

Ωo =

{
ω−ωo for zero-centered frequency LFM waveform

(N − 1)πk−ω + ωo for zero-started frequency LFM waveform
,

ω =
2π

Nr

[
0, 1, 2, ......, Nr − 2, Nr − 1

]
, and Nr is the total number of received samples.

HSRF,E
(
ω
)
=

Hne
(
ω
)

Hde
(
ω
) (11)

where

Hne
(
ω
)
= N +

Nu
2

∑
a=1

FGN +

Nu
2

∑
a=1

FPN ,

Hde
(
ω
)
= N + 2 cos((N − 1) Ωe) +

N
2 −1

∑
a=1

FGN +

N
2 −1

∑
a=1

FPN ,

FGN =

4

N
2 −a

∑
b=1

GN + 2

 cos((2a− 1)Ωe) , FPN = 4

 N
2 −a

∑
b=1

PN

 cos(2aΩe) ,
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GN = cos((2a− 1)(2πbk)) , PN = cos(2a(2b− 1)πk) , and

Ωe =

{
kπ + ω−ωo for zero-centered frequency LFM waveform
(N − 1)π k−ω + ωo for zero-started frequency LFM waveform

Figure 10 demonstrates a detailed flowchart of the proposed EMF for an LFM wave-
form. The main input parameters of the EMF include: the start frequency of the LFM
waveform, fs1; the stop frequency of the LFM waveform, fs2, fs, Nr, N, or fZero whose
value depends on whether the LFM waveform is zero-centered frequency, fZero = C,
or zero-started frequency— fZero = S, k = ( fs2 − fs1)/ fs, Br = | fs2 − fs1|, and ω =
(2π/Nr)(0, 1, 2, . . . , Nr − 1). For fZero = S, ωo = 2π fs1/ fs, and for fZero = C,
ωo = 2π[( fs2 + fs1)/2]/ fs. For odd N, the frequency response of the EMF is calculated
based on Equation (10), whereas for an even N, the frequency response of EMF is calculated
based on Equation (11).
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Figure 10. A detailed flowchart of the proposed EMF for an LFM waveform.

Hence, EMF utilizes the predefined values for the input parameters of the pulsed LFM
waveform without depending on any iteration methods or adaptive techniques as used
in current available methods discussed earlier in Section 1 (MMF, R-G filter, Wiener filter,
CLEAN filter, and APC).

3. Performance Analysis of the Proposed EMF

In this section, the performance of the proposed EMF is compared to the performances
of two common sidelobe reduction filters: the first one is a basic MF, and the second is a
Hamming filter (HF), which is a basic MF multiplied by a HW. This analysis considers a
single target, and the results were verified through measurements of four different metrics,
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including the PSLR, IRW, MLR, and ROC at different values of SNR. The ambiguity
function is then used to characterize the Doppler effect on the three filters. Then, to confirm
the efficiency of the proposed EMF in solving the masking problem, its performance is
compared with previous sidelobe reduction techniques, including modified MMF using
APC and least-squares for polyphase-code FM, which were presented in [45].

3.1. Performance Analysis Considering a Single Target

A flowchart of the performance analysis of MF, HF, and the proposed EMF, for a single
target, is shown in Figure 11.

Matched filter ( MF )

  Delay: ( )Ns n

Reference LFM waveform Target positionSNR

( )Nsr 

( ) ( ) ( )N N isrn sr N   

CFAR
Decision output

MF

Decision output
EMF

CFAR

Noise Generator

( )iN 

Decision output
HFCFAR

( )Ns n

Measure parameters

PSLR, IRW, and MLR

( )NXr 

 Nxr m

 HFy m

 SRFy m

Hamming 

Window
IFFT

Sidelobe Reduction 

Filter ( SRF )
IFFT

Enhanced-Matched Filter ( EMF )

Hamming 

Filter 

( HF )  HFY 

 SRFY 

 WH 

 SRFH 

Figure 11. Flowchart of the performance analysis of MF, HF, and the proposed EMF for a single target.

The performance analysis was carried out through the following steps:

1. Generating the reference LFM waveform, sN(n), using Equation (1) with the fol-
lowing parameter values: target range = 200 m, ωo = 0 rad/s, Br = 90 MHz, and
fs = 120 MHz. Considering three different values for N, 43, 85, and 171, which corre-
spond to three values of time bandwidth product (TBP) of the baseband LFM signal:
32, 64, and 128, respectively, where TBP = Br × N/ fs.

2. The reference LFM signal is delayed by the value of the target range to obtain srN(η).
3. Generating a normalized white Gaussian noise, Ni(η), with zero mean and unit

variance corresponding to SNR values of −30 to 30 dB.
4. Ni(η) and srN(η) are added to obtain srnN(η), which is the received signal at MF.
5. IFFT the output of MF, XrN

(
ω
)
, to obtain xrN(m).

6. XrN
(
ω
)

is multiplied by the frequency response of HW, HW(ω), to obtain YHF(ω).
IFFT of YHF(ω) to obtain yHF(m).

7. XrN
(
ω
)

is multiplied by HSRF to obtain YSRF(ω). IFFT of YSRF(ω) to obtain ySRF(m).
8. Having different performance measures (PSLR, IRW, MLR, and ROC) for the output

of three filters; xrN(m), yHF(m), and ySRF(m).
9. To obtain the ROC, use the smallest-of-cell-averaging (SOF-CA) constant false alarm

rate (CFAR) detector, which can detect very close targets [55]. A false alarm probability,
Pf a, of 10−6, is considered.

10. For every value of SNR, repeat the previous steps 200 times using a Monte–Carlo
simulation. Then, the mean value for each of the four metrics is calculated.

The PSLR is given by [56]:

PSLR = 20 log10(Peak value of mainlobe / Peak value of first sidelobe) (12)
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Figure 12a–d shows the SNR versus PSLR, both measured in dB, for different values
of TBP—32, 64, 128, and 256. For SNR low values, the HF, MF, and proposed EMF showed
almost the same PSLR performance. In Figure 12a–d, EMF shows better PSLR measures
than HF. When SNR increased over a certain value, EMF showed better PSLR measures
than MF for all values of TBP, due to the effective sidelobe reduction by the EMF. A reduced
PSLR indicates an enhanced detection performance.
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Figure 12. Peak sidelobe ratio (PSLR) versus SNR for MF, HF, and the proposed EMF: (a) TBP = 32,
(b) TBP = 64, (c) TBP = 128, (d) TBP = 256.

The PSLR was enhanced with the proposed EMF compared to MF for all SNR values,
for a TBP value of 32. The PSLR enhancements of the proposed EMF over MF started
at SNR values of −7.5683, −8.1221, and −10.0833 dB for TBP values of 64, 128, and 256,
respectively.

At SNR = 10 dB and TBP = 32, PSLR equaled −12.889, −22.712, and −29.857 dB for
MF, HF, and the proposed EMF, respectively.

At SNR = 10 dB and TBP = 64, PSLR equaled −12.956, −25.1024, and −29.4391 dB for
MF, HF, and proposed EMF, respectively.

At SNR = 10 dB, and TBP = 128, PSLR equaled −13.163, −26.6165, and −30.0499 dB
for MF, HF, and the proposed EMF, respectively.

At SNR = 10 dB, and TBP = 256, PSLR equaled −13.192 dB, −28.3198 dB, and
−31.4938 dB for MF, HF, and the proposed EMF, respectively.

Table 1 shows the IRW values (which represent the range resolutions in m) of HF, MF,
and EMF for different values of TBPs and SNRs. The EMF provided almost the same range
resolution as MF for different TBPs but high values of SNR. On the other hand, the EMF
provided better range resolution compared to the HF, which severely degraded the IRW.
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Table 1. Impulse response width (IRW) for HF, MF, and the proposed EMF.

TBP Filter Type −10 dB 0 dB 10 dB 20 dB

32
HF 2.5056 2.1269 1.9741 1.927
MF 1.0027 0.83506 0.78469 0.77456

EMF 1.1534 0.87025 0.79581 0.7745

64
HF 2.4596 2.0909 1.9542 1.9116
MF 0.95456 0.80981 0.76706 0.75012

EMF 1.1723 0.85037 0.77637 0.75544

128
HF 2.4441 2.0868 1.9548 1.9133
MF 0.937 0.79969 0.75719 0.74975

EMF 1.2516 0.84031 0.76406 0.74538

The MLR, measured in dB, is defined as the ratio of the mainlobe peak of the proposed
EMF, or HF, to the mainlobe peak of MF. The MLR can be expressed as:

MLR = 20 log10

(
mainlobe peak

(
EMF or HF

)
mainlobe peak

(
MF
) )

(13)

Table 2 shows the MLRs of the proposed EMF and HF for different values of TBPs and
SNRs.The proposed EMF maintained the mainlobe peak value with the minimum MLR,
especially for high SNRs. For HF, the MLR converged to zero as SNR increased for any TBP
value. Additionally, for a low SNR, the noise was the main cause of the increased value of
the MLR.

Table 2. Mainlobe loss ratio (MLR) for HF, and the proposed EMF.

TBP Filter Type −10 dB 0 dB 10 dB 20 dB

32 HF −4.3013 −4.9058 −5.1326 −5.2087
EMF 0.46276 0.16255 0.053266 0.017039

64 HF −4.4288 −4.9825 −5.1881 −5.2568
EMF 0.44535 0.15686 0.051422 0.016451

128 HF −4.4959 −5.0393 −5.2406 −5.3077
EMF 0.33908 0.11852 0.038769 0.012393

In Figure 13, the ROC is plotted against the SNR for different TBP values. The
probability of detection is expressed by [57]:

The probability of detection =

(
Ntt

N f a + Ntt + Nmt

)
× 100 (14)

where Ntt is the number of targets that have been correctly identified, N f a is the number
of falsely detected targets, and Nmt is the number of targets that have been missed. The
detection probability increased as SNR increased. For TBP = 32, as detection probability
approached 100%, the SNR of MF, HF, and EMF equaled −17.35, −15.2, and −17.9 dB,
respectively. For TBP = 64, as detection probability approached 100%, the SNR of MF,
HF, and EMF equaled −16.95, −13.1, and −18.15 dB, respectively. For TBP = 128, as
the detection probability approached 100%, the SNRs of MF, HF, and EMF equaled −19,
−15.45, and −19.35 dB, respectively. These values indicate that the detection capability of
the EMF is better than those of the HF and MF, especially for low TBP values.
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Figure 13. Receiver operational characteristic (ROC) for MF, HF, and the proposed EMF.

3.2. Ambiguity Function

In this subsection, the Doppler effect, which results due to the relative velocity between
the transmitter and receiver, on the PSLR is investigated using the LFM radar ambiguity
functions of the MF, HF, and EMF. For MF, the general form of the ambiguity function,
χMF(τ, ωd), is given by [29]:

χMF(τ, ωd) =

∣∣∣∣∫ (S∗N(ω)× SN(ω−ωd))× exp(−jω τ) dω

∣∣∣∣2 (15)

where SN(ω−ωd) = FFT[sN(n)× exp(−jωd τ)], τ is the time delay corresponding to
change in target range, and ωd is the Doppler frequency shift.

For HF, the ambiguity function can be expressed as:

χHF(τ, ωd) =

∣∣∣∣∫ (S∗N(ω)× SN(ω−ωd)× HW(ω)
)
× exp(−jω τ) dω

∣∣∣∣2 (16)

For EMF, the ambiguity function can be expressed as:

χEMF(τ, ωd) =

∣∣∣∣∫ (S∗N(ω)× SN(ω−ωd)× HSRF(ω)
)
× exp(−jω τ) dω

∣∣∣∣2 (17)

where HSRF
(
ω
)

is the frequency response of the SRF, given by either Equation (10) or
Equation (11). In Figure 14, the PSLR is plotted against the Doppler frequency ωd, in the
range from −17 to 17 KHz. These ωd values correspond to relative velocity from −3 to
3 Mach, at 2.4 GHz carrier frequency, fc, (which will be used in the experimental work).
The parameters of the pulsed LFM waveforms are: ωo = 0; Br = 90 MHz; fs = 120 MHz;
oversampling factor [54]; OSF = fs/Br = 1.33; and TBPs of 32, 64, and 128. As shown in
Figure 14, for TBP = 32, EMF outperformed MF and HF for all values of ωd, especially
at ωd = 0. For ωd = ± 17 KHz and TBP = 32, the PSLR of MF, HF, and EMF equals
−12.823, −30.435, and −67.071 dB, respectively. For ωd = ± 17 KHz and TBP = 64, the
PSLRs of MF, HF, and EMF equal −12.193, −36.144, and −58.344 dB, respectively. For
ωd = ± 17 KHz and TBP = 128, the PSLRs of MF, HF, and EMF equal −11.815, −38.207,
and −51.5205 dB, respectively. These values indicate that the detection capability of the
proposed EMF is better than those of the HF and MF, especially for low TBP values.
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Figure 14. PSLR versus Doppler frequency for the LFM MF, HF, and proposed EMF.

The main drawback of EMF is that Doppler shifts affect its PSLR performance, unlike
MF and HF, whose performances are almost unaffected by Doppler shifts. To practically
implement the proposed SRF, it is necessary to reduce the Doppler effect shift by select-
ing lower operational carrier frequencies such as VHF, UHF, L-band, and S-band which
are more suitable when detecting low-velocity targets such as ground vehicles, drones,
and UAVs. To overcome this drawback, the Doppler effect shift can be compensated by
replacing the value of ωo in Equations (10) or (11) by ωo + ωd. Hence, the best performance
for SRF was achieved at ωo + ωd instead of ωo. The value of ωd can be measured using
conventional methods.

3.3. Comparison of EMF Performance with Sidelobe Reduction Techniques

In this subsection, the performance of the proposed EMF is compared to a modified
MMF using APC and least squares for polyphase-code FM. The parameters given in [45]
are reused here, considering a LFM waveform: first target, T1, with 80 dB SNR and range
cell number 100; second target, T2, with 15 dB SNR and range cell number 95; total range
samples of 200, fs = 600 MHz, Br = 120 MHz, and TBP = 64.

Figure 15 represents the amplitude responses for MF, HF, and EMF. T2 is masked by
the sidelobes of T1 for MF and HF, whereas EMF can discriminate T1 and T2 due to its
effective reduction of the sidelobes of T1.
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Figure 15. The amplitude response of the proposed EMF, MF, and HF.

Table 3 lists the PSLR and IRW of T1 and T2, and the MLR of T1, for MF, HF, EMF,
and the results of [45]. It can be seen in Table 3 that EMF achieved good performance in
terms of the PSLR, while almost maintaining the IRW of MF. Additionally, the considerable
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reduction of MLR of T1 for EMF indicates the preservation of the mainlobe power. The
missed data in Table 3, concerning T2 for MF and HF, was due to masking of T2 by the
sidelobes of T1.

Table 3. PSLR comparison between EMF, MF, and HF in [45].

EMF MF HF [45]

PSLR T1 (dB) −99.5948 −13.6184 −33.2513 −80
IRW T1 (m) 1.125 1.085 1.62 . . .

PSLR T2 (dB) −32.5745 . . . . . . −20
IRW T2 (m) 1.0999 . . . . . . . . .
MLR T1(dB) 0.00026 . . . −5.31091 . . .

3.4. Performance Analysis Considering Multiple Targets

In this subsection, the proposed EMF is compared with MF and HF for detecting
multiple targets. Consider eight targets (T1 : T8) with the following parameters: Range
cell numbers 30, 50, 60, 79, 95, 100, 110, and 118, respectively. SNRs of targets 1, −3, 30,
0, 15, 10, 40, and −5, respectively; fs = 600 MHz. Figure 16 plots the frequency response
XrN(ω), HW(ω), and HSRF(ω). Figure 17 plots the amplitude responses versus range cells
of HF, MF, and EMF.
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Figure 16. The frequency response XrN(ω), HW(ω), and HSRF(ω): (a) case 1, (b) case 2, (c) case 3,
(d) case 4.

Figures 16 and 17 consider four cases of various parameters of the LFM waveform
(N, position of zero frequency, OSF, f0, Br, and Nr). These cases were investigated to verify
the efficiency of EMF for multi-targets detection with miscellaneous scenarios:

• For case 1 in Figures 16a and 17a, the LFM waveform parameters are: N = 236,
zero-started frequency, OSF = 4, fo = 10 MHz, Br = 140 MHz, and Nr = 1229.

• For case 2 in Figures 16b and 17b, the LFM waveform parameters are: N = 415,
zero-centered frequency, OSF = 2, fo = 175 MHz, Br = 250 MHz, and Nr = 1803.
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• For case 3 in Figures 16c and 17c, the LFM waveform parameters are: N = 528,
zero-started frequency, OSF = 1.5, fo = 40 MHz, Br = 360 MHz, and Nr = 2161.

• For case 4 in Figures 16d and 17d, the LFM waveform parameters are: N = 705, zero-
centered frequency, OSF = 1.1538, fo = 260 MHz, Br = 520 MHz, and Nr = 2731.
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Figure 17. The amplitude responses of the MF, HF, and proposed EMF for different values of LFM
waveform parameters: (a) case 1, (b) case 2, (c) case 3, (d) case 4.

As shown in Figure 17a–d, the performance of the designed EMF was better than the
performances of MF and HF due to its effective reduction of the sidelobes for different
values of LFM waveform’s parameters. All targets were detected successfully in the four
cases by EMF. Target T8, of low SNR, was masked in the four cases due to its near location
to T7, with high SNR. However, T8 was detected by the proposed EMF successfully due
to its effective sidelobe reduction, while not being recognizable by MF and HF. Target T2
was masked in the first three cases, and T4 in the first two cases, due to the masking effect
encountered by T3. In cases 3 and 4, the compression gain of MF increased due to increased
N value. Consequently, T2 was detectable in case 4, and T4 was detectable in cases 3 and 4.

Table 4 lists the measured values of PSLR, IRW, and MLR, of T3 and T7, for MF, HF,
and the proposed EMF, as shown in Figure 17a–d. The values of PSLR of T3 and T7 for EMF
were greater than the values acquired by MF and HF, indicating a much better sidelobe
reduction by EMF than by MF and HF. The values of IRW for EMF were almost the same
as those of MF, whereas HF degraded the IRW values. This emphasizes the preservation of
EMF to the targets’ range resolutions. The values of MLR for EMF were greater than those
of HF, indicating that EMF keeps the peak value of the target’s mainlobe.
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Table 4. Measurements of PSLR, IRW, and MLR, of T3 and T7, for MF HF, and EMF, as shown
in Figure 17.

Target Filter Type PSLR (dB) IRW (m) MLR (dB)

Figure 17a

T3
MF −13.451 3.71 . . .
HF −31.835 5.55 −5.3521

EHF −51.195 3.69 −0.062637

T7
MF −13.633 3.71 . . .
HF −37.415 5.55 −5.3267

EHF −61.104 3.7 −0.015993

Figure 17b

T3
MF −17.742 2.08 . . .
HF −35.825 2.98 −5.3315

EHF −48.673 2.07 −0.023585

T7
MF −17.914 2.08 . . .
HF −44.074 2.96 −5.3565

EHF −56.545 2.07 −0.0078977

Figure 17c

T3
MF −21.023 1.02 . . .
HF −34.92 2.12 −5.3468

EHF −53.362 1.02 0.0014252

T7
MF −21.191 1.02 . . .
HF −41.352 2.12 −5.3525

EHF −62.887 1.02 0.0050595

Figure 17d

T3
MF −28.408 0.38 . . .
HF −40.686 1.11 −5.3567

EHF −59.512 0.38 0.0085093

T7
MF −28.65 0.38 . . .
HF −44.026 1.12 −5.3529

EHF −67.991 0.38 0.0037488

By applying the proposed EMF to the ultrasonic band, the performance of the pro-
posed EMF is compared with MF for detecting multiple targets.

Consider five targets (T1:T5) with the following parameters: SNRs of targets 7, 3, 40,
11, and −3 respectively. Figure 18 shows a plots the frequency responses XrN(ω) and
HSRF(ω). Figure 19 shows plots of the amplitude response versus range cell for MF and
EMF. Figures 18 and 19 consider two cases of various parameters of LFM waveform (N,
position of zero frequency, OSF, f0, Br, fs, and Nr). These cases were investigated to verify
the efficiency of EMF for multi-target detection with miscellaneous scenarios:

• Case 5, in Figures 18a and 19a: five targets (T1:T5) have ranges of 4, 5.5, 8, 11, and 14 cm,
respectively. The ultrasonic wave propagates through iron with speed ν = 5960 m/sec.
The LFM waveform parameters are: N = 188, zero-started frequency, OSF = 3,
fo = 200 KHz, Br = 800 KHz, fs = 3 MHz, and Nr = 424.

• Case 6, in Figures 18b and 19b: five targets (T1:T5) have ranges of 10, 13.7, 20, 27.5, and
35 cm, respectively. The ultrasonic wave propagates through sea water with speed
ν = 1531 m/s.
The LFM waveform parameters are: N = 461, zero-centered frequency, OSF = 2.4,
fo = 20 KHz, Br = 180 KHz, fs = 480 KHz, and Nr = 912.

As shown in Figure 19a,b, the performance of the proposed EMF was better than that of
MF due to its effective reduction of the sidelobes for different values of LFM waveform
parameters. All targets were detected successfully in the two cases by EMF. Targets T1,
T2, T4, and T5 of low SNRs were masked in the two cases due to their nearness to T3,
which had a high SNR. However, T1, T2, T4, and T5 were detected by the proposed EMF
successfully due to its effective sidelobe reduction, but were not recognizable by MF, due to
the masking effect encountered by T3.
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Figure 18. The frequency response XrN(ω), and HSRF(ω): (a) an ultrasonic wave propagating
through iron, and (b) an ultrasonic wave propagating through sea water.
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Figure 19. The amplitude responses of the MF and the proposed EMF for different values of LFM
waveform parameters: (a) an ultrasonic wave propagating through iron, and (b) an ultrasonic wave
propagating through sea water.

Table 5 lists the measured values of PSLR, IRW, and MLR, of T3 and T5, for MF, and
the proposed EMF, shown in Figure 19a,b. The values of PSLR of T3 and T5 for EMF are
greater than the values acquired by MF, indicating a much better sidelobe reduction of
EMF compared to MF. The values of IRW for EMF are almost the same as those of MF,
which emphasizes the preservation by EMF of the targets’ range resolutions. The values of
MLR for EMF indicate that EMF keeps the peak value of the target’s mainlobe.

Table 5. Measurements of PSLR, IRW, and MLR, of T3 and T5, for MF and EMF, as shown in Figure 19.

Target Filter Type PSLR (dB) IRW (cm) MLR (dB)

Figure 19a
T3 MF −14.06 3.13 . . .

EHF −61.719 3.1 −0.0095694

T5 MF . . . . . . . . .
EHF −18.338 2.41 . . .

Figure 19b
T3 MF −13.48 2.22 . . .

EHF −56.796 2.22 0.0071165

T5 MF . . . . . . . . .
EHF −15.618 1.99 . . .

From previous results, the proposed EMF can be applied to ultrasonic guided waves,
active thermal non-destructive testing, and truncated-correlation photo-thermal coher-
ence tomography.
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4. Practical Proof Using SDR

The executed practical proof that validates the theory presented earlier in Section 2 is
presented in this section. The pulsed LMF radar with the proposed EMF was implemented
on Peripheral Component Interconnect (PCI) eXtensions for Instrumentation (PXI) system.
PXI is a compact PC-based platform for automation systems and measurement built
by National Instruments (NI). It has an Intel Core i7 processor within controller model
PXIe-8135 and model PXIe-5644R which consists of a PXI Vector signal transceiver (VST).
The VST is divided into a vector signal analyzer (Receiver; RX), vector signal generator
(Transmitter; TX), and a field-programmable gate array (FPGA) real-time processing. The
previous components were adjusted in chassis model PXIe-1082. An external function
generator was used to adjust the proposed pulse repetition frequency (PRF) of the radar
system. The experimental work was divided into two main phases: an indoor phase
implemented in the laboratory, and an outdoor phase performed in an open field.

4.1. Experimental Work in the Laboratory

The experimental work in the laboratory was handled using the prescribed LMF
radar system after programming the radar receiver with a MF and the proposed EMF. The
experimental setup is shown in Figure 20a.
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Figure 20. Experimental work in the laboratory: (a) Setup of the experiment. (b) Block diagram of
experimental setup.

The transmitted LFM signal was directed to the receiver by a closed loop between
TX and RX, without using an antenna. Figure 20b shows a block diagram describing the
experimental work: A zero-centered frequency LFM signal—Br = 50 Hz, fc = 2.4 GHz,
fs = 120 MHz, N = 4394, Nr = 5380, PRF = 10 KHz, and transmitted power = 0 dBm—
was produced by the LFM pulse generator. The frequency of the generated LFM signal was
up-converted by a local oscillator (LO). The transmitted LFM signal was split using a 2-way
RF splitter into two portions: The first one was shown on a spectrum analyzer to verify the
band width and power of the LFM waveform. The second one was directed to RX, after
being attenuated by a 30 dB attenuator, and then delayed by 3 µs. The received samples
were down-converged at RX, and then processed by using MF and EMF. The results of the
indoor experimental setup are shown in Figure 21. The in-phase and quadrature-phase of
the received LFM signal in time domain are shown in Figure 21a. The frequency spectrum
of the received LFM signal is shown in Figure 21b. The amplitude response of the LFM
signal after being processed by both MF and EMF is shown in Figure 21c. It can be seen
that the proposed EMF reduced sidelobes by 50 dB with respect to MF. These experimental
results matche the theoretical results introduced earlier in Section 3.
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Figure 21. Results of the indoor experimental setup: (a) Received signal in the time domain.
(b) Frequency spectrum of the received LFM signal. (c) Amplitude responses of MF and EMF.

4.2. Outdoor Experimental Work

The open field experimental work considered the detection of multiple targets. The
experimental setup was the same as that used in the laboratory, but using two antennas as
TX and RX instead of a single one; see Figure 22.

In this case, two antennas were used since the maximum output power from the
PXI system was 0.1 watt, which is considered a very low power output for pulsed LFM
radar. These antennas allowed the synchronous operation of TX and RX; hence echoes
from targets within a short range could be received properly.

This guaranteed increasing the pulse width and consequently increasing the average
power of the received signal, hence overcoming the dead zone problem which arises if
a single antenna is used. Additionally, the usage of two antennas is better than using
a circulator because the circulator attenuates the received signal [58] and improves the
isolation level between TX and RX [59]. As shown in Figure 22a, two grid parabolic
antennas, model TL-ANT2424B, operated at 2.4 GHz central frequency, with gain 24 dBi,
were used. The power from TX was adjusted to 0 dBm. Six targets at different ranges
were used, as shown in Figure 22b. The outdoor practical setup is represented in the
block diagram shown in Figure 22c. CFAR was executed on the signals of both EMF and
MF—xrN(m) and ySRF(m), respectively—to detect the six targets. The parameters of the
transmitted LFM waveform, which was generated by the LFM pulse generator, included:
zero-centered frequency LFM signal, Br = 60 Hz, fc = 2.4 GHz, fs = 120 MHz, N = 4394,
Nr = 4668, PRF = 1 KHz, and transmitted power= 0 dBm.

Results of the outdoor experiment are shown in Figure 23. The in-phase and quadra-
ture phase of the received LFM signal in the time domain are shown in Figure 23a, which
represent the sums of reflections from the six targets and the reflections from clutters. The
frequency spectrum of the received LFM signal is shown in Figure 23b. The amplitude
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responses of the LFM signal after being processed by EMF and MF are shown in Figure 23c.
The outdoor experimental results match the theoretical results introduced in Section 3.
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Figure 22. The open field experiment’s results: (a) Experimental setup. (b) Target locations. (c) Block
diagram of the experiment setup.
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Figure 23. The open field experiment’s results: (a) Received signal in the time domain. (b) Frequency
spectrum of the received LFM signal. (c) Amplitude responses of MF and proposed EMF.
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The IRW, PSLR, and MLR for every target in the outdoor experimental set-up were
measured from Figure 23c, and are listed in Table 6. It can be noticed that the proposed EMF
reduced the PSLRs and IRWs of the six targets, compared to MF. Additionally, increases in
the peak values of the mainlobe were noticed when using EMF in contrast to MF.

Table 6. Measurements of IRW, PSLR, and MLR for the targets of the outdoor experiment.

Target
IRW (m) PSLR (dB) MLR (dB)

MF EMF MF EMF EMF

T1 2.2375 1.7875 −17.5351 −27.0832 1.0484
T2 2.5625 1.2375 −14.9137 −26.2448 2.8314
T3 2.2125 1.8625 13.8235 −30.5081 1.2425
T4 2.200 1.8375 −11.5365 −28.375 0.66079
T5 2.025 1.8875 −16.3496 −31.1558 0.34026
T6 1.9875 1.775 −13.0407 −23.3083 0.0040

Figure 24 shows CFAR detection, with Pf a = 10−6, for the output signals of MF and
EMF. CFAR-T and CFAR-D are CFAR threshold and detection, respectively. Any value
of either MF or EMF above CFAR-T resulted in a CFAR-D value of 1, which corresponds
to a detected target. Any value under CFAR-T resulted in a CFAR-D value of 0, which
corresponds to an undetected target. Figure 24a shows CFAR detection for MF, where the
CFAR-T level is high due to the existence of sidelobes; consequently, T2, T3, and T4 were
not detected.

0 2 0 4 0 6 0 8 0 1 0 0

R a n g e ( m)

0

0. 2

0. 4

0. 6

0. 8

1

Nor
mal

iz
e a

mpl
itu

de

 M F
 C F A R- D
 C F A R- T

T 1 T 2 T 3 T 4 T 5 T 6 Si d el o b e 
a p p e a r as 

t a r g ets

(a)

0 2 0 4 0 6 0 8 0 1 0 0

R a n g e ( m)

0

0. 2

0. 4

0. 6

0. 8

1

Nor
mal

iz
e a

mpl
itu

de

 E M F
 C F A R- D
 C F A R- T

T 6T 5T 4T 3T 2T 1

(b)

Figure 24. CFAR detection, with Pf a = 10−6, for MF and the proposed EMF: (a) MF.
(b) Proposed EMF.
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Additionally, the sidelobes corresponding to T6 appear as false targets due to their
high RCS. Finally, only T1, T3, and T5 were detected.

Figure 24b shows CFAR detection for EMF: the CFAR-T level was reduced due to the
efficient reduction of the sidelobes. Consequently, T1-T6 were all clearly detected without
the presence of any false targets. Additionally, the sidelobes of T6 were considerably
reduced by the proposed EMF, and hence the sidelobes corresponding to T6 do not appear
as false targets. These results confirm practical efficiency of the designed and implemented
EMF in sidelobe reduction and multi-target detection.

5. Conclusions

A new approach for LFM waveform sidelobe reduction in-range was introduced in this
paper: an EMF combining SRF and MF which we implemented. One of the advantages of
the new algorithm is that its generated SRF produces a frequency response from a derived
mathematical model that depends on the LFM waveform parameters. Additionally, the
designed EMF shows more enhanced PSLR measures than HF and common MF. The
developed EMF was applied using a NI-PXI module and was assessed by evaluating the
obtained MLR, PSLR, and IRW, and then comparing them to the corresponding ones of
the common MF. The results showed that the applied EMF had a 50 dB sidelobe reduction
compared to MF. Moreover, the EMF reduced IRWs and PSLRs more than MF. In addition,
the mainlobe peak value was quite similar to that produced by MF and had a noticeable
enhancement compared to the corresponding one when using HF. The proposed EMF can
improve nondestructive testing and evaluation when using an LFM waveform due to its
effective reduction of sidelobes and solving masking problems. In the paper, the findings
of the theoretical analysis and the results from the experimental work carried out in a
laboratory and in an open field matched and confirmed the remarkable efficiency of the
proposed EMF in sidelobe reduction and multi-target detection.
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Appendix A. Derivation of the Frequency Response of the SRF; HSRF
(
ω
)

This derivation is performed according to the number of samples, within the wave-
form, N, and the parameters of LFM waveform including fs and Br. The desired output
signal is the peak value of xN

(
m
)

and the rest of samples are zeroed [47]. Hence, the
resulting bandwidth of the desired output is widened. Consequently, the SNR is reduced.
In order to increase the SNR in the EMF, it is mandatory to reduce the bandwidth of the
desired output. This can be achieved by modifying the desired output signal in the time
domain, dSRF,N

(
m
)
, which will be composed of the samples in the mainlobe of xN(m), and

by zeroing the rest of samples outside the mainlobe. An empirical formula of the number
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of samples in the mainlobe, Nm, based on selecting a fixed value of fs and varying the
values of Br, is expressed as:

Nm = 1 + 2 Nu (A1)

where Nu = b fs/Br.c.
For a pulsed LFM waveform with fs = 120 MHz and Br = 50 MHz, Nm = 5: this

value of Nm will be used to verify the derivation of the frequency response of the SRF.

Appendix A.1. Derivation of HSRF
(
ω
)

:

In this subsection, HSRF
(
ω
)

will be derived considering the discrete single-pulse
LFM signal s(n) in Equation (1) for even and odd values of N. Accordingly, HSRF

(
ω
)

is
defined as:

HSRF
(
ω
)
=

{
HSRF,O

(
ω
)

for odd N
HSRF,E

(
ω
)

for even N
(A2)

The methodology of deriving HSRF,O
(
ω
)

and HSRF,E
(
ω
)

can be summarized as follows:

1. Autocorrelation for the discrete single-pulse LFM signal, sN
(
n
)
, to obtain xN

(
m
)
.

2. FFT of xN
(
m
)

to get XN
(
ω
)
, which is the input signal of the SRF.

3. The desired output signal, dSRF,N
(
m
)
, is composed of the samples in the mainlobe of

xN
(
m
)
, while zeroing the rest of samples outside the mainlobe.

4. FFT of dSRF,N
(
m
)

to get DSRF,N
(
ω
)
.

5. The frequency response of the SRF is HSRF,N
(
ω
)
= DSRF,N

(
ω
)
/XN

(
ω
)
.

6. Manipulating HSRF,N
(
ω
)

to obtain a compact form.
7. For odd N of an LFM waveform with zero-centered frequency and zero-started

frequency, HC
SRF,O

(
ω
)

and HS
SRF,O

(
ω
)

are generated, respectively, which are then
combined to get HSRF,O

(
ω
)
. as shown in Figure A1.

8. For even N of an LFM waveform with zero-centered frequency and zero-started
frequency, HC

SRF,E
(
ω
)

and HS
SRF,E

(
ω
)

are generated, respectively, which are then
combined to get HSRF,E

(
ω
)
. as shown in Figure A1.
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Figure A1. Generation of the frequency response of SRF for even and odd values of N.

Appendix A.1.1. Derivation of HSRF,O
(
ω
)

for odd N:

HSRF,O
(
ω
)

is obtained by considering the frequency responses of the SRF for an
LFM waveform with zero-centered frequency and zero-started frequency, HC

SRF,O
(
ω
)

and
HS

SRF,O
(
ω
)
, respectively.
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For odd N and zero-centered frequency; HC
SRF,O

(
ω
)
:

HC
SRF,11

(
ω
)
, for N = 11, and HC

SRF,13
(
ω
)
, for N = 13, are used to get a general formula

for HC
SRF,O

(
ω
)
.

HC
SRF,11

(
ω
)

and HC
SRF,13

(
ω
)
: Consider the general form of a transmitted discrete

single-pulsed LFM waveform sN(n), given in Equation (1).
For N = 11 and zero-centered frequency,

s11(n) =
[
ej(25πk−5ωo), ej(16πk−4ωo), ej(9πk−3ωo), ej(4πk−2ωo), ej(πk−ωo), 1,

ej(πk+ωo), ej(4πk+2ωo), ej(9πk+3ωo), ej(16πk+4ωo), ej(25πk+5ωo)
] (A3)

where n = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. The autocorrelation function x11(m), for
s11(n), considers a linear correlation whose length is 2N − 1 = 21, and it can be written as:

x11(m) =
∞

∑
n=−∞

s∗11(n)s11(n + m− N) , m = 1, 2, 3, ....., 2N − 2, 2N − 1 (A4)

Hence, x11(m) has 21 {q1, q1, q2, . . . , q21} which are given by:

q1 = ej(25kπ−5ωo)e−j(25kπ+5ωo) ,

q2 = ej(25kπ−5ωo)e−j(16kπ+4ωo) + ej(16kπ−4ωo)e−j(25kπ+5ωo) ,

q3 = ej(25kπ−5ωo)e−j(9kπ+3ωo) + ej(16kπ−4ωo)e−j(16kπ+4ωo) + ej(9kπ−3ωo)e−j(25kπ+5ωo) ,

q4 = ej(25kπ−5ωo)e−j(4kπ+2ωo) + ej(16kπ−4ωo)e−j(9kπ+3ωo) + ej(9kπ−3ωo)e−j(16kπ+4ωo)

+ ej(4kπ−2ωo)e−j(25kπ+5ωo) ,

q5 = ej(25πk−5ωo)e−j(πk+ωo) + ej(16πk−4ωo)e−j(4πk+2ωo) + ej(9πk−3ωo)e−j(9πk+3ωo)

+ ej(4πk−2ωo)e−j(16πk−4ωo) + ej(πk−ωo)e−j(25πk−5ωo) ,

q6 = ej(25πk−5ωo) + e−j(25πk+5ωo) + ej(16πk−4ωo)e−j(πk+ωo) + ej(9πk−3ωo)e−j(4πk+2ωo)

+ ej(4πk−2ωo)e−j(9πk+3ωo) + ej(πk−ωo)e−j(16πk+4ωo) ,

q7 = ej(25πk−5ωo)e−j(πk−ωo) + ej(16πk−4ωo) + e−j(16πk+4ωo) + ej(9πk−3ωo)e−j(πk+ωo)

+ ej(4πk−2ωo)e−j(4πk+2ωo) + ej(πk−ωo)e−j(9πk+3ωo) + ej(πk+ωo)e−j(25πk+5ωo) ,

q8 = ej(25πk−5ωo)e−j(4πk−2ωo) + ej(16πk−4ωo)e−j(πk−ωo) + ej(9πk−3ωo) + e−j(9πk+3ωo)

+ ej(4πk−2ωo)e−j(πk+ωo) + ej(πk−ωo)e−j(4πk+2ωo) + ej(πk+ωo)e−j(16πk+4ωo)

+ ej(4πk+2ωo)e−j(25πk+5ωo) ,

q9 = ej(25πk−5ωo)e−j(9πk−3ωo) + ej(16πk−4ωo)e−j(4πk−2ωo) + ej(9πk−3ωo)e−j(πk−ωo)|

+ ej(4πk−2ωo) + e−j(4πk+2ωo) + ej(πk−ωo)e−j(πk+ωo) + ej(πk+ωo)e−j(9πk+3ωo)

+ ej(4πk+2ωo)e−j(16πk+4ωo) + ej(9πk+3ωo)e−j(25πk+5ωo) ,

q10 = ej(25πk−5ωo)e−j(16πk−4ωo) + ej(16πk−4ωo)e−j(9πk−3ωo) + ej(9πk−3ωo)e−j(4πk−2ωo)

+ ej(4πk−2ωo)e−j(πk−ωo) + ej(πk−ωo) + e−j(πk+ωo) + ej(πk+ωo)e−j(4πk+2ωo)

+ ej(4πk+2ωo)e−j(9πk+3ωo) + ej(9πk+3ωo)e−j(16πk+4ωo) + ej(16πk+4ωo)e−j(25πk+5ωo) , and

q11 = 11 .

whereas q12 to q21 are expressed as: q11+l = q∗11−l , l = {1, 2, . . . , 10}.
Next, apply FFT on x11(m) to obtain X11

(
ω
)
:

X11
(
ω
)
=
(

∑20
m=0 x11(m)e−j 2πmω

21

)
ej10ω (A5)
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For simplicity, Equation (A5) can be expressed as:

X11
(
ω
)
= 11 + ∑10

λ=1 Aλ (A6)

where Aλ = q11−λ ejλω + q11+λ e−jλω.
The desired output in time domain for N = 11, dC

SRF,11(m), which is composed of the
samples in the mainlobe, x11(m), while zeroing the rest of samples outside the mainlobe,
for Nm = 5, can be written as:

dC
SRF,11(m) = {0, 0, 0, 0, 0, 0, 0, 0, q9 , q10 , 11 , q12 , q13 , 0, 0, 0, 0, 0, 0, 0, 0} (A7)

FFT of dC
SRF,11(m) to get DC

SRF,11
(
ω
)
:

DC
SRF,11

(
ω
)
=
(

∑20
m=0 dmC

SRF,11(m)e−j 2πmω
21

)
ej10ω

= 11 + q10 ejω + q12 e−jω + q9 ej2ω + q13 e−j2ω

= 11 + ∑2
λ=1 Aλ

(A8)

Since
HC

SRF,11
(
ω
)
= DC

SRF,11
(
ω
)
/X11

(
ω
)

(A9)

Then, from Equations (A6) and (A8), and after manipulations, a simplified formula
for HC

SRF,11
(
ω
)

can be written as:

HC
SRF,11

(
ω
)
=

11 + ∑2
λ=1 Bc11

λ

(
ω
)

11 + ∑10
λ=1 Bc11

λ

(
ω
) (A10)

where

Bc11
1 = 4

[
cos(kπ) + cos(3kπ) + cos(5kπ) + cos(7kπ) + cos(9kπ)

]
cos

(
(ω−ωo)

)
,

Bc11
2 =

[
2 + 4 cos(4kπ) + 4 cos(8kπ) + 4 cos(12kπ) + 4 cos(16kπ)

]
cos

(
2(ω−ωo)

)
,

Bc11
3 = 4

[
cos(3kπ) + cos(9kπ) + cos(15kπ) + cos(21kπ)

]
cos

(
3(ω−ωo)

)
,

Bc11
4 =

[
2 + 4 cos(8kπ) + 4 cos(16kπ) + 4 cos(24kπ)

]
cos

(
4(ω−ωo)

)
,

Bc11
5 = 4

[
cos(5kπ) + cos(15kπ) + cos(25kπ)

]
cos

(
5(ω−ωo)

)
,

Bc11
6 =

[
2 + 4 cos(14kπ) + 4 cos(24kπ)

]
cos

(
6(ω−ωo)

)
,

Bc11
7 = 4

[
cos(7kπ) + cos(21kπ)

]
cos

(
7(ω−ωo)

)
,

Bc11
8 =

[
2 + 4 cos(16kπ)

]
cos

(
8(ω−ωo)

)
,

Bc11
9 = 4

[
cos(9kπ)

]
cos

(
9(ω−ωo)

)
, and

Bc11
10 = 2 cos

(
10(ω−ωo)

)
.

For N = 13 and zero-centered frequency, and by following the same procedures used
for the derivation of HC

SRF,11
(
ω
)
, HC

SRF,13
(
ω
)

can be written as:

HC
SRF,13

(
ω
)
=

13 + ∑2
λ=1 Bc13

λ

(
ω
)

13 + ∑12
λ=1 Bc13

λ

(
ω
) (A11)

where

Bc13
1 = 4

[
cos(kπ) + cos(3kπ) + cos(5kπ) + cos(7kπ) + cos(9kπ) + cos(11kπ)

]
cos

(
(ω−ωo)

)
,

Bc13
2 =

[
2 + 4 cos(4kπ) + 4 cos(8kπ) + 4 cos(12kπ) + 4 cos(16kπ) + 4 cos(20kπ)

]
cos

(
2(ω−ωo)

)
,
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Bc13
3 = 4

[
cos(3kπ) + cos(9kπ) + cos(15kπ) + cos(21kπ) + cos(27kπ)

]
cos

(
3(ω−ωo)

)
,

Bc13
4 =

[
2 + 4 cos(8kπ) + 4 cos(16kπ) + 4 cos(24kπ) + 4 cos(32kπ)

]
cos

(
4(ω−ωo)

)
,

Bc13
5 = 4

[
cos(5kπ) + cos(15kπ) + cos(25kπ) + cos(35kπ)

]
cos

(
5(ω−ωo)

)
,

Bc13
6 =

[
2 + 4 cos(12kπ) + 4 cos(24kπ) + 4 cos(36kπ)

]
cos

(
6(ω−ωo)

)
,

Bc13
7 = 4

[
cos(7kπ) + cos(21kπ) + cos(35kπ)

]
cos

(
7(ω−ωo)

)
,

Bc13
8 =

[
2 + 4 cos(16kπ) + 4 cos(32kπ)

]
cos

(
8(ω−ωo)

)
,

Bc13
9 = 4

[
cos(9kπ) + cos(27kπ)

]
cos

(
9(ω−ωo)

)
,

Bc13
10 =

[
2 + 4 cos(20kπ)

]
cos

(
10(ω−ωo)

)
,

Bc13
11 = 4

[
cos(11kπ)

]
cos

(
11(ω−ωo)

)
, and

Bc13
12 = 2 cos

(
12(ω−ωo)

)
.

The general formula of HC
SRF,O

(
ω
)
: A general formula of HC

SRF,O
(
ω
)

is obtained by
combining HC

SRF,11
(
ω
)

and HC
SRF,13

(
ω
)
, given by Equations (A10) and (A11), respectively.

After manipulations, HC
SRF,O

(
ω
)

can be expressed as:

HC
SRF,O

(
ω
)
=

HC
no
(
ω
)

HC
do
(
ω
) (A12)

where

HC
no
(
ω
)
= N +

Nu
2 +1

∑
a=1

FOC
N +

Nu
2

∑
a=1

FEC
N ,

HC
do
(
ω
)
= N + 2 cos((N − 1)ΩCNo) +

N−1
2

∑
a=1

FOC
N +

N−1
2 − 1

∑
a=1

FEC
N ,

FOC
N = 4

 N+1
2 −a

∑
b=1

ON

 cos((2a− 1)ΩCNo) , FEC
N = 2

 N−1
2 −a

∑
b=1

EN + 1

 cos(2 a ΩCNo) ,

ΩCNo = ω−ωo, ON = cos((2a− 1)(2b− 1)π k), EN = 2 cos(4 π a b k), and

For odd N and zero-started frequency; HS
SRF,O

(
ω
)
:

Consider two values of N, 11 and 13, to get HS
SRF,11

(
ω
)

and HS
SRF,13

(
ω
)
, respectively,

which will be used to deduce a general form of HS
SRF,O

(
ω
)
.

Derivation of HS
SRF,11

(
ω
)

and HS
SRF,13

(
ω
)
: For N = 11 and zero-stared frequency,

and by following the same procedures used for the derivation of HC
SRF,11

(
ω
)
, HS

SRF,11
(
ω
)

can be written as:

HS
SRF,11

(
ω
)
=

11 + ∑2
λ=1 Bs11

λ

(
ω
)

11 + ∑10
λ=1 Bs11

λ

(
ω
) (A13)

where

Bs11
1 = 4

[
cos(kπ) + cos(3kπ) + cos(5kπ) + cos(7kπ) + cos(9kπ)

]
cos

(
(10kπ −ω + ωo)

)
,

Bs11
2 =

[
2 + 4 cos(4kπ) + 4 cos(8kπ) + 4 cos(12kπ) + 4 cos(16kπ)

]
cos

(
2(10kπ −ω + ωo)

)
,

Bs11
3 = 4

[
cos(3kπ) + cos(9kπ) + cos(15kπ) + cos(21kπ)

]
cos

(
3(10kπ −ω + ωo)

)
,

Bs11
4 =

[
2 + 4 cos(8kπ) + 4 cos(16kπ) + 4 cos(24kπ)

]
cos

(
4(10kπ −ω + ωo)

)
,
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Bs11
5 = 4

[
cos(5kπ) + cos(15kπ) + cos(25kπ)

]
cos

(
5(10kπ −ω + ωo)

)
,

Bs11
6 =

[
2 + 4 cos(14kπ) + 4 cos(24kπ)

]
cos

(
6(10kπ −ω + ωo)

)
,

Bs11
7 = 4

[
cos(7kπ) + cos(21kπ)

]
cos

(
7(10kπ −ω + ωo)

)
,

Bs11
8 =

[
2 + 4 cos(16kπ)

]
cos

(
8(10kπ −ω + ωo)

)
,

Bs11
9 = 4

[
cos(9kπ)

]
cos

(
9(10kπ −ω + ωo)

)
, and

Bs11
10 = 2 cos

(
10(10kπ −ω + ωo)

)
.

For N = 13 and zero-stared frequency, and by following the same procedures used
for derivation of HC

SRF,11
(
ω
)
, HS

SRF,13
(
ω
)

can be written as:

HS
SRF,12

(
ω
)
=

13 + ∑2
λ=1 Bs13

λ

(
ω
)

13 + ∑12
λ=1 Bs13

λ

(
ω
) (A14)

where

Bs13
1 = 4

[
cos(kπ) + cos(3kπ) + cos(5kπ) + cos(7kπ) + cos(9kπ) + cos(11kπ)

]
cos

(
(12kπ −ω + ωo)

)
,

Bs13
2 =

[
2 + 4 cos(4kπ) + 4 cos(8kπ) + 4 cos(12kπ) + 4 cos(16kπ) + 4 cos(20kπ)

]
cos

(
2(12kπ −ω + ωo)

)
,

Bs13
3 = 4

[
cos(3kπ) + cos(9kπ) + cos(15kπ) + cos(21kπ) + cos(27kπ)

]
cos

(
3(12kπ −ω + ωo)

)
,

Bs13
4 =

[
2 + 4 cos(8kπ) + 4 cos(16kπ) + 4 cos(24kπ) + 4 cos(32kπ)

]
cos

(
4(12kπ −ω + ωo)

)
,

Bs13
5 = 4

[
cos(5kπ) + cos(15kπ) + cos(25kπ) + cos(35kπ)

]
cos

(
5(12kπ −ω + ωo)

)
,

Bs13
6 =

[
2 + 4 cos(12kπ) + 4 cos(24kπ) + 4 cos(36kπ)

]
cos

(
6(12kπ −ω + ωo)

)
,

Bs13
7 = 4

[
cos(7kπ) + cos(21kπ) + cos(35kπ)

]
cos

(
7(12kπ −ω + ωo)

)
,

Bs13
8 =

[
2 + 4 cos(16kπ) + 4 cos(32kπ)

]
cos

(
8(12kπ −ω + ωo)

)
,

Bs13
9 = 4

[
cos(9kπ) + cos(27kπ)

]
cos

(
9(12kπ −ω + ωo)

)
,

Bs13
10 =

[
2 + 4 cos(20kπ)

]
cos

(
10(12kπ −ω + ωo)

)
,

Bs13
11 = 4

[
cos(11kπ)

]
cos

(
11(12kπ −ω + ωo)

)
, and

Bs13
12 = 2 cos

(
12(12kπ −ω + ωo)

)
.

The general formula of HS
SRF,O

(
ω
)
: A general formula of HS

SRF,O
(
ω
)

is obtained
from HS

SRF,11
(
ω
)

and HS
SRF,13

(
ω
)
, given by Equations (A13) and (A14), respectively. After

manipulations, HS
SRF,O

(
ω
)

can be expressed as:

HS
SRF,O

(
ω
)
=

HS
no
(
ω
)

HS
do
(
ω
) (A15)

where

HS
no
(
ω
)
= N +

Nu
2 +1

∑
a=1

FOS
N +

Nu
2

∑
a=1

FES
N ,

HS
do
(
ω
)
= N + 2 cos( (N − 1) ΩSN ) +

N−1
2

∑
a=1

FOS
N +

N−1
2 −1

∑
a=1

FES
N ,
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FOS
N = 4

 N+1
2 − a

∑
b=1

ON

 cos((2a− 1) ΩSN) , FES
N = 2

 N−1
2 − a

∑
b=1

EN + 1

 cos(2a ΩSN) ,

and ΩSN = (N − 1)π k−ω + ωo

The general formula of HSRF,O
(
ω
)

for odd N:

This combines HC
SRF,O

(
ω
)

and HS
SRF,O

(
ω
)
, given by Equations (A12) and (A15),

respectively. After manipulations, HSRF,O
(
ω
)

can be expressed as:

HSRF,O
(
ω
)
=

Hno
(
ω
)

Hdo
(
ω
) (A16)

where

Hno
(
ω
)
= N +

Nu
2 +1

∑
a=1

FON +

Nu
2

∑
a=1

FEN ,

Hdo
(
ω
)
= N + 2 cos((N − 1) Ωo ) +

N−1
2

∑
a=1

FON +

N−1
2 −1

∑
a=1

FEN ,

FON = 4

 N+1
2 −a

∑
b=1

ON

 cos((2a− 1)Ωo) , FEN = 2

 N−1
2 −a

∑
b=1

EN + 1

 cos(2a Ωo) , and

Ωo =

{
ω−ωo for a zero-centered frequency LFM waveform.

(N − 1)πk−ω + ωo for a zero-started frequency LFM waveform.
.

Appendix A.1.2. Derivation of HSRF,E
(
ω
)

for even N:

HSRF,E
(
ω
)

is obtained by considering the frequency responses of the SRF for an
LFM waveform with zero-centered frequency and zero-started frequency, HC

SRF,E
(
ω
)

and
HS

SRF,E
(
ω
)
, respectively.

For even N and zero-centered frequency; HC
SRF,E

(
ω
)
:

HC
SRF,10

(
ω
)
, for N = 10, and HC

SRF,12
(
ω
)
, for N = 12, are used to get a general formula

for HC
SRF,E

(
ω
)
.

HC
SRF,10

(
ω
)

and HC
SRF,12

(
ω
)
: For N = 10 and zero-centered frequency, and by fol-

lowing the same procedures used for derivation of HC
SRF,11

(
ω
)
, HC

SRF,10
(
ω
)

can be written
as:

HC
SRF,10

(
ω
)
=

10 + ∑2
λ=1 Bc10

λ

(
ω
)

10 + ∑9
λ=1 Bc10

λ

(
ω
) (A17)

where

Bc10
1 =

[
2 + 4 cos(2kπ) + 4 cos(4kπ) + 4 cos(6kπ) + 4 cos(8kπ)

]
cos

(
(kπ + ω−ωo)

)
,

Bc10
2 = 4

[
cos(2kπ) + cos(6kπ) + cos(10kπ) + cos(14kπ)

]
cos

(
2(kπ + ω−ωo)

)
,

Bc10
3 =

[
2 + 4 cos(6kπ) + 4 cos(12kπ) + 4 cos(18kπ)

]
cos

(
3(kπ + ω−ωo)

)
,

Bc10
4 = 4

[
cos(4kπ) + cos(12kπ) + cos(20kπ)

]
cos

(
4(kπ + ω−ωo)

)
,

Bc10
5 =

[
2 + 4 cos(10kπ) + 4 cos(20kπ)

]
cos

(
5(kπ + ω−ωo)

)
,

Bc10
6 = 4

[
cos(6kπ) + cos(18kπ)

]
cos

(
6(kπ + ω−ωo)

)
,

Bc10
7 =

[
2 + 4 cos(14kπ)

]
cos

(
7(kπ + ω−ωo)

)
,

Bc10
8 = 4

[
cos(8kπ)

]
cos

(
8(kπ + ω−ωo)

)
, and
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Bc10
9 = 2 cos

(
9(kπ + ω−ωo)

)
.

For N = 12 and zero-centered frequency, and by following the same procedures used
for derivation of HC

SRF,11
(
ω
)
, HC

SRF,12
(
ω
)

can be written as:

HC
SRF,12

(
ω
)
=

12 + ∑2
λ=1 Bc12

λ

(
ω
)

12 + ∑11
λ=1 Bc12

λ

(
ω
) (A18)

where

Bc12
1 =

[
2 + 4 cos(2kπ) + 4 cos(4kπ) + 4 cos(6kπ) + 4 cos(8kπ) + 4 cos(10kπ)

]
cos

(
(kπ + ω−ωo)

)
,

Bc12
2 = 4

[
cos(2kπ) + cos(6kπ) + cos(10kπ) + cos(14kπ) + cos(18kπ)

]
cos

(
2(kπ + ω−ωo)

)
,

Bc12
3 =

[
2 + 4 cos(6kπ) + 4 cos(12kπ) + 4 cos(18kπ) + 4 cos(24kπ)

]
cos

(
3(kπ + ω−ωo)

)
,

Bc12
4 = 4

[
cos(4kπ) + cos(12kπ) + cos(20kπ) + cos(28kπ)

]
cos

(
4(kπ + ω−ωo)

)
,

Bc12
5 =

[
2 + 4 cos(10kπ) + 4 cos(20kπ) + 4 cos(30kπ)

]
cos

(
5(kπ + ω−ωo)

)
,

Bc12
6 = 4

[
cos(6kπ) + cos(18kπ) + cos(30kπ)

]
cos

(
6(kπ + ω−ωo)

)
,

Bc12
7 =

[
2 + 4 cos(14kπ) + 4 cos(28kπ)

]
cos

(
7(kπ + ω−ωo)

)
,

Bc12
8 = 4

[
cos(8kπ) + cos(24kπ)

]
cos

(
8(kπ + ω−ωo)

)
,

Bc12
9 =

[
2 + 4 cos(18kπ)

]
cos

(
9(kπ + ω−ωo)

)
,

Bc12
10 = 4 cos(10kπ) cos

(
10(kπ + ω−ωo)

)
, and

Bc12
11 = 2 cos

(
11(kπ + ω−ωo)

)
.

The general formula of HC
SRF,E

(
ω
)
: A general formula of HC

SRF,E
(
ω
)

is obtained
from combining HC

SRF,10
(
ω
)

and HC
SRF,12

(
ω
)
, given by Equations (A17) and (A18), respec-

tively. After manipulations, HC
SRF,E

(
ω
)

can be expressed as:

HC
SRF,E

(
ω
)
=

HC
ne
(
ω
)

HC
de
(
ω
) (A19)

where

HC
ne
(
ω
)
= N +

Nu
2

∑
a=1

FGC
N +

Nu
2

∑
a=1

FPC
N ,

HC
de
(
ω
)
= N + 2 cos((N − 1)ΩCNe) +

N
2 −1

∑
a=1

FGC
N +

N
2 −1

∑
a=1

FPC
N ,

FGC
N =

4

N
2 −a

∑
b=1

GN + 2

 cos[(2a− 1)ΩCNe] , FPC
N = 4

 N
2 −a

∑
b=1

PN

 cos(2aΩCNe) ,

ΩCNe = kπ + ω−ωo, GN = cos((2a− 1)(2πbk)), and PN = cos(2a(2b− 1)πk).

For even N and zero-started frequency; HS
SRF,E

(
ω
)
:

Consider two values of N; 10 and 12, to get HS
SRF,10

(
ω
)

and HS
SRF,12

(
ω
)
, respectively,

which can be used to deduce a general form of HS
SRF,E

(
ω
)
.
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HS
SRF,10

(
ω
)

and HS
SRF,12

(
ω
)
: For N = 10 and zero-stared frequency, and by follow-

ing the same procedures used for derivation of HC
SRF,11

(
ω
)
, HS

SRF,10
(
ω
)

can be written as:

HS
SRF,10

(
ω
)
=

10 + ∑2
λ=1 Bs10

λ

(
ω
)

10 + ∑9
λ=1 Bs10

λ

(
ω
) (A20)

where

Bs10
1 =

[
2 + 4 cos(2kπ) + 4 cos(4kπ) + 4 cos(6kπ) + 4 cos(8kπ)

]
cos

(
(9kπ + ω−ωo)

)
,

Bs10
2 = 4

[
cos(2kπ) + cos(6kπ) + cos(10kπ) + cos(14kπ)

]
cos

(
2(9kπ + ω−ωo)

)
,

Bs10
3 =

[
2 + 4 cos(6kπ) + 4 cos(12kπ) + 4 cos(18kπ)

]
cos

(
3(9kπ + ω−ωo)

)
,

Bs10
4 = 4

[
cos(4kπ) + cos(12kπ) + cos(20kπ)

]
cos

(
4(9kπ + ω−ωo)

)
,

Bs10
5 =

[
2 + 4 cos(10kπ) + 4 cos(20kπ)

]
cos

(
5(9kπ + ω−ωo)

)
,

Bs10
6 = 4

[
cos(6kπ) + cos(18kπ)

]
cos

(
6(9kπ + ω−ωo)

)
,

Bs10
7 =

[
2 + 4 cos(14kπ)

]
cos

(
7(9kπ + ω−ωo)

)
,

Bs10
8 = 4

[
cos(8kπ)

]
cos

(
8(9kπ + ω−ωo)

)
, and

Bs10
9 = 2 cos

(
9(9kπ + ω−ωo)

)
.

For N = 12 and zero-stared frequency, and by following the same procedures used
for derivation of HC

SRF,11
(
ω
)
, HS

SRF,12
(
ω
)

can be written as:

HS
SRF,12

(
ω
)
=

12 + ∑2
λ=1 Bs12

λ

(
ω
)

12 + ∑11
λ=1 Bs12

λ

(
ω
) (A21)

where

Bs12
1 =

[
2 + 4 cos(2kπ) + 4 cos(4kπ) + 4 cos(6kπ) + 4 cos(8kπ) + 4 cos(10kπ)

]
cos

(
(11kπ −ω + ωo)

)
,

Bs12
2 = 4

[
cos(2kπ) + cos(6kπ) + cos(10kπ) + cos(14kπ) + cos(18kπ)

]
cos

(
2(11kπ −ω + ωo)

)
,

Bs12
3 =

[
2 + 4 cos(6kπ) + 4 cos(12kπ) + 4 cos(18kπ) + 4 cos(24kπ)

]
cos

(
3(11kπ −ω + ωo)

)
,

Bs12
4 = 4

[
cos(4kπ) + cos(12kπ) + cos(20kπ) + cos(28kπ)

]
cos

(
4(11kπ −ω + ωo)

)
,

Bs12
5 =

[
2 + 4 cos(10kπ) + 4 cos(20kπ) + 4 cos(30kπ)

]
cos

(
5(11kπ −ω + ωo)

)
,

Bs12
6 = 4

[
cos(6kπ) + cos(18kπ) + cos(30kπ)

]
cos

(
6(11kπ −ω + ωo)

)
,

Bs12
7 =

[
2 + 4 cos(14kπ) + 4 cos(28kπ)

]
cos

(
7(11kπ −ω + ωo)

)
,

Bs12
8 = 4

[
cos(8kπ) + cos(24kπ)

]
cos

(
8(11kπ −ω + ωo)

)
,

Bs12
9 =

[
2 + 4 cos(18kπ)

]
cos

(
9(11kπ −ω + ωo)

)
,

Bs12
10 = 4 cos(10kπ) cos

(
10(11kπ −ω + ωo)

)
, and

Bs12
11 = 2 cos

(
11(11kπ −ω + ωo)

)
.

The general formula of HS
SRF,E

(
ω
)
: A general formula of HS

SRF,E
(
ω
)

can be ob-
tained from combining HS

SRF,10
(
ω
)

and HS
SRF,12

(
ω
)
, given by Equations (A20) and (A21),

respectively. After manipulations, HS
SRF,E

(
ω
)

can be expressed as:

HS
SRF,E

(
ω
)
=

HS
ne
(
ω
)

HS
de
(
ω
) (A22)
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where

HS
ne
(
ω
)
= N +

Nu
2

∑
a=1

FGS
N +

Nu
2

∑
a=1

FPS
N ,

HS
de
(
ω
)
= N + 2 cos((N − 1)ΩSN) +

N
2 −1

∑
a=1

FGS
N +

N
2 −1

∑
a=1

FPS
N ,

FGS
N =

4

N
2 −a

∑
b=1

GN + 2

 cos((2a− 1)ΩSN) , and FPS
N = 4

 N
2 −a

∑
b=1

PN

 cos(2aΩSN) .

The general formula of HSRF,E
(
ω
)

for even N:

This combines HC
SRF,E

(
ω
)

and HS
SRF,E

(
ω
)
, given by Equations (A19) and (A22),

respectively. After manipulations, HSRF,E
(
ω
)

can be expressed as:

HSRF,E
(
ω
)
=

Hne
(
ω
)

Hde
(
ω
) (A23)

where

Hne
(
ω
)
= N +

Nu
2

∑
a=1

FGN +

Nu
2

∑
a=1

FPN ,

Hde
(
ω
)
= N + 2 cos((N − 1) Ωe) +

N
2 −1

∑
a=1

FGN +

N
2 −1

∑
a=1

FPN ,

FGN =

4

N
2 −a

∑
b=1

GN + 2

 cos((2a− 1)Ωe) , FPN = 4

 N
2 −a

∑
b=1

PN

 cos(2aΩe) , and

Ωe =

{
kπ + ω−ωo for zero-centered frequency LFM waveform
(N − 1)π k−ω + ωo for zero-started frequency LFM waveform
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