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Abstract

Background

Osteosarcoma (OS) is the most common primary bone tumor affecting humans and it has

extreme heterogeneity. Despite modern therapy, it recurs in approximately 30–40% of

patients initially diagnosed with no metastatic disease, with the long-term survival rates of

patients with recurrent OS being generally 20%. Thus, early prediction of metastases in OS

management plans is crucial for better-adapted treatments and survival rates. In this study,

a radiomics model for metastasis risk prediction in OS was developed and evaluated using

metabolic imaging phenotypes.

Methods and findings

The subjects were eighty-three patients with OS, and all were treated with surgery and

chemotherapy for local control. All patients underwent a pretreatment 18F-FDG-PET scan.

Forty-five features were extracted from the tumor region. The incorporation of features into

multivariable models was performed using logistic regression. The multivariable modeling

strategy involved cross validation in the following four steps leading to final prediction model

construction: (1) feature set reduction and selection; (2) model coefficients computation

through train and validation processing; and (3) prediction performance estimation. The mul-

tivariable logistic regression model was developed using two radiomics features, SUVmax

and GLZLM-SZLGE. The trained and validated multivariable logistic model based on proba-

bility of endpoint (P) = 1/ (1+exp (-Z)) was Z = -1.23 + 1.53*SUVmax + 1.68*GLZLM-

SZLGE with significant p-values (SUVmax: 0.0462 and GLZLM_SZLGE: 0.0154). The final

multivariable logistic model achieved an area under the curve (AUC) receiver operating

characteristics (ROC) curve of 0.80, a sensitivity of 0.66, and a specificity of 0.88 in cross

validation.
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Conclusions

The SUVmax and GLZLM-SZLGE from metabolic imaging phenotypes are independent

predictors of metastasis risk assessment. They show the association between 18F-FDG-

PET and metastatic colonization knowledge. The multivariable model developed using

them could improve patient outcomes by allowing aggressive treatment in patients with high

metastasis risk.

Introduction

Osteosarcoma (OS), the most common primary bone tumor affecting humans, develops

in children and adolescents between the ages of ten and twenty-five years, and in persons

with deficient bone remodeling [1,2]. The survival rate of these patients has significantly

improved as a result of comprehensive management in the form of intensive chemotherapy

and surgery [1,3]. However, despite modern therapy, OS recurs in approximately 30–40% of

patients initially diagnosed with no metastatic disease [4,5]. The long-term survival rates of

such patients is generally 20% [6,7]. Consequently, individual and early prediction of metas-

tases in the plan of OS management is crucial as it could result in better-adapted treatments

and survival rate.

Currently, the most important predictors are tumor grade, size, and presence of skip lesions

or distant metastases, which are found from biopsies and microscopic examinations [1,8].

However, they do not always provide sufficient results because the risk of relapse may differ

among patients with the same disease stage or chemotherapeutic response owing to the hetero-

geneity of the tumor population [4,8,9]. Within this context, imaging modalities and, more

particularly, 18F-FDG positron emission tomography (PET) are generally used for staging and

monitoring various cancers. As its accumulation explains the characteristics of heterogeneity

in tumors, it is increasingly being accepted as the prognostic value [10,11]. Moreover, the anal-

ysis of radiomics features from 18F-FDG PET imaging has recently been considered as addi-

tional information for predicting tumor response to therapy [12] because it could theoretically

provide further understanding of the hidden tumor biology as compared with maximum stan-

dard uptake value (SUVmax), mean SUV (SUVmean), peak SUV (SUVpeak), metabolic tumor

volume (MTV), and total lesion glycolysis (TLG).

The advent of personalized medicine has increased the need for the improvement of clini-

cally feasible prediction models for treatment decision [13]. After radiomics features from
18F-FDG PET imaging are decided by the relation to a given tumor outcome as prognostic fac-

tors, models combining those factors need to be developed in order to make better prediction

performance. Multivariable models could further fully characterize intratumoral heterogene-

ity, even though univariate analysis has been deemed informative. Based on the above consid-

erations, this study was conducted with the objective of developing a multivariable model

based on optimal radiomics features from pretreatment 18F-FDG PET imaging in order to

assess metastasis risk at initial diagnosis. To achieve this main objective, firstly, the relevant

features were selected from a large number of features by the statistical methods for radiomics

model. Secondly, multivariable modeling strategies were formulated to develop texture-based

models with optimal predictive and generalized properties. Finally, the final optimal model

was evaluated using the test dataset. This developed radiomics model and the selected signifi-

cant features are expected to ultimately encourage physicians to make better decisions for

treatment and potentially improve survival rate.

Radiomics model using metabolic imaging phenotypes
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Materials and methods

Patient cohort

A database of eighty-three consecutive patients was retrospectively retrieved between June

2006 and August 2010. The patient qualification requirements were as follows: newly diag-

nosed, histologically biopsy-proven primary intramedullary osteosarcoma; completion of

neoadjuvant chemotherapy and surgery; less than two weeks between 18F-FDG PET/CT scan

and initiation of preoperative chemotherapy; and no history of previous treatment except for

biopsy. Patients with metastatic osteosarcoma at the present time were excluded from the

study. Metastases were either proven by biopsy or diagnosed by an expert physician from the

following-up cross-sectional imaging results of 18F-FDG PET/CT imaging, MR imaging, bone

scanning, and x-ray for at least six months. Informed consent was waived by the ethics com-

mittee because of the retrospective nature of this study and the analysis using anonymous

imaging and clinical data. This study was approved by the Institutional Review Board of KIR-

AMS (IRB No.: K-1707-001-004 (eIRB NO.: 2017-04-004)). Patient characteristics and histo-

logic features are described in Table 1.

Good historic response was 46.99% of the patients and poor historic response was 53.01%

of the patients in neoadjuvant chemotherapy outcomes. Of the patients, 26.51% had metastasis

(lung metastasis: 72.22%, bone metastasis: 27.78%) after completion of neoadjuvant chemo-

therapy and surgery in five years or seven years (one patient). The remaining 73.49% of

patients were metastasis-free until a composite endpoint determined by the time from the date

of diagnosis to the date of metastasis (Table 2).

All eighty-three qualified patients had performed pre-treatment 18F-FDG PET/CT scans

using a Biography6 PET/CT scanner (Siemens Medical Solutions, Erlangen, Germany) at

Korean Cancer Center Hospital (KCCH). All patients were instructed to fast for at least six

hours before the intravenous administration, with water intake permitted and encouraged.

Table 1. Patient characteristics.

Characteristics Value

Sex, n (%)

Female 23 (27.71%)

Male 60 (72.29%)

Age, n (%)

years� 19 67 (80.72%)

years >19 16 (19.27%)

Location of primary tumor, n (%)

Humerus 4 (4.82%)

Radius 2 (2.41%)

Femur 44 (53.01%)

Fibula 3 (3.61%)

Tibia 30 (36.14%)

AJCC stage, n (%)

IIA 35 (42.2%)

IIB 48 (57.8%)

Pathologic subtype, n (%)

OB (Osteoblastic) 60 (72.29%)

CB (Chorndroblastic) 9 (10.84%)

FB (Fibroblastic) 7 (8.43%)

Others 7 (8.43%)

https://doi.org/10.1371/journal.pone.0225242.t001
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Prior to administration of 18F-FDG (injected dose: 7.4 MBq per kg of body weight), a blood

glucose level of<7.2 mmol/L was confirmed. The CT scan (130 kVp, 30 mA, 0.6 sec/rotation,

pitch 6) without contrast agent and 3D PET scan (16.2 cm axial field of view, 3.5 min/bed posi-

tion) were obtained for the sites of tumors located in the extremities (the vertex to the upper

thigh). PET images were reconstructed using the ordered-subsets expectation maximization

(OSEM) algorithm (two iterations and eight subsets) with CT-based attenuation correction

after normalization, correction for scatter, random, decay, and dead time, and smoothed using

a 5 mm post Gaussian filter to control noise. The 18F-FDG PET slice thickness was 3.03 mm

and its matrix size was 4.063 mm × 4.063 mm.

Tumor volume definition and features extraction

Tumor volumes were segmented and radiomics features in the defined tumors subsequently

extracted using the Local Image Features Extraction (LIFEx) version 4.0 software package

(http://www.lifexsoft.org) [14–16]. The tumor region was drawn using a semi-automated seg-

mentation method with threshold SUV of 2.0 based on our previous report [9] in three-dimen-

sional (3D) images. In the segmented tumors, SUVmax, SUVmean, SUVpeak, Metabolic

Tumor Volume (MTV), and Total Lesion Glycolysis (TLG) and features from shape and histo-

gram were calculated as the first-order features.

For texture feature calculation, the numbers of intensity levels were resampled using 64 dis-

crete values between zero and 20 SUVs, corresponding to a sampling bin width of 0.3125

SUVs [14,16,17]. Spatial resampling was 4.1 mm (X-direction), 4.1 mm (Y-direction), and 2.5

mm (Z-direction) in Cartesian coordinates [14].

Texture features were assessed by four texture matrices: the co-occurrence matrix (CM),

the gray-level run length matrix (GRLM), the gray-level zone length matrix (GZLM), and the

neighborhood gray-level different matrix (NGLDM). The CM was calculated in 13 directions

with one voxel distance relationship between neighboring voxels, and each texture feature cal-

culated from this matrix was the average of the features over the 13 directions in space (X, Y,

Z). The GRLM was also calculated for 13 directions via a similar method while the GZLM was

computed directly in 3D. NGLDM was computed from the difference of gray-levels between

one voxel and its 26 neighbors in 3D and each texture feature was calculated from this matrix.

Forty-five features were extracted from the analysis of the volumes inspected: five conventional

features, five histogram features, three shape features, and thirty-one texture features (Table 3).

Table 2. Characteristics of clinical outcomes.

Clinical outcomes Total Number (n) 83 (100%)

Histologic response Good 39 (46.99%)

Metastasis Poor 44 (53.01%)

No 61 (73.49%)

Yes 22 (26.51%)

Histologic response

and

Metastasis

Good-MetaFree

(Good Response and Metastasis Fress)

34 (40.96%)

Poor-MetaFree

(Poor Response and Metastasis Free)

27 (32.53%)

Good-Meta

(Good Response and Metastasis)

5 (6.02%)

Poor-Meta

(Poor Response and Metastasis)

17 (20.48%)

18F-FDG PET/CT Imaging Data

https://doi.org/10.1371/journal.pone.0225242.t002
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Feature selection and evaluations

All statistical analyses were performed with RStudio software (version 1.1.456; RStudio, Inc.,

Boston, MA, United States) except for p-value of the overall model fit. Multivariable logistic

regression models were developed integrating metastatic event and imaging features. The

Table 3. Summary of the first-order, second-order, and high-order features index.

Order of extracted feature Matrix Index Type

First order Conventional features • SUVmin (minimum SUV)

• SUVmax

• SUVpeak

• SUVmean

• TLG

Global

Histogram features • Skewness

• Kurtosis

• Entropy_log10

• Entropy_log2

• Energy

Shape features • Sphericity

• Compacity

• Volume (MTV)

Second order GLCM

(Gray-Level Co-occurrence based on concurrence Matrix)

• Homogeneity

• Energy

• Correlation

• Contrast

• Entropy

• Dissimilarity

Regional

GLRLM

(Gray-Level Run Length based on voxel-alignment Matrix)

• SRE (short-run emphasis)

• LRE (long-run emphasis)

• LGRE (low grey-level run emphasis)

• HGRE (high grey-level run emphasis)

• SRLGE (short-run low grey-level emphasis)

• SRHGE (short-run high grey-level emphasis)

• LRLGE (long-run low grey-level)

• LRHGE (long-run high grey-level emphasis)

• GLNUr (grey-level non-uniformity for run)

• RLNU (run-length non-uniformity)

• RP (run percentage)

Regional

High order NGLDM

(Neighborhood Gray-Level Different

based on neighborhood intensity-difference Matrix)

• Coarseness

• Contrast

• Busyness

Local

GLZLM

(Gray-Level Zone Length based on intensity–size–zone Matrix)

• SZE (short-zone emphasis)

• LZE (long-zone emphasis)

• LGZE (low grey-level zone emphasis)

• HGZE (high grey-level zone emphasis)

• SZLGE (short-zone low grey-level emphasis)

• SZHGE (short-zone high grey-level emphasis)

• LZLGE (long-zone low grey-level emphasis)

• LZHGE (long-zone high grey-level emphasis)

• GLNUz (grey-level nonuniformity for zone)

• ZLNU (zone length non-uniformity)

• ZP (zone percentage)

Local

https://doi.org/10.1371/journal.pone.0225242.t003
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datasets were split into two random stratified cohorts: a training set (60%) and a test set (40%).

Only the training set was used in the process to decide predictive and prognostic features. The

45 features were pre-selected, and then the bilateral correlation between these initial 45 fea-

tures was evaluated with Spearman’s rank correlation coefficient in order to estimate potential

redundancy between the features [16,18]. The threshold of testing correlation coefficient was

higher than 0.9 [19]. To correct for multiple test comparisons, the Holm-Bonferroni correc-

tion method was applied for all p‘ values: the significance level was lower than a value p< p‘/

m, where p‘ is 0.05 and m is the number of comparisons [20]. The calculated p-value was 0.01.

The Spearman rank correlations for radiomics features are presented in Fig 1. The features

from previous procedures were used to evaluate the relationship between them via the multiple

backward stepwise elimination method based on Akaike’s Information Criterion (AIC) [9] in

order to find the subset of features in the dataset resulting in the lowest prediction error. The

Fig 1. Spearman rank correlation of radiomics features in the training dataset. Forty-five features were extracted from tumor

volumes in eighty-three patients. Across all tumors, the correlation of each feature with all other features was investigated via

Spearman’s rank correlation. The color and size of the circle indicate the degree of correlation. The final radiomics features were

decided based on Spearman’s correlation coefficient>0.9 and significant p-value>0.01 after Holm-Bonferroni correction.

https://doi.org/10.1371/journal.pone.0225242.g001
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determined features resulted from backward stepwise elimination and were assessed for over-

dispersion. The evaluation value was the ratio of residual deviance to residual degree of free-

dom (>1) and its p-value (>0.05). Subsequently, Friedman’s ANOVA test and odds-ratio

were used to estimate their significances. They were also investigated for variable importance

(varImp) and multicollinearity using variance inflation factor (VIF)—for which a value over

the limit of four would indicate a problematic amount of collinearity. The logistic regression

model was constructed again using the last decided features, and subsequently evaluated using

the Hosmer-Lemeshow goodness of fit test. The p-value of the overall model fit was computed

using MedCalc Statistical Software (version 18.10; MedCalc Software bvba, Ostend, Belgium).

Model development and performance

The ratio of training set to test set was 60% to 40%. The training dataset (metastasis case:

27.45% and no metastasis: 72.55%) was used for training and validation and the test dataset

(metastasis case: 25.00%% and no metastasis: 75.00%) was utilized only to assess its prediction.

In the 10-fold cross-validation method, the training dataset was further split into a training set

(90% of the data) and a validate set (10% of the data) randomly. One fold was reserved for vali-

dation, and the other nine folds were used to train the model. Subsequently, they were used to

predict the target variable in the validating data. This process was repeated ten times, with the

performance of each model in predicting the reserved set being tracked using a performance

metric such as accuracy. The validated prediction model was applied to the test dataset that

had not been used in the previous steps, and then the predicted values were compared to the

actual values. Its outputs were evaluated in terms of area under curve (AUC), sensitivity, speci-

ficity, accuracy, and precision computed based on receiver-operating-characteristic (ROC)

curves and confusion matrix.

Predictive Tendency of Neoadjuvant Chemotherapy Prognosis and

Metastasis

To analyze predictive tendency of neoadjuvant chemotherapy prognosis and metastasis, the

radiomics features used for the radiomics model were investigated in four patient groups:

Good-MetaFree (Good historic response and Metastasis Free), Poor-MetaFree (Poor historic

response and Metastasis Free), Good-Meta (Good historic response and Metastasis), and

Poor-Meta (Poor historic response and Metastasis) (Table 2).

Results

Feature selection and evaluations

The ratio of the patient’s data used for the training set and the test set was 60% to 40%. From

45 radiomics features, eight radiomics features were determined via Spearman’s rank correla-

tion coefficient >0.9 and significant p-value >0.01 after the Holm-Bonferroni correction.

These radiomics features were also decided after the logistic regression predictive model with

backward stepwise elimination method was applied at 57.76 AIC. SUVmax and GLZM-SZLGE

were eventually decided (Table 4).

SUVmax and GLZM-SZLGE were used for the multivariable logistic regression model

and then evaluated using ANOVA test, odds ratio, varImp, and VIF (Table 5). SUVmax and

GLZM-SZLGE showed less than 0.05 p-value in ANOVA test, higher than 1.0 Odds ratio, and

their VIF values were higher than 4.0. The varImp test value of GLZM-SZLGE was higher than

that of SUVmax. For overdispersion check, the ratio of residual deviance to residual degree of

freedom was 1.078, and p-value was 0.30. The p-value of Hosmer-Lemeshow goodness of fit

Radiomics model using metabolic imaging phenotypes
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test was 0.5725. As a result, SUVmax and GLSZM-SZLGE were confirmed for the logistic

regression model.

Model development and performance

The trained and validated multivariable logistic model based on probability of endpoint P = 1/

(1+exp (-Z)) was

Z ¼ � 1:23þ 1:53 � SUVmaxþ 1:68 � GLZLM� SZLGE

with significant p-values (SUVmax: 0.0462 and GLZLM-SZLGE: 0.0154). The developed pre-

dictive model was estimated using a test dataset that had not been used in previous procedures.

Its AUC (Fig 2), accuracy, sensitivity, and specificity were 0.8, 0.88, 0.63, and 0.88 (Table 6).

Predictive Tendency of Neoadjuvant Chemotherapy Prognosis and

Metastasis

The predictive tendency of historic response prognosis and metastasis was investigated using

SUVmax and GLZLM-SZLGE (Fig 3). Both features were negative in the Good-MetaFree

group and Poor-MetaFree group, while they were positive in the Poor-Meta group. In the

Good-Meta group, SUVmax was negative, but GLZLM-SZLGE was positive.

Discussion

In this study, a multivariable logistic regression imaging model was developed for the predic-

tion of future metastases development at the point of osteosarcoma diagnosis. The model

consists of two radiomics features extracted from 18F-FDGPET. The selection of radiomics fea-

tures comprises several suggested steps that remove the redundancy between radiomics fea-

tures and its overfitting. In order to strengthen the clinical impact of the model, the images

Table 4. Radiomics features decided by Spearman’s rank correlation and backward stepwise elimination for use in multivariable regression analysis.

Classification of matrix Features selected by Spearman’s

correlation

Features selected by(Spearman’s correlation+backward stepwise

elimination)

Conventional Indices • SUVmax

• MTV

• SUVmax

Indices based on intensity histogram • Skewness

Indices based on shape • Sphericity

GLCM based on gray level co-occurrence matrix • Correlation

NGLDM based on gray level neighborhood matrix • Contrast

• Busyness

GLRLM based on gray level homogeneous run size

matrix

• GLNU

GLZLM based on gray level homogeneous zone size

matrix

• SZLGE • SZLGE

https://doi.org/10.1371/journal.pone.0225242.t004

Table 5. Evaluation results of two radiomics features for use in multivariable regression analysis. The determined radiomic features were evaluated using ANOVA

test, Odds ratio, varImp, and VIF. The results show that they are valid.

Classification of matrix Index ANOVA test Odds Ratio (95% CI) varImp VIF

Conventional Indices SUVmax 0.047 4.64 (1.03 to 20.97) 1.99 3.98

GLZLM SZLGE 0.009 5.34 (1.38 to 20.73) 2.42 3.98

https://doi.org/10.1371/journal.pone.0225242.t005
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used were acquired and reconstructed under routine clinical conditions. It is expected that the

methodology used in this study could be generalized to other types of cancer and tumor

outcomes.

The association of selected radiomics features during processing with metastases develop-

ment in osteosarcoma is shown in Tables 3 and 4. The partial volume effect was not an

issue in this study because all tumor volumes were higher than 8.39 cm3 (matrix size: 4.063

mm × 4.063 mm and slice thickness: 3.03 mm). Eight independent radiomics features resulted

from Spearman rank correlation based on all matrix classifications. The results indicate that

SUVmax was correlated to other SUVs (SUVmean and SUVpeak) and twenty-seven other tex-

ture radiomics features were associated with homogeneity, uniformity, inertia, randomness,

dissimilarity, run-length matrix, and zone-size matrix of gray level. Further, it was related to

global radiomics features and higher radiomics features, but it was not correlated to any fea-

ture from NGLCM. On the other hand, MTV was interrelated with six features related to TLG,

shape, edge, and similarity of intensity values, and it was related to coarseness from NGLDM.

Skewness (asymmetry of the histogram) based on histogram was correlated to its kurtosis (flat-

ness of the histogram). The remaining six radiomics features (Shape-Sphericity, GLCM-Corre-

lation, GLRLM-GLNU, NGLCM-Contrast, NGLCM-Busyness, and GLZLM-SZLGE) were

not dependent on any other features. These features were investigated via varImp and the

backward stepwise elimination method based on AIC.

Fig 2. ROC curve for two radiomics features tested using the test dataset: SUVmax + GLZLM_SZLGE. The value

shows that the classification based on texture analysis has good predictive value, as the area under the ROC curve is

0.80.

https://doi.org/10.1371/journal.pone.0225242.g002

Table 6. Estimation results of the predictive multivariable logistic model using the test dataset. AUV, accuracy, and specificity are good values while sensitivity is a

fair value.

Predictive multivariable logistic model probability of metastasis, P ¼ 1
ð1þe� z Þ

Z = -1.23 + 1.53�SUVmax + 1.68�GLZLM_SZLGE

Estimation item AUC Accuracy Sensitivity Specificity

Results 0.80 0.81 0.63 0.88

https://doi.org/10.1371/journal.pone.0225242.t006
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SUVmax and GLZM-SZLGE were finally decided as predictors for the multivariable logistic

regression model, and were verified based on the results of Friedman’s ANOVA test (p-

value < 0.05), odds-ratio (> 1.0), multicollinearity (VIF< 4.0), and varImp. The developed

multivariable logistic model with these predictors was suggested as a good fit model without

overdispersion after a Hosmer-Lemeshow goodness of fit test and overdispersion evaluation.

After the finalized multivariable logistic model was trained and validated using the 10-folds

cross-validation method, it was applied to the test dataset. For this predictive model, good

evaluation results were obtained: AUC, accuracy, and specificity were 0.8, 0.81, and 0.88,

respectively. The sensitivity (0.63) was lower than other values, although it was fair. This

occurred because of the insufficient number of metastasis cases—only eight. As a result, the

multivariable logistic model built via linear combination of two verified radiomics features

(SUVmax and GLZM-SZLGE) was confirmed with high predictive potential for metastases in

osteosarcoma.

In this study, SUVmax and GLZM-SZLGE were finalized as the predictors for the radio-

mics model. SUVmax reflects the tumor aggressiveness and is an independent prognostic fac-

tor [4]. As a result, the positive correlation of SUVmax with metastases confirms that high-

uptake in 18FDG-PET can play an important role in the characterization of aggressive tumors.

These results are congruent with published papers that state that it could be a clinical indicator

of sarcoma [20–24]. It was also used as an indicator of histopathologic response after neoadju-

vant chemotherapy in extremity osteosarcoma in our previous report [25]. The other predic-

tor, GLZM-SZLGE, increases when the short runs with low gray value are dominant. The

positive correlation of GLZM-SZLGE indicates that many short runs of low gray value

dominate in the fine-grained texture of the tumor. Consequently, higher SUVmax and

GLZM-SZLGE result in higher possibility of tumor metastasis. They could imply tumor bio-

logical phenomenon based on the Warburg effect [26–28]. Tumor cells at sites close to blood

vessels are relatively sufficiently oxygenated, whereas those located further away are hypoxic.

This phenomenon is important for secondary tumor events as hypoxia can independently

induce the epithelial–mesenchymal transition (EMT), a crucial step in cancer progression and

metastasis via a number of mechanisms such as HIF-1α expression in osteosarcoma and osteo-

sarcoma cells [29–31]. Considering our results, SUVmax can be recognized as the most prolif-

erative region by tumor cells residing closer to blood vessels. In contrast, GLAM-SZLAG can

Fig 3. Histogram of the averaged z-scores of SUVmax and GLZLM-SZLGE for the historic response prognosis and

metastasis. Regardless of historic response outcome, GLZLM-SZLGE presents positive value for the metastasis patient

group, while it shows negative value for the metastasis free patient group. SUVmax has no related tendency.

https://doi.org/10.1371/journal.pone.0225242.g003
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be considered a hypoxic region by those residing further from it. It can be concluded that

SUVmax and GLAM-SZLAG related with metastasis could provide information about tumor

latent biology. Additionally, these two features could differentiate between two AJCC stages

(IIA and IIB) with less than 0.05 p-value when the correlation between those stages and the

AJCC stage commonly used for predicting outcome was considered (S1 Table).

Fig 3 shows the predictive tendency of historic response prognosis and metastasis. Whether

the historic response outcome was good or poor, the averaged z-score of GLZLM-SZLGE was

positive in the metastasis patient group. In contrast, it was negative in the metastasis free

patient group. SUVmax did not show the relative tendency. Our results highlighted the Good-

Meta group, which indicated good historic response of neoadjuvant chemotherapy but the pri-

mary tumor was metastasized in the endpoint. The conventional value, SUVmax, could not

drive a high possibility of metastasis because it was too low. However, the radiomics feature,

GLZLM-SZLGE, could predict the possibility of metastasis. We demonstrated that the texture-

based radiomics model could supplement clinical prognostic factors for optimal prediction.

However, multinomial logistic regression for the histological response and metastasis could

not be achieved owing to insufficient patient cohorts.

In this study, the potential association between radiomics features and known metastatic

colonization was presented, but biological information from the same patient was not used.

However, this is required in order to assess the association and predictive power of the radio-

mics features for tumor cell information acquired from a patient. In addition, a larger patient

cohort is essential in order to develop a more powerful model. Further, in order to facilitate

clinical implementation of a texture-based decision-support system, harmonization and stan-

dardization on data and methods are also obviously required.

Conclusion

Texture biomarkers derived from 18F-FDG images have been attracting attention as promising

tools for characterizing spatial heterogeneity in order to predict tumor consequences at an

early stage in humans. Verified selection of texture extraction and multivariable logistic

modeling approaches have been proposed for the development of tumor outcome prediction

models from a number of radiomics features in this study. The findings show that 18F-FDG

image features could perform as strong prognostic and predictive factors of metastasis in oste-

osarcoma and could provide observations about their inherent biology. The findings also indi-

cate the priority of optimizing radiomics features to build up their predictive value and to

determine the relation between features and biology. This model achieved good prediction

performance evaluations in cross-validation, and its predictive properties were confirmed

using an independent test dataset. However, further validation is required for stronger and

more robust predictive properties. The established methodology can be applied to other

tumors and could ultimately induce progress in treatment personalization and patient

survival.
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