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ABSTRACT Mechanisms of evolution and evolution of antibiotic resistance are both
fundamental and world health problems. Stress-induced mutagenesis defines mecha-
nisms of mutagenesis upregulated by stress responses, which drive adaptation when
cells are maladapted to their environments—when stressed. Work in mutagenesis
induced by antibiotics had produced tantalizing clues but not coherent mechanisms.
We review recent advances in antibiotic-induced mutagenesis that integrate how reac-
tive oxygen species (ROS), the SOS and general stress responses, and multichromosome
cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair
of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell sub-
population is induced by differentially generated ROS, which signal the general stress
response. We discuss other evolvable subpopulations and consider diverse evolution-
promoting molecules as potential targets for drugs to slow evolution of antibiotic resist-
ance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth”
evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.

KEYWORDS antibiotic resistance, antibiotics, cell subpopulations, evolvability, evolu-
tion, stress-induced mutagenesis, antievolvability drugs, drug resistance evolution

Evolution drives real-world problems in infectious disease and biology, from danger-
ous new viral variants (1) to antibiotic resistance (2). An estimated 1.27 million

deaths worldwide resulted from antibiotic-resistant infections in 2019 (3). The World
Health Organization (WHO) has issued a call to action against evolution of antibiotic re-
sistance in priority pathogens (4). Antibiotic resistance occurs either by transfer of re-
sistance genes from one to another bacterium (reviewed in reference 5), or by de novo
mutations that confer resistance. Although horizontal gene transfer (HGT) is important
in many clinical circumstances (6, 7), for some specific widespread pathogens and
widely used antibiotics, de novomutations cause clinically relevant resistance.

De novo mutations can cause antibiotic resistance in various ways: they can alter
the target protein and prevent antibiotic binding (8), or upregulate efflux pumps (9)
or enzymes that degrade antibiotics (10, 11), reducing effective antibiotic concentrations.
Mutations are the primary source of resistance of enterobacterial nosocomial infections in
hospitals (12). In the World Health Organization (WHO) list of priority antibiotic-resistant
pathogens (4), several acquire resistance by mutagenesis. These include Helicobacter pylori
resistance to tetracycline (13), Mycobacterium tuberculosis resistance to isoniazid (14), and
carbapenem resistance in Enterobacteriaceae (15). Mutagenesis is the main route to resistance
to widely used fluoroquinolones (16) and the “last-chance” antibiotic daptomycin (17) and
underlies chromosomally mediated colistin resistance (18). Moreover, even plasmid-borne

Editor Leah E. Cowen, University of Toronto

Copyright © 2022 Pribis et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Susan M.
Rosenberg, smr@bcm.edu.

*Present address: John P. Pribis, Longwood
Fund, Boston, Massachusetts, USA.

The authors declare no conflict of interest.

This article is a direct contribution from Susan
M. Rosenberg, a Fellow of the American
Academy of Microbiology, who arranged for
and secured reviews by Ivan Matic, Institut
Cochin, and Jue D. Wang, University of
Wisconsin—Madison.

Published 6 June 2022

May/June 2022 Volume 13 Issue 3 10.1128/mbio.01074-22 1

MINIREVIEW

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mbio.01074-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mbio.01074-22&domain=pdf&date_stamp=2022-6-6


b-lactamases, shared by HGT, require mutagenesis to confer resistance to newer-genera-
tion b-lactam antibiotics, which are then rendered ineffective (10). Identification of the
mutagenic mechanisms that promote antibiotic resistance could allow new strategies to
combat the now critical problem (4). The escape of pathogens from our immune defenses
and drugs is a problem in the molecular, systems-biological, and populational mechanisms
of evolution.

Mutations (including all de novo genomic changes) drive evolution, and our paradigm
for both is changing. Mutagenesis and evolution are being recognized as dynamic, regu-
lated processes with molecular mechanisms that can be both understood and, potentially,
inhibited clinically (19–25). This view is necessitated by understanding of stress-induced
mutagenesis: molecular mechanisms of mutagenesis that are upregulated by stress
responses. The existence of stress-induced mutagenesis mechanisms implies that muta-
tion rates, and the ability to evolve, increase preferentially when cells are poorly adapted
to their environment, when stressed (reviewed in references 23, 25, and 26).

Stress-induced mutagenesis departs from ideas established before knowledge of
the molecular basis of genes. Mutations were assumed to occur randomly both in time
and in genomic space and constantly and gradually (27). Luria and Delbrück defined a
mathematical relationship between the birth of mutations and cell divisions that
occurred before exposure to a killing environment of lytic bacteriophage, in which
Escherichia coli phage-resistant mutants were selected and then quantified (28).
Because they used a killing selection for mutants, they saw only mutants already pres-
ent and failed to detect any possible stress-induced mutagenesis.

Discovery of the bacterial SOS DNA damage response (29–32) led Harrison Echols
to propose that stress sensing could, via the SOS response, promote genetic instability,
and “inducible evolution” (33). The SOS response upregulates DNA damage tolerance
and repair and instigates mutagenesis, prophage induction, and inhibition of cell divi-
sion (reviewed in reference 34). Others argued, however, that SOS mutagenesis is an
unavoidable by-product of repairing DNA damage, that nonmutagenic DNA repair
could not evolve (e.g., see references 35 and 36), and that cells must repair DNA dam-
age to survive.

The possibility of stress-inducible evolution (33) was difficult to consider until discov-
eries that mismatch repair, which corrects DNA replication errors, could be downregu-
lated, increasing the mutation rate without assisting DNA repair (as shown in references
37 to 40 and reviewed in references 23, 25, and 26), and that the general stress response
was required for transposon movement (41, 42) and other mutagenesis under stress (43)
and not for concurrent repair (44, 45). Many different stress responses are now docu-
mented to upregulate mechanisms of mutagenesis, including mutagenesis unrelated to
the SOS response (e.g., see references 46 to 52). These various mechanisms promote an-
euploidy (53, 54) (in eukaryotes), base substitutions and indels (insertions or deletions of
one or a few base pairs) (reviewed here, and see references 25 and 26), transpositions (41,
42), and copy number alterations (CNAs) and other genome rearrangements (49, 50, 55).
Additionally, reactive oxygen modifies transposase accuracy directly, without stress responses,
and so, similarly, causes stress-induced transposon mutagenesis during oxidative stress (56).

In this review, we discuss current understanding of mechanisms of stress-induced
mutagenesis. We examine mutagenesis induced by antibiotics and its promotion of an-
tibiotic resistance and cross-resistance to antibiotics not yet encountered. We discuss
two mechanisms of starvation stress-induced mutagenesis (21) that also underlie quin-
olone-induced mutagenesis (19, 57): two kinds of mutagenic repair of DNA breaks.
Quinolones induce a switch from accurate to mutagenic modes of DNA break repair,
using the general stress and SOS responses, which link mutagenesis to times of stress
(57). The mutations are focused in hot spots near sites of DNA breakage (58) and occur
in a transiently differentiated mutable “gambler” cell subpopulation (57). We examine
how each of these departures from “random” mutagenesis can promote evolution.
“Persisters” are subpopulations of transiently nongrowing or slowly growing cells that
survive antibiotics temporarily, without a resistance mutation (reviewed in references
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59 and 60) and cause relapse of infections by resuming growth after antibiotic clear-
ance (59). We consider the possible relevance of persisters and other evolvable cell
subpopulations to gambler cells and suggest criteria for choosing evolution-promoting
molecules as potential targets for new drugs to slow evolution of antibiotic resistance
and immune evasion, without selecting resistance to themselves or antibiotics. We call
these “stealth” evolution inhibitors. In addition, we explore possible useful next steps.

STRESS-INDUCEDMUTAGENESIS IN BACTERIAL EVOLUTION

Most of this review is focused on mutagenesis and evolution in the laboratory.
Stress-inducible mutagenesis, however, appears to contribute meaningfully to natural
bacterial evolution. The large majority (more than 80%) of 787 E. coli natural isolates
from diverse environments worldwide display stress-induced mutagenesis in a labora-
tory setting, showing that they possess the capability (46). Moreover, their ability to do
so is correlated with the ecological niche of the isolates, suggesting that stress-induci-
ble mutagenesis is selected (46). Selection of stress-induced mutagenic abilities is also
supported by mathematical modeling. Bacterial populations capable of stress-induced
mutagenesis showed improved fitness in changing environments (61–63). Separately, in
whole-genome sequences of wild E. coli isolates, “mutational signatures” of the sequence
differences between their genomes were dominated by specific base substitutions and
indels that characterize mutagenesis that depends on the general (sigma-S, or s S) stress
response (64). The data imply that most natural variation arose by s S-dependent
(stress-induced) mutagenesis (64). Moreover, the multiple molecular mechanisms of
stress-induced mutagenesis discovered in bacteria have predicted mechanisms at
work in evolution of cancers (as reviewed in reference 25 and see references 65 to 67).
Widespread evidence from bacteria to humans (25 [and see reference 68]) implies
that much of the mutagenesis underlying evolution is stress induced.

THE GENERAL STRESS RESPONSE SWITCH TOMUTAGENIC BREAK REPAIR

The general or starvation stress response in E. coli promotes at least two mechanisms
of mutagenesis, both of which switch the otherwise accurate mechanism of DNA double-
strand break (DSB) repair to mutagenic repair routes (Fig. 1). Both are activated by the
general stress response, which occurs via production of the s S transcriptional activator
(43–45) encoded by the rpoS gene (69). Bacterial sigma factors, including s S, are inter-
changeable subunits of RNA polymerase (RNAP), which when plugged into RNAP, direct
RNAP and transcription to some genes and away from others. The s S regulon, reviewed
by Battesti et al. (69), is upregulated in response to starvation, cold shock, osmotic shock,
acid shock, oxidative stress, and antibiotics (24, 70) and protects cellular hardware from
damage during those stresses.

Mutagenic DNA break repair (MBR) in E. coli, studied during starvation, can occur dur-
ing DSB repair by homologous recombination (44, 45, 58, 71–73), causing base substitu-
tions and indels (25, 26) (Fig. 1, top). MBR requires three simultaneous events to occur
(44, 45) (Fig. 1, top). First, a DSB must occur (Fig. 1, step 1) and be repaired by homology-
directed repair (HR) (Fig. 1, top). DSB repair in E. coli uses the RecBCD homology-directed
repair mechanism and occurs similarly in other bacteria (74, 75). DSBs are bound and
“resected” by RecBCD, a DSB end-specific exonuclease that exposes single-stranded DNA
(ssDNA) and then loads RecA onto the ssDNA end for repair (76). The RecA-DNA complex
also signals DNA damage, which activates the SOS response (34, 77) (Fig. 1, top, step 2).
The ssDNA-RecA complex displaces a DNA strand of similar sequence, usually in a sister
chromosome, base pairs with the complementary sequence (reviewed in references 74,
75, and 78), and then initiates repair synthesis using the high-fidelity replicative DNA poly-
merase III (Pol III) (79). DSB repair and MBR require the RuvABC Holliday junction-resolvase
complex (72–75) and RecA and RecBCD (44, 45, 71).

Second, the SOS response (Fig. 1, top, step 2) must be induced for homology-
directed MBR (80), and this occurs following DNA breakage in about 25% of cells with
a single reparable DSB (81). The SOS response transcriptionally upregulates about 40

Minireview mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.01074-22 3

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.01074-22


genes in E. coli, including error-prone DNA Pols IV, V, and II (Fig. 1, top) (reviewed in
references 34 and 82), all of which promote components of stress-induced mutagene-
sis. Pol IV is required for all homology-directed MBR and promotes formation of indels
and base substitutions (44, 45, 83–85). The Pol IV 10-fold upregulation by the SOS
response accounts for the SOS role in stress-induced MBR (86). Despite the 10-fold up-
regulation and efficient homology-directed DSB repair (44, 45), repair remains high fi-
delity and nonmutagenic unless a third event occurs: activation of the s S general
stress response (Fig. 1, top, step 3) (43–45).

The s S response is an “AND gate” for MBR, for which at least two responses must occur
simultaneously (SOS AND s S). That is, the cell must sense at least two different stressors
before committing to mutagenesis: DNA damage and the s S inducer. The s S-inducing
stressor most studied is starvation (21). Because a constitutive s S response allows MBR in
the absence of any stress (44, 45), the stress response is required, but stress is not. The s S

response, by unknown means, licenses the use of the SOS-upregulated DNA Pols in DSB
repair and/or allows their errors to persist and become mutations (Fig. 1, top, base substi-
tutions and indels). s S upregulates Pol IV about 2-fold (87), downregulates mismatch
repair (38, 88), and may downregulate high-fidelity replicative DNA Pol III (about 2-fold
reduction in mRNA) (89). Pol III competes with Pol IV in DSB repair-associated replication
in cells (90) and biochemically at model strand displacement loops (D-loops) (91). Any of
these effects could underlie the role of s S in stress-induced MBR.

Importantly, Pol IV and mutagenesis are not needed for efficient DSB repair (44, 45),
which works as well (45) or better (44) in its absence, thus refuting arguments that
high-fidelity DNA repair cannot evolve (35, 36). It did, but E. coli cells do not use it
under s S-inducing stress.

s S also promotes a “microhomologous” mechanism of DSB repair, which causes ge-
nome rearrangements (43) (Fig. 1, bottom), including copy number alterations (CNAs)

FIG 1 Temporal regulation of mutagenesis by stress responses in E. coli mutagenic break repair. (Step 1) DNA double-strand breaks (DSBs)
are generated by various processes and can then be repaired by homologous or microhomologous repair mechanisms. (Top) During
homology-directed DSB repair (HR) (reviewed in references 74 and 75), ssDNA exposed at the DSB ends base pairs with complementary
sequence in a sister chromosome, promoting repair DNA synthesis. (Step 2) DSBs also induce the SOS response, which transcriptionally
upregulates the error-prone DNA polymerases (Pols) IV, V, and II (82); however, repair remains accurate unless another stressor induces the
general stress (s S) response (44, 45). (Step 3) The s S response induces two kinds of switches to mutagenic DSB repair. In cells that are
also SOS induced, the s S response, by unknown means, allows the use of, or persistence of errors made by, the error-prone DNA Pols in
repair, causing base substitutions (45, 84) and indels (43, 44, 83, 166, 167). s S also downregulates mismatch repair (37–40, 88), which
allows errors in DNA synthesis to persist. (Bottom) Less frequently, microhomologous MBR of a DSB occurs. It is SOS independent and
requires (step 2) the s S response and DNA Pol I for template switching to regions containing microhomology (49, 50) (few
complementary bases). The repair replication creates genome rearrangements. A duplicated chromosome segment is shown (blue arrows).
Parallel lines represent base-paired DNA strands, and half arrowheads represent the 39 DNA ends.
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and other rearrangements (49, 50, 55). Microhomologous MBR does not require an SOS
response (83). Microhomologous MBR might occur in starving cells that lack a sister
chromosome template for homology-directed repair or those not undergoing the SOS
response upon DNA breakage. Microhomologous MBR (Fig. 1, bottom) occurs via a
microhomology-mediated break-induced replication (MMBIR) mechanism (44, 50, 92,
93) and is reviewed elsewhere (25, 92).

MUTATION HOT SPOTS AND CLUSTERS

MBR causes mutations near DSBs, implicating the tracts of DSB repair synthesis as
the MBR sites (44, 58). When a site-specific DSB is delivered to the chromosome of
starving cells, s S- and Pol IV-dependent mutations occur maximally within the first kil-
obase pair on either side of the break site and fall off logarithmically to about 60 kb on
either side of it, with a long tail of low-level Pol IV-dependent mutations up to a mega-
base pair away (58), presumably in the tracts of DSB repair synthesis. The mutations
occur in clusters, with the probability of a mutation being higher at sites near another
mutation (94). Mutation clusters can promote “concerted evolution” that requires multi-
ple simultaneous mutations within a gene or linked genes to allow function. There is no
evidence of increased DNA breakage during MBR in starving cells (93) compared with
nonstressed cells (81, 95), only of the s S-dependent increase in the mutagenicity of repair
(44, 45). Thus, how and where spontaneous DNA breakage occurs might shape muta-
tional landscapes and genome evolution. The first detailed maps of spontaneous DNA
breakage in proliferating (mostly unstressed) E. coli cells show hot spots (96). Detailed
maps of genomic mutations under various stress conditions would be invaluable for test-
ing the prediction that these bacterial “fragile sites” (96) are mutable genomic regions.

PROTEIN NETWORKSWITH STRESS RESPONSES AS HUBS

In a screen for MBR-defective mutants, our lab identified a network of more than 93
diverse proteins that promote MBR (21). A small number of these were most of the previ-
ously known MBR proteins: stress response activators, proteins that perform DSB repair,
and error-prone DNA polymerases. However, most of the network proteins are highly
diverse and were not obvious candidates for roles in mutagenesis. For example, the largest
single category of network genes functions in the electron transfer chain (ETC). Functional
tests showed that more than half of the 93 proteins promote mutagenesis, acting
upstream of (i.e., before) activation of the three key stress response regulators in MBR: s S

(31 proteins), s E (44 proteins), and the SOS response (6 proteins). For example, if the s S

response is activated constitutively, the proteins required for its activation are no longer
needed for MBR (21). Thus, most of the network proteins promote MBR by sensing stress
and transducing the signals that activate the stress responses required to switch to error-
prone DSB repair (21). Activation of stress responses appears to be the most important cri-
terion for the E. coli decision to allow mutagenesis, having the largest allotment of genes.
Moreover, the stress-response activators are nonredundant network hubs (21).

QUINOLONE ANTIBIOTICS

In the rest of this article, we focus mostly on the very widely used fluoroquinolone
antibiotics and how they induce mutagenesis to fluoroquinolone resistance and cross-re-
sistance to other antibiotics, and we compare these findings with data on mutagenesis
induced by other antibiotics, about which less is known.

Quinolone antibiotics bind and inhibit bacterial type II topoisomerases (topos) while
they are in the act of relieving DNA supercoils (97), which result from unwinding of
DNA during DNA replication and transcription. Type II topos bind DNA and cleave both
strands, creating a DSB, and attach covalently to each 59-end strand (98). The broken
DNA allows another duplex to pass through, and is then religated, releasing the topo.
The DSBs undo supercoils or allow decatenation of linked sister chromosomes follow-
ing DNA replication (99). Quinolones bind type II topos after DNA breakage and before
the religation step and so leave the DNA broken (97). The commonest route to
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resistance clinically (12) and in the lab (10, 100) is by de novo mutations that either al-
ter the topo so that the drug no longer binds or cause upregulation of efflux pumps
that export the drug.

QUINOLONES INDUCE MUTAGENESIS AND ANTIBIOTIC CROSS-RESISTANCE

Ciprofloxacin (cipro) is the most commonly used fluoroquinolone (16, 101).
“Subinhibitory” concentrations of cipro (below the minimal inhibitory concentration, or
MIC) occur in ecosystems and during antibiotic therapies at the beginning, the end, and
when doses are missed. Subinhibitory cipro can both induce and select cipro-resistant
mutants (19, 100), making quantification of cipro induction of mutagenesis challenging.
That fluoroquinolones induce mutagenesis was shown by exposing cells to another fluo-
roquinolone, norfloxacin, and then selecting and quantifying mutants resistant to antibi-
otics not yet encountered (102), antibiotic “cross-resistant” mutants. The norfloxacin-
induced mutagenesis required reactive oxygen species (ROS) (102), which are induced by
the antibiotic and also underlie its antibiotic (killing) activity (103). Yet, how the ROS
might promote mutagenesis was unclear; direct oxidation of DNA bases seemed easy to
imagine.

We found that cells grown in subinhibitory cipro at the “minimum antibiotic concen-
tration (MAC),” at which the final CFU are 10% of identical drug-free cultures, induce muta-
tions that confer resistance to two different antibiotics (57). Rifampin-resistant mutants
carry base substitutions in the (essential) rpoB gene (104), and ampicillin-resistant mutants
carry any loss-of-function mutation in the ampD gene (57, 105). These are induced about
30-fold and 15-fold, respectively, by MAC cipro (57). The cipro-induced rifampin- and
ampicillin-resistant mutants have a slight growth disadvantage in MAC cipro and so are
not selected by the cipro. Rather, bona fide induction of mutagenesis occurs (57). Base
substitutions and indels are generated along with larger genomic rearrangements, includ-
ing deletions in the ampD gene (57). In Fig. 1 (bottom), the microhomologous rearrange-
ment pathway is shown and requires the s S and not the SOS response (83), and it might
account for the cipro-induced larger deletions (92). The starvation stress-induced MBR
mechanism (Fig. 1, top) provided a useful entry into how cipro induces mutagenesis (57).

Cipro-induced mutagenesis is MBR. Cipro-induced mutagenesis occurs via the
stress-induced MBR pathway, requiring proteins of DSB repair, the stress-response regula-
tors for the SOS and s S responses, and the error-prone DNA polymerases IV, V, and II (57)
(Fig. 1, top). Supporting an MBR mechanism, cipro-induced mutagenesis is blocked by an
induced DSB end-specific binding protein, Gam of phage Mu (57), demonstrating a role
for DSBs. Cipro-induced mutagenesis also requires ROS and is blocked by ROS-quenching
agents and an inhibitor of Fenton chemistry (57), which generates ROS. Cipro-induced
DSBs, quantified as foci of GamGFP (a fusion of the phage Mu Gam protein to green fluo-
rescent protein) (95), are unaffected by ROS-reducing agents (57), indicating that the role
of ROS in MBR is not generating the DNA breaks. As described below, ROS promote muta-
genesis by activating the s S general stress response.

Mutable gambler cell subpopulation via general stress response. Antibiotics, includ-
ing fluoroquinolones, induced the SOS (106–108) and general stress responses (24, 70) in
studies that used bulk cell measurements. At the single-cell level, an interesting transient
“differentiation” is seen. Flow cytometry and microscopy with ROS stain and fluorescence
reporter genes for an active SOS (81, 109) or s S response (21) revealed the cascade of
events outlined in Fig. 2 (57).

Cipro-induced DNA breaks were visible as GamGFP foci (95) in essentially all cells,
as was the SOS response (57) (Fig. 2). The SOS response and DSBs are unaffected by
ROS quenching, indicating that the DSBs and SOS response occur independently of
ROS (57). Intriguingly, the sequences of the cipro-induced mutations do not show
the ROS-mediated mutation signature of 8-oxo-dG (oxidized guanine: G�C!T�A and
A�T!C�G) (110), reinforcing the conclusion that the ROS role in mutagenesis is not
via oxidized (damaged) DNA (57).

Surprisingly, ROS-dyed and s S-active cells composed only a roughly 20% cell sub-
population. The same cells display first ROS and then s S activity. The ROS induce the
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s S response, in that quenching the ROS prevented s S induction (Fig. 2) (57). As indi-
cated in Fig. 2, ROS induce transcription of two small RNAs (sRNAs), ArcZ and DsrA,
which with their RNA chaperone Hfq (57) increase translation of rpoS mRNA (69)
(Fig. 2). Removal of any of these components prevented s S induction and mutagenesis
(57) (Fig. 2). Additionally, the ROS ceased to be needed for mutagenesis if the s S

response was artificially upregulated (57). Thus, the major role of ROS in cipro-induced
mutagenesis is inducing the s S response, which subpopulation cells do by upregulat-
ing the two sRNAs (Fig. 2). This is unlike ROS roles in starvation stress-induced MBR
(111), DNA damage, and antibiotic activity (112, 113).

The s S-active cells, enriched by fluorescence-activated cell sorting (FACS), gener-
ated most of the cipro-induced mutants—more than 400 times more than arose from
the s S-inactive cells (57). Thus, ROS activation of s S creates a mutable “gambler” cell
subpopulation. The gamblers “experiment” with mutagenesis, which might lead to ei-
ther adaptation or loss of fitness, while most of the cells take no similar risk (57)
(Fig. 2). This might be a “bet-hedging” strategy (114, 115), in which some members of a
population are more likely to succeed by adaptation to a stressful environment and
others stay the course, and so benefit if the environment reverts to its prestress state.

Gamblers are transient in that the mutants they generate do not retain a s S-activated
phenotype (57). Whereas low mutation rates under stressful conditions can limit adapta-
bility (62, 63), populations of constitutively hypermutating cells show reduced long-term
fitness (116). The transient gambler subpopulation appears to be an intermediate in
which short-term increases of mutability may promote adaptation under stress without
harming long-term fitness once adaptation occurs.

In one mathematical model, the apparent mutability of gamblers might have resulted
from differential cell death (117); however, death rates were equal in gamblers and non-
gamblers, ruling out this hypothesis (57). This apparent discrepancy might reflect the
model’s assumptions of no antibiotic-induced increase in chromosomes per cell (dis-
cussed below) and that cells in a population are equally mutable (117). The gambler sub-
population shows neither to be the case (57).

Many antibiotics activate s S (24 [reviewed in reference 23]), suggesting that MBR may
be a conserved response for survival of antibiotics (70). Whether other antibiotics or s S

inducers differentiate transient mutable gambler cell subpopulations and MBR remains to
be determined. In starving colonies, cell subpopulations have been observed that have
stress responses activated (118) and might be gamblers.

FIG 2 Pathway to and potential intervention points in formation of mutable gambler cells. cipro-induced DSBs activate the SOS
response, which slows aerobic respiration (140). We suggest that increased autoxidation of reduced ubiquinone leads to (as
observed in reference 57) a cell subpopulation with high levels of reactive oxygen species (ROS). ROS activate s S by upregulating
transcription of sRNAs DsrA and ArcZ (57), which, with the Hfq RNA chaperone, increase translation of rpoS (s S) mRNA in the
cells with high ROS (57). This s S-high “gambler” cell subpopulation allows mutagenic DNA break repair (MBR) (Fig. 1, top) and
produces antibiotic cross-resistant mutants induced by cipro (57). The gambler subpopulation is transiently mutable (57). The SOS
response also upregulates the SulA inhibitor of cell division, which promotes formation of multichromosome cells (168), which
facilitate cipro-induced MBR (57). Potential antievolvability drug targets (depicted as “–j target,” in which “–j” indicates inhibition)
have been identified by the discovery of the various steps of gambler cell formation and the action illustrated. The FDA-
approved human drug edaravone inhibits gambler cell formation by quenching ROS (57), which does not select antievolvability
drug resistance. Previous and proposed drugs to target the SOS response (155–157), DSB repair (158), any other DNA repair (154)
and/or the error-prone DNA polymerases do reduce fitness in the antibiotic and so select resistance.
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EVOLVABLE CELL SUBPOPULATIONS, PERSISTERS, ANDMETABOLISM

Transient cell subpopulations provide alternative physiological options that allow
survival, with or without mutation(s) or horizontal gene acquisition. Bacillus subtilis
activates both starvation stress-induced mutagenesis and a subpopulation “compe-
tent” for DNA uptake with the same ComK transcriptional activator (119). The mutants
are not enriched among transformants (52), suggesting alternative responses to the
same stress. Plasmid transmission (HGT) and loss may also affect antibiotic resistance,
with high conjugation frequency (1023) promoting plasmid transmission and the resist-
ance conferred and high loss (1023) causing plasmid eradication and loss of resistance
(120).

Present at about 1025 of the population, persisters survive b-lactams (121, 122),
fluoroquinolones (121–124), and aminoglycosides (121, 122) and underlie much of an-
tibiotic treatment failure (reviewed in references 60 and 125). Persisters can form sto-
chastically (126) or be induced via stress responses, including SOS (123) and s S (127),
similarly to gamblers (57). Persistence resembles antibiotic “tolerance” (reviewed in
reference 60), a physiological state in which whole populations survive even higher
antibiotic levels (60) without a mutation.

Whereas persisters are found under high doses (60), gamblers and mutagenesis are
maximal with “subinhibitory” antibiotics (19, 24, 57, 102) (10% survival). Gamblers might
become or harbor future persisters or could be an alternative or unrelated program.

Reduced energy metabolism characterizes gamblers and allows persisters to with-
stand most antibiotics. For example, tricarboxylic acid (TCA) enzyme promoter activity
varies in proliferating cells, and those with low TCA gene transcription become persist-
ers (121). Some antibiotics kill regardless of metabolic activity, but are toxic at high
doses. Zheng et al. (122) combined these with antibiotics that attack metabolically
active cells to eradicate persisters (122). The metabolism-dependent antibiotics kill
most of the cells, while rare persisters succumb to the metabolism-insensitive killers at
lower, nontoxic doses (122).

Metabolism can affect resistance directly. Mutations that reduce TCA cycle activity
cause resistance to some antibiotics (128) and appear in many clinically relevant patho-
gens (128). Similarly, the electron transfer component ubiquinone (UQ) acts early in gam-
bler cell differentiation, upstream of reactive oxygen (57) (Fig. 2), which may result from
ubiquinone autooxidation (129, 130) (discussed in the next section). Even “taking the
chance” that some cells become mutable begins only when metabolism is threatened.
Matic and colleagues suggest that energy metabolism is a key universal sensor for many
stresses, including antibiotics (70).

In growing cells, spontaneous mutations, seen as foci of MutL-GFP mismatch-interacting
protein (131), occurred mostly in subpopulations with stress responses activated (132),
detected with fluorescence reporter genes. Cells with high SOS, RpoH/sH heat shock pro-
tein (protein stress), or OxyR oxidative stress response activity showed more MutL-GFP
foci than those without stress response induction, linking spontaneous mutability to
stress and stress responses (132). Furthermore, the cells with increased mutations also
showed increased translation errors (132), suggesting a vicious cycle of mutations fueling
poor proteostasis, which because proteins make DNA, feeds back to increased mutability.
Rarely examined, translation errors might often accompany mutagenesis.

Do efflux pumps induce gamblers? Surprisingly, like gamblers, subpopulations with
high activity of the AcrAB-TolC efflux pump (133, 134) show reduced levels of MutS mis-
match repair protein and an increased mutation rate (135). Deletion of acrB blocked
pump activity and MutS reduction. We hypothesize that increased efflux activity reduces
the effective within-cell drug concentration to subinhibitory levels that both aid survival
and induce mutagenesis (57, 102): a one-two punch against the antibiotic. The NorA
efflux pump promotes both immediate survival and the evolution of cipro resistance in
Staphylococcus aureus (136), and its chemical inhibition by reserpine reduced cipro resist-
ance, supporting the hypothesis that preventing cipro efflux can raise the in-cell drug
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concentration (136) to beyond the subinhibitory level at which mutagenesis is induced
(57, 102).

Most evolutionary interpretations (35, 36) and models (117) assume homogeneous
populations. The variability of metabolic rates, prevalence of drug-induced and sponta-
neous mutations and persisters in metabolically depressed subpopulations, and gam-
bler promotion of adaptability (55, 57, 135, 137–139) indicate that those models could
be improved by incorporating heterogeneity. Evolvable cell subpopulations may be
the rule, not the exception.

Why some cells and not others? First steps. How mutable subpopulations begin can
reveal circumstances that necessitate acceleration of evolution. For gamblers, the ROS-
high cell subpopulation (and mutagenesis) (Fig. 2) are induced by an SOS response in all
cells (Fig. 2), which is dependent on UbiD synthesis of ubiquinone (UQ), a component of
the electron transfer chain (ETC). UQ was not needed if s S was artificially upregulated,
indicating that subpopulation induction is its sole role in MBR. The SOS response could
promote ROS by its suppression of aerobic respiration (140), which causes autoxidation of
reduced quinols, leading to ROS (129, 130). There might be heterogeneity in the SOS
slowing of the ETC and a respiration threshold below which autoxidation of ubiquinone
occurs. ETC activity might vary between cells, or, alternatively, heterogeneous production
of an SOS-regulated protein(s) might cause only some cells to slow the ETC. SOS-induced
TisB and DinQ disrupt membrane potential (124, 141) and so are candidates for an ETC in-
hibitor. The distribution of their induction among cells is unknown (142). Coupling muta-
genesis to the ETC (21, 57) highlights ATP production in basic sensing of stress.

Multiple chromosomes and mutagenesis. E. coli cells grown in fluoroquinolones
form long, multichromosome cell “filaments” (143). The SOS-induced inhibitor of cell
division SulA (144) blocks polymerization of the microtubule-like cell division (FtsZ)
ring, causing more chromosomes per single long cell “filament” (145, 146) (Fig. 2, bot-
tom). SulA (144) promotes mutability in both starved (80) and cipro-treated cells, both
per cell and per chromosome (57). The mutability might reflect a requirement for comple-
mentation of deleterious mutations long enough to make an adaptive mutation.
Recombination between chromosomes might be the advantage (57, 143) for generating
the mutants by MBR and/or for losing or buffering deleterious alleles. Mathematical mod-
eling indicates that multichromosome cells survive increased mutation rates better
than nonfilaments (57). Cipro-induced mutability shows both heterogeneous mutabil-
ity between cells and promotion of mutations in multichromosome cells (Fig. 2), both
evolution accelerators as predicted by modeling (57, 63).

In a striking similarity to gamblers (57), multiple chromosomes promoted persister
formation directly (147). Cells with more than 1 chromosome survived quinolones bet-
ter than single-chromosome cells separated by FACS (147). Moreover, the survival was
RecA and RecB dependent, supporting the need for recombinational repair and/or for
an SOS response to survive cipro-induced DSBs (19).

TARGETS FOR ANTIEVOLVABILITY DRUGS

Mechanisms of stress-induced mutagenesis promise to reveal possible targets for
“antievolvability” drugs to slow evolution of antibiotic resistance, cross-resistance, and
immune evasion (19, 21, 22, 25) for better clinical outcomes (19–22, 24, 25). With iden-
tification of mechanisms and molecules that promote evolvability, it may be appropri-
ate to consider criteria for choosing antievolvability drug targets. One approach could
be to target essentially any protein required for stress-induced mutagenesis (or other
evolution), preferably in various bacteria and antibiotics. A more deliberate “stealth”
approach could focus, we suggest, on targets the loss of which causes no immediate
fitness decrease—as for example, the loss of DNA repair proteins does—so that resist-
ance to the antievolvability drug will not be selected directly. In this light, some previ-
ously proposed (Mfd) or targeted (RecA, SOS) evolvability-promoting molecules
include nonstealthy targets that select resistance.

Targeting proteins also needed for antibiotic survival. Mfd is an RNAP translo-
case that functions in transcription-coupled nucleotide excision repair (NER) (TCR),
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among other roles. Mfd promotes mutagenesis (93, 148–151) to drug resistance (93,
150) and was suggested as a possible target for antievolvability drugs because it acts
in diverse bacteria, including in the E. coli MBR mechanism (93). In E. coli MBR, Mfd pro-
motes DNA DSBs at some genomic sites (93) in a pathway that also required RNA-DNA
hybrids and the s E membrane protein stress response regulator (93, 152). An enzyme-
induced DSB delivered near the mutation reporter gene substituted for all of these
components, indicating their roles in generation of the spontaneous DSBs (93, 152).
Mfd was postulated to promote DSB formation and mutagenesis by stabilizing RNA-
DNA hybrid “R-loops” in DNA, which can prime DNA synthesis/replication that creates
a DSB when it encounters a single-stranded nick in the DNA (93). s E-dependent tran-
scription was postulated to generate the RNA in the R-loops (93, 152).

Mfd also promotes mutagenesis in Bacillus subtilis (148–150, 153), Pseudomonas aer-
uginosa, and Salmonella enterica serovar Typhimurium, including within host cells
(150). In B. subtilis, ComK-dependent (52) stress-induced mutagenesis requires Mfd and
UvrA, a nucleotide excision repair (NER) protein that works in TCR and global (Mfd-in-
dependent) NER, implying that mutagenesis occurred dependently on TCR (148, 149);
possible molecular mechanisms have not been defined. In another B. subtilis mutagen-
esis assay (150), Mfd-mediated mutagenesis also required UvrA, transcription, and Mfd
interaction with an RNA polymerase subunit, implicating TCR (150). The authors sug-
gest targeting Mfd or its interaction with the RNA polymerase to inhibit mutagenesis
and antibiotic resistance (154).

“Stealth” targeting of network hubs not needed for immediate antibiotic survival.
Another possible approach to targeting evolution makes use of a functional network
analysis of evolution-promoting mechanisms. Functional network analysis of starvation
stress-induced MBR showed the stress response activators to be key nonredundant
hubs in the MBR network (21), making them attractive targets (21), inhibition of which
might collapse the entire network. These hubs include s S and SOS response activators
(21). Current inhibitors of the SOS response target RecA (activator), LexA (155–157)
(repressor), and RecB/AddAB (158) (activators). Inhibition of these proteins increases
bacterial killing (by blocking DNA repair) and so may be expected to select strongly for
resistance (19): a nonstealth approach. We suggest aiming new drugs, instead, at evo-
lution-promoting hubs that have little effect on survival of antibiotics. In the pathogen
Candida albicans, HSP90 inhibitors (159) and the natural product beauvericin (160) pre-
vent the evolution of resistance to antifungal drugs without altering killing. Resistance
to beauvericin and similar evolvability inhibitors is, therefore, unlikely to be selected
directly.

As a proof of concept, the ROS-reducing FDA-approved drug edaravone inhibits for-
mation of cipro-induced gambler cells and mutagenesis (57) (Fig. 2). Edaravone is used
for amyotrophic lateral sclerosis (ALS) and cerebral infarction (161). Edaravone did not
change cipro induction of DSBs, the SOS response, or antibiotic killing (Fig. 2) (57), any of
which could select edaravone- and cipro-resistant cells. Antioxidants, including edara-
vone, given either with antibiotics or alone, were beneficial in mouse infection models
(162–164). The authors studied immune-modulating effects and not antibiotic resistance,
a potential factor in their effectiveness. In humans, edaravone reduced septic shock and
mortality in septic peritonitis patients receiving standard care (including antibiotics) (165).
This might result partly from slowed evolution of antibiotic resistance; however, data on
resistance were not reported. Edaravone is a promising proof of concept for stealth drugs
that decrease evolvability without selection for antibiotic resistance (or edaravone resist-
ance) because it reduces mutagenesis, not survival (57). Other possible hub-related tar-
gets for antievolvability drugs in cipro-induced MBR are noted in Fig. 2 (not meant to be
an exhaustive list). Future analyses of evolution-promoting functional networks may
reveal other promising targets as network hubs.

Antievolvability drugs might be used as adjuvants to traditional antibiotics, to extend
their utility by slowing development of resistance (19, 22, 25, 57). Alternatively, as mono-
therapies, the slowing of pathogen evolution might tilt their evolutionary races against
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our immune defenses in favor of the immune system and allow clearance of infections
without reducing the beneficial diversity of our microbiota with antibiotics (21, 22, 57).

CONCLUSIONS

Mutagenesis mechanisms upregulated by stress responses promote mutagenesis pref-
erentially when cells are maladapted to their environment and speed adaption in stressful
and changing environments (models shown in references 62 and 63). In stress-induced
mutagenic break repair, upregulation of mutagenesis does not aid cell survival of the
DNA breaks (44, 45)—but may be induced because it accelerates adaptation (62, 63)
when cells are stressed and struggling to survive. Gambler cells depart further from random
mutagenesis, honing regulation further by limiting the risks of mutagenesis to part of a pop-
ulation that experiments with new genotypes, while other parts “hedge” the population’s
“bets” by remaining stable. An antimutagenic FDA-approved drug, edaravone, quenches
ROS and prevents formation of the gambler cell subpopulation in the laboratory (57)
(Fig. 2): an example of “stealth drugging” evolution without selecting resistance directly.
Edaravone might or might not be optimal for clinical inhibition of antibiotic resistance.
There are likely to be more, as-yet-undescribed regulatory steps in quinolone-induced muta-
genesis and other antibiotic-induced evolvability mechanisms, some of which might afford
attractive potential drug targets. Understanding the details of the mechanisms of mutagen-
esis is likely to expand options for combating the evolution of pathogens and antibiotic
resistance.
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