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ABSTRACT

The evolution of regulatory networks in Bacteria has
largely been explained at macroevolutionary scales
through lateral gene transfer and gene duplication.
Transcription factors (TF) have been found to be less
conserved across species than their target genes
(TG). This would be expected if TFs accumulate muta-
tions faster than TGs. This hypothesis is supported
by several lab evolution studies which found TFs,
especially global regulators, to be frequently mu-
tated. Despite these studies, the contribution of point
mutations in TFs to the evolution of regulatory net-
work is poorly understood. We tested if TFs show
greater genetic variation than their TGs using whole-
genome sequencing data from a large collection of
Escherichia coli isolates. TFs were less diverse than
their TGs across natural isolates, with TFs of large
regulons being more conserved. In contrast, TFs
showed higher mutation frequency in adaptive lab-
oratory evolution experiments. However, over long-
term laboratory evolution spanning 60 000 genera-
tions, mutation frequency in TFs gradually declined
after a rapid initial burst. Extrapolating the dynamics
of genetic variation from long-term laboratory evolu-
tion to natural populations, we propose that point
mutations, conferring large-scale gene expression
changes, may drive the early stages of adaptation
but gene regulation is subjected to stronger purify-
ing selection post adaptation.

INTRODUCTION

The dynamic environments colonized by bacteria demand
optimal regulation of gene expression (1). Transcription ini-
tiation, the primary checkpoint in this regulation, is in-
fluenced by the activity of a set of DNA-binding proteins

called transcription factors (TFs). TFs sense the cellular en-
vironment and respond by activating or suppressing the ex-
pression of their target genes (TG). Different species of bac-
teria occupying diverse niches, thus differ more in the set of
their TFs than that of their TGs (2).

The set of transcriptional regulatory interactions in an
organism is usually represented as a transcriptional regu-
latory network (TRN). TRNs have been found to evolve
faster than other biological networks (3), based on detec-
tion of orthologs across species. Their evolution has been
explained largely by duplication (4) and horizontal gene
transfer (HGT) (5). Even though both of these processes are
accompanied/followed by DNA sequence level changes in
the TFs (6,7), the contribution of point mutations to TRN
evolution is poorly understood (8). The significance of point
mutations can be realized by the fact that, even where both
a TF and its TG are present, the regulatory interaction is
often not conserved (9).

Macroevolutionary changes in TRN can be explained, in
principle, through mutations at microevolutionary scales,
i.e. mutations may accumulate faster in TFs than in TGs
within species, and this would be reflected as lower conser-
vation of TFs across species. If selection drives TFs evolu-
tion, populations adapting to different environments may
select for different mutations in TFs at a higher frequency
than in TGs. Some of these may be loss-of-function muta-
tions, leading to complete loss of the TF over a long period
of time. In contrast, if TFs evolve through neutral processes,
a population may have more standing genetic variation in
TFs than in TGs, presumably due to weaker selective con-
straints. For the same reason, the loss of a TF at large evo-
lutionary distance would be more likely than that of a TG.

The adaptive evolution hypothesis seems to be supported
by multiple lab evolution experiments, which found many
beneficial mutations to occur in TFs (10). However, this
cannot be concluded in the absence of a statistical analy-
sis, of enrichment of beneficial mutations in TFs over TGs,
across multiple such studies. Often, these mutations were
found in the hubs of the TRN (11), generally referred to

*To whom correspondence should be addressed. Tel: +91 80 2366 6502; Fax: +91 80 2363 6662; Email: aswin@ncbs.res.in
Correspondence may also be addressed to Farhan Ali. Email: afarhan@ncbs.res.in

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-4945-2978


Nucleic Acids Research, 2020, Vol. 48, No. 8 4101

as ‘global’ regulators (GR). As TRN follows a power-law
distribution of edges per nodes (12), only a few TFs act as
GRs, and influence gene expression on a global scale. In this
regard, majority of the TFs are considered as ‘fine-tuners’,
and it is not evident if mutations in these TFs should also
be more adaptive than in TGs.

The role of adaptation in shaping gene regulation across
wild strains also has been demonstrated by several studies
(13–15). However, it is still not clear to what extent mu-
tations in TFs drive regulatory diversification. Some stud-
ies suggest that few mutations in TFs may be sufficient for
changes in regulation (7,16,17). Therefore, it is possible that
even if the evolution of TFs is shaped by adaptation, we may
find TFs to be less diverse than their TGs within a species.
Additionally, lower diversity of TFs would be indicative of
stronger selective constraints.

Recent advances in genome-scale sequencing and analy-
sis, and readily available large-scale WGS datasets offer an
exciting opportunity to investigate the evolution of regula-
tory networks over short time-scales, i.e. across strains or
within species. Equipped with tens of thousands of sequenc-
ing runs on Escherichia coli from various hosts and geo-
graphical regions, we set out to estimate the sequence diver-
sity of a thousand genes. Using these datasets, we tested if
transcription factors of a bacterial species are indeed more
diverse than its target genes.

MATERIALS AND METHODS

Data acquisition

The meta-data table for E. coli WGS reads datasets,
generated on Illumina platforms, was acquired from
NCBI SRA database (http://trace.ncbi.nlm.nih.gov/Traces/
sra/sra.cgi, Accessed July 2017). This table included 49 680
sequencing runs from 2114 bioprojects. The projects were
analyzed in the descending order of the number of runs.
For any given project, the meta-data table was downloaded
from EMBL-EBI European Nucleotide Archive (https://
www.ebi.ac.uk/ena). The runs were selected based on the
following criteria:- library layout: ‘Paired’, library source:
‘Genomics’, library selection: ‘Random/ unspecified/ size
fractionation/ random PCR/ PCR’, Coverage ≥ 50X and
were downloaded from their respective FTP addresses men-
tioned in the ENA meta-data table using aria2 (https:
//aria2.github.io/). Variant calling was performed on 24
projects with 16 116 clinical and environmental isolates in
total. 15 of these projects, which had at least 50 sequencing
runs left after declustering, were selected for further analy-
sis.

The information on regulatory interactions among E. coli
proteins was acquired from the RegulonDB database (v9.4)
(18). A set of 146 experimentally verified TFs and 1119 TGs
regulated by these TFs was extracted for the analysis, af-
ter excluding those genes for which multiple sequence align-
ment, based on the selected Refseq genomes (19) , showed
gaps in the sequence corresponding to the reference genome
(E. coli K-12 MG1655), arguing that these gaps can repre-
sent additional domains which may result in a different pro-
tein function. All regulatory interactions among TFs were
excluded from the network which reduced the set of TFs to
142.

Variant calling

SPANDx v3.2 pipeline (20) was used for variant calling with
default settings. The original script was slightly modified
for ease of integration into our custom pipeline. Escherichia
coli K-12 MG1655 genome (NCBI nucleotide database ac-
cession = NC 000913.3) was used as a reference for read
alignment. The output SNP matrix was processed to remove
low quality variants, variants for which base call was am-
biguous in >10% runs, and those outside protein-coding re-
gions. Remaining ambiguous bases were replaced with the
most-frequent base at the position, following which if the
position had no variation, than it was excluded.

Coverage-based gene detection

Presence of genes were detected separately from the variant
calling pipeline based on the breadth and depth of sequenc-
ing coverage. ‘Breadth’ implies the fraction of gene length
which was covered by at least one sequencing read and
‘Depth’ implies the average number of reads that mapped to
each position of the gene. These quantities were estimated
using bedtools coverage (v2.25.0) (21) and samtools bedcov
(v1.3.1) (22) (with mapping quality > 50) respectively. First,
genes above a minimum breadth of 0.6 were selected. Then,
per base depth was calculated by dividing the total read base
count by gene length. Genes with zero average base depth
were excluded. A mean over all remaining genes, x̄, was cal-
culated and values ≥2x̄ were excluded to obtain a Gaussian-
like distribution of depth coverage with mean, ȳ, and stan-
dard deviation, s. Genes with depth ≥ ȳ − 3s were consid-
ered present in the isolate. The runs with <3000 genes were
excluded. Only the variants corresponding to the detected
genes were retained.

Selection of runs from WGS datasets

Sequencing projects, especially the ones with thousands of
runs, were expected to contain many highly similar isolates.
The redundancy in these datasets could bias our results.
Therefore, a declustering step was employed. From the pro-
cessed SNP matrix, lists of codon variants were generated
for each run. Codon distances (fraction of variant codons)
from the reference genome were calculated for 125 genes
which were present in all of the 15840 analyzed sequencing
runs. These genes were selected from a set of 1710 core genes
of 123 Refseq strains, excluding genes with gaps in multiple
sequence alignment of these strains, keeping only the genes
with nucleotide diversity (based on 123 strains) > 75th per-
centile and ≤ IQR + 75th percentile. Codon distances were
used to map a set of runs onto a 125-dimensional euclidean
space, the corresponding distance matrix was generated and
a subset was selected such that the minimum distance be-
tween any two runs was greater than 0.1.

Selection of assembled genomes

Completed genome assemblies were downloaded for 614 E.
coli genomes from NCBI Refseq database (Accessed Octo-
ber 2018). Since there was redundancy in this dataset as
well, strains were selected using Mark Achtman’s MLST
scheme as follows. The seven gene fragments (mdh, gyrB,
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recA, icd, purA, fumC, adk) corresponding to E. coli K-
12 MG1655 were used in BLASTn (23) as queries against
the above target genomes and the best hits with max E =
10−5, at least 70% identity and 90% overlap were identi-
fied. Strains with any fragment missing were removed. A se-
quence of whole number percentages of identity and overlap
was created for each strain and only one randomly selected
representative of each sequence was retained. This proce-
dure ensured that the 123 selected strains differed by at least
1% from others in their identity and overlap on at least one
of the seven gene sequences.

Nucleotide diversity estimation from WGS reads

Using the lists of codon variants from selected runs,
‘pseudo-codon’ alignments were generated by initializing
each row of the alignment with the reference gene sequence
and then substituting reference codons with variant codons.
Only those runs where the gene was detected were included
in the alignment and the runs with an intermediate stop
codon or with any mutation at the reference stop posi-
tion to a non-stop codon were removed. Any variant codon
with missing site(s) was considered entirely missing and all
columns with gaps were removed from the alignment. From
these alignments, nucleotide diversity was estimated con-
ventionally, as the average pairwise nucleotide difference per
unit length of the gene.

Nucleotide diversity estimation from assembled sequences

Protein orthologs were identified across strains with a
custom-script using BLASTp (v2.2.29+) with minimum
percent identity and query coverage of 50%, E < 1 × 10−5

and BLOSUM80 as the substitution matrix. Bi-directional
Best hit criterion (24) was applied and ortho-groups were
classified as strict core - members of which were found in all
of the 123 genomes, closed group - every member of which
could identify all other members, and open group - some
members were not identified by other members. In case of
open groups, only the ’closed’ part was retained. Corre-
sponding protein and nucleotide sequences were extracted
and multiple sequence alignments of protein sequences were
generated using CLUSTAL OMEGA (v1.2.1) (25). These
protein alignments were converted to codon alignments us-
ing PAL2NAL (v14) (26). All gapped-columns were re-
moved and nucleotide diversity was estimated in the con-
ventional way as the average pairwise difference per site.

Regulon diversity estimation

For a paired comparison of TF and TG diversity, the diver-
sity of the regulon corresponding to the TF was estimated
in the following manner. First, mean diversity of each tran-
scription unit (TU) regulated by the TF was calculated. One
or more genes when transcribed together on a single mRNA
under a single promoter represent a transcription unit (TU).
A single operon may have multiple fully or partially overlap-
ping TUs. For the fully overlapping TUs, only the largest
one was considered. Since the length of operon (and TU)
is a function of the length of the corresponding metabolic

pathway and we wanted to eliminate the effect of pathway
lengths on diversity estimates, the grand mean diversity of
TUs, instead of the weighted mean, was calculated for each
TF.

Ortholog detection across species

For the analysis of conservation of proteins across species,
246 Uniprot reference proteomes (Accessed in Septem-
ber 2016) from class � -proteobacteria were used. Phmmer
(HMMER 3.1b2) (http://hmmer.org/) with max E = 10−6

along-with bidirectional best hit criterion was used to iden-
tify orthologs of reference’s TFs and TGs across these pro-
teomes. Pairwise global alignment of hits with reference
proteins was done using needle (EMBOSS:6.5.7.0) (27) and
hits with >10% alignment gaps were rejected. For a typical
TF which is about 250 amino acids long and has a DNA-
binding domain (DBD) of about 20 residues, this threshold
improved the odds that it had the same DBD as the refer-
ence and likely performed an analogous function.

Statistical analysis

Distributions of Diversity and Conservation for TFs were
compared against corresponding distributions for TGs us-
ing one-sided Wilcoxon rank sum test and Wilcoxon signed
rank test for unpaired and paired comparisons respectively.
Non-parametric tests were used because the underlying dis-
tributions were unknown and skewed. Correlations were
tested using Spearman correlation test since a linear rela-
tionship was not assumed a priori and the interest was in
assessing if the relationships were monotonously positive
or negative. Mutation enrichment in TFs in lab-evolution
projects was tested using one-sided Fisher’s exact test.
P-values were corrected for multiple testing with Holm–
Bonferroni correction. All statistical tests were performed
using the statistical programming language R (v3.4.4).

RESULTS

Differences in nucleotide diversity can arise from differences
in gene’s length

Previous studies have shown that TFs are less
conserved––as measured by the presence/absence of
orthologs––across bacteria (2,9,28). We hypothesized
that this flexibility of TRN may be reflected in greater
sequence variation of TFs over shorter time scales, i.e.
across strains or within a species. As a corollary, and
under the assumption that the difference in conservation
across species between TFs and non-TFs is a reflection of
positive selection, TFs may acquire more non-synonymous
variation than their target genes (TG) within E. coli. Also,
under the assumption that TFs do not differ from their
TGs in their underlying mutation rate and synonymous
changes are under relatively weaker selection, TFs should
be similar to TGs in their synonymous variation. Towards
testing these ideas, we first performed a preliminary study
of sequence variation in TFs and their TGs using a library
of completely sequenced and assembled E. coli reference
genomes.

http://hmmer.org/
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Starting from 614 reference genomes, we removed re-
dundant genomes based on sequence similarity to assem-
ble a final set of 123 genomes (Supplementary Table S1,
supplementary file 1). We obtained the experimentally ver-
ified TRN of E. coli from the RegulonDB database (18).
We excluded all interactions between TFs from this TRN
to obtain a set of 142 TFs and their 1119 TGs (Supple-
mentary Table S2, supplementary file 1). We measured se-
quence variation of these genes across isolates in terms of
nucleotide diversity (�), which is computed as the average
pairwise nucleotide differences per base. Contrary to our ex-
pectation, we found no difference in nucleotide diversity of
TFs and TGs (PWilcoxon rank sum = 0.054) (Figure 1A). Then,
we estimated nucleotide diversity separately from synony-
mous (�S) and non-synonymous (�N) sites. Again, both
the estimates revealed no difference between TFs and TGs
(PWilcoxon rank sum = 0.1065 for �S, 0.1099 for �N) (Figure
1B, C). In the above analyses, we did not make use of the
knowledge of regulatory interactions between these genes
and only checked for the overall difference in TFs diversity
when compared to that of TGs, TGs being representatives of
average non-TF protein-coding genes. When we performed
paired comparisons, where a TF was only compared with
its own TGs, we found all of the above estimates of diversity
to be lower for TFs. Surprisingly, even synonymous diver-
sity of TFs was less than that of their TGs (PWilcoxon signed rank

= 0.0008 for �, 0.0049 for �S, 1.6 × 10−5 for �N) (Figure
1D–F).

Since the number of regulated TGs varies across TFs and
ranges from a single TG to over 100 TGs, and we com-
pared the mean of all TGs of a TF against its own diver-
sity, TFs may show less variation than their TGs due to this
large variation in sample sizes from which means were es-
timated. We addressed this issue by estimating the signifi-
cance of our observation using a randomization test. Briefly,
we simulated random networks by removing all TFs from
the network and replacing original TFs with randomly se-
lected TGs, keeping regulon sizes constant. We tested if
non-synonymous diversity of TFs was lower than that of
their TGs, in a paired comparison, for these simulated net-
works. We found that random networks rarely generated a
difference as extreme as that observed in the original TRN
(PRandomization = 0.001, 1000 trials).

TFs are generally shorter in length than non-TFs (Sup-
plementary Figure S1, supplementary file 2). To test if this
might be a factor in diversity estimate, despite the fact that
the estimates are reported per base, we checked for corre-
lation between these diversity estimates’ difference of a TF
and its TG with TF’s length. Indeed, we observed a posi-
tive correlation for nucleotide diversity, as well as synony-
mous diversity. However, non-synonymous diversity did not
show any correlation with gene length (PSpearman = 0.0018
for �, 0.0024 for �S, 0.1016 for �N) (Figure 1G). Conse-
quently, when we excluded all regulatory interactions where
TG was longer than the TF (leaving 107 TFs and 471 TGs),
we found no difference between TFs and their TGs in nu-
cleotide diversity and synonymous diversity, but a strong
difference in non-synonymous diversity (PWilcoxon signed rank

= 0.2656 for �, 0.639 for �S, 2.62 × 10−5 for �N). Therefore,
to test our hypothesis, we decided to estimate nucleotide
diversity only in terms of non-synonymous diversity since

gene length had no significant effect on the difference in
non-synonymous variation of TFs and TGs.

TFs are less diverse than their target genes within species

We expanded our analysis of nucleotide diversity across a
limited set of 123 reference E. coli genomes to a larger col-
lection of short-read based genomes. These were sourced
from publicly available sequencing projects covering clinical
and environmental isolates of E. coli. Since these datasets
were larger than the earlier set and were expected to have
greater redundancy, we used a different approach for filter-
ing isolates (see Materials and Methods). We processed ∼16
000 sequencing runs from 24 projects and finally selected 15
datasets comprising a total of 2476 isolates (Supplementary
Tables S3 and S4, supplementary file 1).

Nucleotide diversity is conventionally calculated from
multiple sequence alignments of gene sequences extracted
from assembled and annotated genomes. We developed
a methodology that enabled us to use reads from WGS
datasets to estimate nucleotide diversity. Briefly, we per-
formed variant calling using SPANDx pipeline (20), in-
ferred gene presence from the coverage, identified gaps and
estimated diversity from SNP matrices generated by the
variant calling pipeline. We also validated our approach and
results using a small set of isolates for which both WGS data
and assembled genomes were available (supplementary file
3). Since it is expected that the average nucleotide diversity
would vary across samples, we standardized diversity esti-
mates of all genes using the median and median absolute
deviation (MAD) of diversity of TGs. This treatment would
scale the median for TGs to zero and any difference in the
diversity of TFs would appear as a shift in its median from
zero, rendering diversity estimates comparable across sam-
ples.

We found that non-synonymous diversity of TFs was
less than that of their own TGs for all of the 15 datasets
(PWilcoxon signed rank = 0.0018 – 3.4 × 10−6, after correcting
for multiple testing) (Figure 2). Therefore, we concluded
that bacterial TFs acquire less non-synonymous variation
than their TGs, irrespective of the variables like host, source,
virulence and structure of a population.

Genetic variation of TFs is constrained by their regulatory
roles

The organization of the regulatory network is such that a
few TFs regulate a majority of genes and are called global
regulators (GR). In E. coli, the seven most prolific TFs are
responsible for expression of 60% of the genes. These global
regulators correspond to broad cellular programs such as
carbohydrate and amino acid metabolism, respiration and
growth, environmental sensing and stress responses (29).
Since the targets of these global TFs belong to multiple
functional categories, as defined in COG, these can also be
called general TFs. Specific TFs, on the other hand, regu-
late target genes from a single pathway or at least from the
same functional category (30).

The effect of mutations in a TF is expected to depend on
its position within the TRN. TFs regulating a large num-
ber of TGs should be under stronger purifying selection.
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Figure 1. Sequence diversity and gene length. (A–C) Distributions of nucleotide, synonymous and non-synonymous diversity respectively, of TFs and
TGs over 123 assembled genomes. (D–F) Distributions of difference between the diversity of TFs and their own TGs for nucleotide, synonymous and
non-synonymous diversity, respectively. Unpaired comparisons showed no significant difference but all paired comparisons did. (G) Correlation between
diversity difference (TF – TG) and TF’s length. Nucleotide (P = 0.0018) and synonymous diversity (P = 0.0023) were positively correlated with gene length,
whereas non-synonymous diversity was not (P = 0.1016). Thick lines represent LOESS curves with a span of 0.5. Differences were Min–Max scaled for
visualization. To improve resolution, outliers were excluded from box plots and y-axis for the scatter plot was restricted between 0.2 and 0.7 (which covers
∼93% of data points).

Consequently, we observed a negative correlation between
TFs diversity (mean scaled non-synonymous) and its regu-
lon size (as measured by the number of Transcription Units
(TUs)) (Figure 3A) (� = –0.5, PSpearman = 1.64 × 10−10).
The same observation was earlier made on variation across
species (5,31). Accordingly, the diversity of general TFs was
significantly lower than that of specific TFs (Figure 3B)
(PWilcoxon rank sum = 1.15 × 10−5), tested with 8 general and
45 specific TFs in our dataset. However, even for these spe-
cific TFs, we verified that their diversity was lower than their
TGs for all datasets (PWilcoxon signed rank = 0.032 – 0.001, af-
ter correcting for multiple testing) (Supplementary Figure
S2, supplementary file 2). Therefore, we concluded that the
diversity of a TF is constrained by the extent to which any
change in TF can disturb the gene expression profile of the
organism.

Conservation of TFs across species is also affected by their
specific regulatory function

Previous studies had found TFs to be less conserved––in
terms of presence/absence––than TGs (2,28), across species
and attributed these differences to duplication (4) and hor-
izontal gene transfer (HGT) (5). However, the contribution
of point mutations, if any, to the above observation remains
largely unknown. In general, excessive polymorphism in a
gene is indicative of weak selective constraints and thus, the
gene is more likely to be eventually lost over long evolu-
tionary distance. Under the assumption that these small,
sequence-level, changes observed over short time-scales can
explain gene’s presence/absence over longer time-scales, we
had expected TFs to be more diverse in sequence than TGs
within species. Contrary to our hypothesis, we found that
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Figure 2. Non-synonymous diversity of TFs relative to their TGs. For all 15 datasets, TFs showed less diversity than their own TGs, in a paired comparison.
To make diverse datasets comparable, all values were rescaled using median & MAD of TGs, such that scaled median for TGs was zero. Y-axis represents
the difference between scaled non-synonymous diversity of TFs and their TGs. P-values are based on Wilcoxon signed rank test of the hypothesis that TFs
were less diverse than their TGs. To improve resolution, y-axis was restricted between –5 and 5 (which covers ∼96% of data points).

A B

Figure 3. Regulatory constraints on diversity of TFs. (A) Non-synonymous diversity of TFs was correlated with the number of regulated TUs (PSpearman

= 1.64 × 10−10). (B) Accordingly, median diversity of general TFs (MG) was less than that of the specific TFs (MS) (PWilcoxon rank sum = 1.15 × 10−5). To
improve resolution, outliers were excluded from the plot. Y-axis represents mean scaled non-synonymous diversity of TFs. Scaling was done using median
and MAD of TGs’ diversity for each of the 15 datasets and mean of the scaled diversity was taken over these datasets.
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the sequence diversity of TFs was lower than their TGs
across isolates of E. coli. We sought to reconcile these seem-
ingly conflicting results by re-estimating conservation of E.
coli’s TFs and TGs across hundreds of bacterial species.

We performed bi-directional best hit based ortholog
search using hidden Markov models of E. coli TFs and their
TGs across genomes of 246 species (Supplementary Table
S5, supplementary file 1) belonging to taxonomy class � -
proteobacteria which also includes E. coli and Salmonella.
We restricted our analysis to this class to increase our like-
lihood of finding orthologs for E. coli genes. We defined
‘Conservation’ of a gene as the fraction of species in which
our search method could report an ortholog.

The underlying assumption of our hypothesis is intuitive
and has not been formally tested in our knowledge. It is
based on a postulate of the neutral theory of molecular
evolution (32) that the same evolutionary processes govern
variation within species and across species. Therefore, we
first tested the validity of our hypothesis by estimating cor-
relation between Diversity within species and Conservation
across species, using all TFs and TGs. In accordance with
our expectation, conservation was inversely correlated with
diversity (Figure 4A) (� = –0.42, PSpearman < 2.2 × 10−16).
However, it is evident from Figure 4A that, for very low di-
versity, variance in conservation is much higher than that for
the higher extreme. A possible explanation for this observa-
tion is that several genes, which are only present in a few
bacteria, are most-relevant in their common natural habi-
tat. Conservation of such genes across species is influenced
more by HGT and duplication than by mutation accumula-
tion. Therefore, in principle, TFs may be less conserved than
their TGs across species despite being more conserved than
their TGs within species. However, unlike previous reports,
we did not find conservation of TFs to be significantly lower
than that of their TGs across species (PWilcoxon signed rank =
0.116) (Figure 4B).

GRs were earlier found to be more conserved across
species than other TFs (5,31). Both of these studies were
restricted to � -proteobacteria. However, previous studies
which reported low conservation of TFs estimated conser-
vation across more distant groups of prokaryotes, and even
eukaryotes, and did not find GRs to be highly conserved
(2,28,33). Evolution of GRs was mostly vertical and least
affected by HGT, unlike other TFs (5). This suggests that
GRs might have evolved independently in distant lineages
of prokaryotes (28). Since we restricted our analysis to the
species of � -proteobacteria, we also found conservation of
GRs (NTU ≥ 10) to be greater than that of other TFs (NGR
= 26, NTF = 116) (Supplementary Figure S3, supplemen-
tary file 2) (PWilcoxon rank sum = 1.28 × 10−4). In fact, we ob-
served a positive correlation between conservation of a TF
and its regulon size (� = 0.38, PSpearman = 1.4 × 10−6) (Fig-
ure 4C). Consequently, excluding GRs, E. coli TFs were less
conserved than their TGs across species (PWilcoxon signed rank =
0.006) (Figure 4D). However, these ‘local’ regulators (LR)
were also less diverse than their TGs within species, suggest-
ing their relevance specifically to the natural habitat of bac-
teria.

These results, taken together, emphasize that even though
TFs are generally thought to be less conserved than other
genes, conservation of a TF seems to be affected by evolu-
tionary distance between lineages, its position in TRN and

its relevance to organism’s lifestyle (2), and a single statis-
tical relationship is inadequate in capturing these complex
interactions.

Adaptive lab evolution experiments show mutational bias for
TFs

In Lenski’s Long Term Evolution Experiment (LTEE) (34)
and in several other adaptive lab evolution (ALE) studies,
regulatory genes were reported to be mutated frequently
(10). We had reported a higher frequency of mutations
in regulatory genes in a prolonged stationary phase ex-
periment compared to that observed in a mutation accu-
mulation (MA) study (35). These results suggested that
regulatory mutations contribute more towards adaptation
than other mutations. Different runs of adaptation are
expected to select for different mutations given the vari-
ability and complexity of natural environments. Therefore,
we expected sequence diversity of TFs to be greater than
that of other genes. However, as described above, we ob-
served the opposite from our analysis using natural iso-
lates. Since the above claim regarding regulatory mutations
and adaptation was based on a few lab evolution stud-
ies, we decided to re-analyze these and other such stud-
ies using our methodology to test if TFs’ mutations during
ALE are indeed more frequent than mutations in the other
genes.

First, we identified 17 lab evolution projects with pub-
lished information about the experimental design (36–52),
four of which were MA studies (49–52). For each study, we
counted the number of non-synonymous mutations in TFs
and TGs relative to the number of corresponding sites. Four
(38,43,44,48) out of 13 ALE studies (36–48) had a signif-
icantly higher number of mutations in TFs than expected
whereas none of the MA studies passed the significance test
(Figure 5) (Pone-sided Fisher’s exact < 0.05). Overall, ALE stud-
ies had greater odds of TF mutations’ enrichment than MA
studies (PWilcoxon rank sum = 0.024).

Since our approach uses all of the observed mutation data
and cannot consistently identify beneficial mutations across
lab evolution studies due to differences in their experimental
designs, we also tried a different approach based on litera-
ture survey. We identified those mutated proteins which the
authors considered to have fitness benefits and counted the
number of mutated TFs among 304 known and predicted
TFs out of 4140 proteins in the reference genome. Here, we
did not account for the site-count differences between TFs
and TGs because the information on the actual number of
mutations in a gene was not always available from the publi-
cation. In only five ALE studies (38,42–44,48), significantly
more than expected (∼7%) mutated TFs were reported, 4 of
which we had already identified (PFisher’s exact < 0.05) (Sup-
plementary Table S6, supplementary file 1).

Two of these studies (38,48) had bacteria growing on min-
imal glucose, wherein the selection was for fast growth and
presumably multiple adaptive paths were possible. 7 of the
12 ALE studies aimed to understand some aspects of antibi-
otic resistance (41–47), three of which (42–44) also showed
an enrichment for TFs’ mutations. Depending on the mode
of action of the targeted drug(s) in a study, mutations
may only be selected in a specific enzyme, in which case,
an excess of TF’s mutations would not be observed. This
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Figure 4. Effect of sequence diversity on conservation of TFs across species. (A) Conservation across species was negatively correlated with diversity within
species. Y-axis represents fraction of 246 genomes with an ortholog for E coli TFs and TGs. X-axis represents scaled non-synonymous diversity averaged
over 15 datasets. Scaling was done with median and MAD of diversity of TGs. Color scale represents count of data points in each bin. (B) Conservation
of all of the 142 TFs against that of their TGs. (C) Conservation of TFs was positively correlated with the number of regulated TUs. (D) Conservation of
TFs, excluding GRs, was less than that of their TGs.

also holds for studies on auxotrophs (39). Often though,
when a study focused on cross-resistance or on a drug with
multiple mechanisms, selected mutations were more fre-
quently among TFs (42,43,46) (Supplementary Table S7,
supplementary file 1). Other than the targeted enzyme, the
resistance-conferring mutations often occurred in marR,
acrR, soxR and ompR. These genes have an established role
in conferring resistance, via a non-specific increased efflux
activity, as a result of which, these are also common targets
in selecting for cross-resistance (53). In (44), where bacteria
were grown on a surface with regions of increasing concen-
tration of a specific antibiotic, the selection might actually
have been for fast growth since the chance of success de-
pended more on the timing of arrival to a higher concentra-
tion field than on the degree of resistance at that concentra-
tion.

In this section, we established that TF mutations are often
enriched in ALE studies. The possible reasons for the lack
of evidence for this effect in several other lab evolution stud-

ies are enzyme-specific selection pressure, small sample sizes
and short duration. Lenski’s LTEE does not suffer from the
above issues (34) and provides evidence for a high relative
frequency of mutations in TFs over TGs. Another major is-
sue with other studies analyzed here, in contrast to LTEE,
was that they could only be used to test if TFs accumu-
lated more mutations than TGs by the end of experiment.
Due to their short duration and sequencing at limited time
points, they could reveal nothing about if, and how, the rela-
tive strength of positive selection on TFs change over time.
Therefore, we further explored mutation data from LTEE
to derive an understanding of mutant frequency dynamics
in natural populations.

Frequency of mutation accumulation in TFs declines over
long-term evolution

A recent population-level study on LTEE (54) revealed the
dynamics of molecular evolution over 60 000 generations
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Figure 5. Relative frequency of mutations in TFs in lab evolution exper-
iments. Each bar represents a lab evolution study. Bars for adaptive lab
evolution (LE) studies other than those selecting for antibiotic resistance
are colored orange, the antibiotic resistance (AR) ones being shown in sky
blue; Lenski’s LTEE is in yellow and reddish purple bars represent muta-
tion accumulation (MA) studies. Height of bars represents transformed P-
values of one-sided Fisher’s exact test of the hypothesis that the frequency
of mutations in TFs relative to TGs is greater than expected from the ra-
tio of sites. LTEE showed an enrichment for TF mutations. Majority of
antibiotic resistance experiment didn’t show the same effect. Nevertheless,
Odds Ratios for TF mutation enrichment were greater for ALE than for
MA studies (PWilcoxon = 0.024).

with a 500-generation interval. This dataset enabled us to
go beyond relative frequency estimation at a single time
point and instead, observe the trajectory of these frequency
changes over thousands of generations. It thus offered the
possibility of reconciling our contradictory observations on
TF versus TG variation in experimental evolution and nat-
ural populations.

As reported earlier (55) and also in the above mentioned
study, the rate of molecular evolution in LTEE is rapid and
almost steady despite a decline in the rate of fitness gain.
This rate was measured in terms of total derived allele fre-
quency (DAF), ‘ Mp(t) = � fp,m(t) for all mutations m in
population p at time t’ and f is the frequency of a partic-
ular mutation. Using this metric, we first tested if TFs ac-
cumulated more mutations than TGs. We averaged DAF of
non-synonymous mutations for all TFs and TGs separately,
assigning zero to non-mutated genes. For six non-mutator
populations, we observed that DAF was significantly higher
for TFs at all time points and a substantial increase was
achieved in about first 10 000 generations (Figure 6A).

The change in DAF can be brought about either by a
change in the rate at which de novo mutations appear or by
a change in the frequency these variants attain in the popu-
lation. First, we plotted distributions of de novo mutations
per site over 10K generation intervals for both classes (Fig-
ure 6B). We chose this interval size since the smaller inter-
vals didn’t capture mutations in all populations for all cat-
egories (TG, LR, GR). TFs accumulated more mutations
than TGs only upto 20K generations. Then, over the same
intervals, we pooled frequencies of all variants––existing
and de novo––from all six non-mutator populations (Figure
6C). Overall, TF variants didn’t reach significantly higher

frequencies than TG variants. This may suggest that, on av-
erage, regulatory mutations were not any more beneficial
than the mutations in target genes.

A majority of TF mutations in the first 10K generations
were in fact in GRs instead of LRs (Figure 6B). The signif-
icance of global regulatory changes in ALE has been noted
previously (10,11,56). Global scale changes in gene expres-
sion pattern are required for a cell to achieve an optimal
metabolic flux state, on which its relative fitness depends,
since transcription is costly due to limited availability of
RNA polymerase (57). Even single mutations in the hubs
of regulatory networks can achieve this goal, by simultane-
ously increasing the expression of genes required for suc-
cess in the testing environment and ‘switching off’ the parts
of network irrelevant in the present context. What is inter-
esting to note here is that the frequency of de novo muta-
tions in GRs showed a much faster decay than that for other
genes. Moreover, the early stage GR mutations did not at-
tain high frequencies within the first 10K generations, pre-
sumably due to clonal interference (Figure 6C). However, at
least a few of these mutations reached fixation by the end of
60K generations.

The above analysis was on mutations per site basis, with-
out taking into account the differences in mutation propen-
sity of individual genes. In the extreme case where all of the
GR mutations targeted a single gene, the observed trend
cannot be generalized. Therefore, we performed the above
analysis after removing the extreme outliers gene (one which
had many mutations with a large fraction reaching fixation)
from each category (TG: pykF = 7/10, LR: iclR = 5/8, GR:
arcA = 4/6) (Figure 7). TG mutations other than in pykF
only reached low frequencies in the first 10K period, even
slightly lower than those in GRs. Excluding arcA, GRs were
not different from LRs in their mutation frequency. More-
over, most of the GR mutations reaching fixation were in
arcA. The frequency distribution of LRs was least affected
and was in fact, higher than that of GRs for the greater part
of 60K generations.

Since we didn’t have information on the linkage of vari-
ants, we could not use this data to directly estimate nu-
cleotide diversity at non-synonymous sites. However, esti-
mates of de novo mutations frequency and the distribution
of population frequency of the variants, when taken to-
gether, offers a qualitative approximation of the relative di-
versity of the two classes. In the first 10K generations, we
expect TF diversity to be greater due to high frequency of
de novo mutations. From 10–20K generations, diversity of
TGs was likely to be lower than that of TFs, since many
of these variants were present at frequencies close to zero.
By the end of 60K generations, population frequencies of
variants of both classes were similar but only TGs were still
accumulating de novo mutations. At this point and beyond,
TG diversity may be equal to or even higher than the TF
diversity.

Above results were based on six non-mutator populations
(Ara-5, Ara-6, Ara+1, Ara+2, Ara+4, Ara+5). We did not
find these results to hold for four mutator populations (Ara-
2, Ara-4, Ara+3, Ara+6) (Figure 6D–F). In contrast to the
non-mutator populations, a majority of mutations in mu-
tator populations are non-beneficial. In such a regime, the
patterns of mutation accumulation are expected to be gov-
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Figure 6. Distinct dynamics of molecular evolution for TFs and TGs in LTEE, for six non-mutator populations: (A–C) and for four mutator populations:
(D–F). (A, D) Average derived allele frequency of TFs and TGs over 60 000 generations. Thick curves represent averages over populations and broken
curves show transformed P-values of three hypothesis: TG < LR, LR < GR, GR > TG. (B, E) Distributions of count of de novo mutations appearing
over intervals of 10 000 generations, normalized by number of sites. (C, F) Distributions of maximum frequency attained by a variant within each interval.
Variants were pooled from all populations. Blue dots show transformed P-values. Blue horizontal line marks the significance threshold (� = 0.05). Dots
are in triplets, as are the boxes, such that they represent comparisons in the same order as above. P-values are based on Wilcoxon test.

erned by the differences in selective constraints on various
genes. By the end of 60K generations, TGs in mutator pop-
ulations appeared to have accumulated as many mutations,
if not more, than in TFs (Figure 6D), unlike in non-mutator
populations. Besides, towards the end, TF and TG vari-
ants in mutator populations differed less in their frequencies
than in non-mutator populations (Figure 6F). A majority of
variants in both classes were likely neutral to slightly dele-
terious such that their trajectories were governed by genetic
drift.

To further test that the high frequency of TF muta-
tions in non-mutator populations were due to positive se-
lection, we analyzed one of the very few MA studies to have
sequenced isolates at multiple time points (58). Approxi-
mately 36 clones were sequenced at 6 time points spanning
∼8000 generations. At all time points, the fraction of sites
mutated was higher for TGs than TFs, contrary to our ob-

servation in LTEE (Supplementary Figure S4, supplemen-
tary file 2).

Unlike other lab evolution experiments which only of-
fered a snapshot of molecular evolution processes, LTEE
provided us a record of the dynamics of variation within
TFs and TGs spanning 60 000 generations. Even so, nature’s
evolution experiment has traversed millions of generations
and has likely passed through multiple fitness peaks unlike
LTEE, which is yet to reach one. It is remarkable then, that
even in the relatively short duration of this lab experiment,
we could already observe TFs mutational frequency falling
to the level of that of TGs. Especially in the mutator pop-
ulations, where most mutations were likely to be neutral to
slightly deleterious, this suggests a relatively faster deceler-
ation of mutation accumulation in TFs over TGs. Besides,
variants did not significantly differ in the frequencies they
reached in the population. We extrapolate from these trends
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Figure 7. Differential dynamics of molecular evolution for TF and TG in LTEE, same as in Figure 6, except that an extreme outlier gene (one with many
mutations and a large fraction of mutations reaching fixation) was removed from each class of proteins.

that TFs would acquire less mutations than TGs, as the ex-
periment continues, and in principle, after millions of years,
one would find TFs to be less diverse than their TGs.

DISCUSSION

We showed that bacterial TFs are less diverse in sequence
than their TGs within species, i.e. across short time-scales,
and that their diversity is a function of their regulon size.
It has been reported previously that global regulators (GR)
are more conserved across species than other TFs (5,31).
However, even after excluding GRs, we found that TFs
were more conserved - in sequence - than their TGs within
species. This was contrary to the conservation of these ‘lo-
cal’ regulators (LR)––in terms of presence/absence––across
species.

If two bacterial species have widely different environ-
ments, then their set of TFs are also expected to be differ-
ent. However, within species, the niche differences may not
be drastic enough to warrant diverse TF alleles. Under this

scenario, the low sequence diversity of TFs within species
is indicative of stronger selective constraints, imposed by
the requirement of their optimal activity in a given environ-
ment. As a corollary, adaptation to a new environment may
demand a new optimum of gene expression which is con-
ferred through mutations in TFs. Indeed, multiple adaptive
lab evolution (ALE) studies were found to be enriched with
regulatory mutations (10). We performed a statistical anal-
ysis on many experimental evolution studies to verify this
observation. Indeed, we found that TF mutations were en-
riched in ALEs under those selection pressures which can be
satisfied by changes in multiple pathways. In contrast, none
of the mutation accumulation (MA) experiments showed an
excess of mutations in TFs.

To observe the long-term dynamics of the above trend,
we analyzed whole-population data from an evolution ex-
periment spanning 60 000 generations (54). We found that
the frequency of mutations in TFs rapidly rose above that of
TGs in first 10 000 generations and then declined over time.
This trend was stronger for GRs and the decline was faster.
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Figure 8. A graphical representation of the proposed model of TRN evolution in Bacteria. A population exposed to an environment X rapidly accumulates
mutations in TFs, especially GRs. Some of these mutants reach fixation while also accumulating mutations in other TFs and TGs. In long-term, mutations
in local TFs are more beneficial than in global TFs. Farther out in time, when the population is well adapted, mutants of greater fitness rarely appear and
hence, TFs show low sequence diversity. Also, irrelevant TRN modules are eventually lost. In a different environment Y, adaptation may proceed through
integration of or substitution by xenologs in the native network. Thus, across species comparisons show low conservation of TFs relative to their TGs.

However, only mutations in a few specific GRs conferred an
advantage whereas multiple LRs were found to have bene-
ficial mutations. In mutator populations, TFs and TGs ac-
cumulated mutations at similar rates and towards the end,
any difference in trends seemed to be in accordance with
selective constraints.

By synthesizing these findings along with the existing
body of literature, we propose the following model of TRN
evolution in prokaryotes (Figure 8). As a population first
encounters an environment, it experiences global expression
changes, brought about by mutations to regulatory hubs
(11). Since these changes may also have adverse pleiotropic
effects, as evolution proceeds, more mutations accumulate
in LRs (56). As a consequence of these mutations, specific
pathways of TRN, which are irrelevant to the present se-
lection pressure, are inactivated (59). However, the fitness
benefit of these TF mutations decline over time, likely as a
consequence of diminishing returns epistasis (60), and as
adaptation decelerates, selective constraints play a bigger
role in the mutation frequency. In a well adapted popula-
tion, the optimal variants of TFs are maintained by pu-
rifying selection. Across environments, different segments
of the TRN are targeted and inactivated, such that over
millions of years, species adapted to different environments
have few TFs in common (2).

This model does not underestimate the significance of
HGT and duplication in the growth of regulatory networks.
However, it emphasizes the role of small-scale changes, ob-
served over short time-scales, in its modification. Specifi-
cally, in the early stages of adaptation, these changes set the
path for long-term evolution of the network and facilitates
pruning of branches irrelevant to the new environment. A
major concern with this proposition might be the extrapo-

lation of results observed in LTEE, which is unrealistically
simple as opposed to natural environments. However, simi-
lar dynamics were observed during in situ evolution of Pseu-
domonas aeruginosa in cystic fibrosis patients over 200 000
bacterial generations (61). As the population approached
the fitness peak, the relative frequency of regulatory muta-
tions declined and these dynamics were subsequently gov-
erned by negative selection. Given this consistency across
two diverse species adapting to two drastically different en-
vironments, we feel confident in generalizing our proposed
model to other Bacteria.

A common assumption in comparative genomics of reg-
ulatory networks is the regulog concept, i.e. a regulatory in-
teraction is transferable if orthologs of both TF and TG are
present. Despite some counter-evidence that regulatory in-
teractions change even in the presence of both partners (9),
this is a reasonable assumption for within species compar-
ison. We note that regulatory interactions can be modified
by sequence changes in TFs (17). Adaptive transcriptomic
polymorphism has been observed across E. coli strains (14),
and regulatory divergence seems to be connected to diver-
gence in the coding genome (15). This might seem contrary
to our observation of low sequence diversity of TFs. How-
ever, the adaptive portion of these regulatory differences is
often attributable to a few key mutations in TFs (7,16), that
might have appeared very early-on in the course of adapta-
tion.

Another way by which regulatory evolution can occur
is by mutations in cis-regulatory regions. Besides the high
false-positive rate associated with the identification of these
sites, the problem of estimation of variation across homol-
ogous sites and its comparison with variation in the coding
genome is beyond the scope of the present work. However, if
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the variation in TFs and their binding sites(TFBS) could be
compared, we suspect TFBS to be more variable than their
corresponding TFs, if at all. Since local regulators, which
regulate very few operons, were also more conserved than
their TGs, variation in TFBS can allow for modification in
the regulation of individual operons without perturbing the
regulation of others.

Another issue relevant to our study is that of differen-
tial impact of non-synonymous mutations on a protein’s
function. This difference arises not only as a consequence
of differential physico-chemical properties of amino acids
but also due to the differences in functional significance of
the domain or site affected by the mutation. Through our
analysis, we essentially rejected the null hypothesis of no dif-
ference in the distribution of fitness effects (DFE) between
TFs and their TGs. In other words, fewer non-synonymous
changes were observed in TFs, in the well-adapted natural
populations, presumably due to a larger proportion of mu-
tations being deleterious in TFs relative to their TGs. Fur-
ther understanding on the effect of these mutations can be
derived from a domain-specific estimation of variation.

It is well established, in the metazoan gene regulation,
that cis-regulatory regions are significant for phenotypic
evolution (62). The contribution of mutations in trans-
acting factors was assumed to be limited, due to the
pleiotropic effect of such changes on gene regulation. How-
ever, a growing body of literature suggests that the adaptive
changes in TFs are more common than imagined. Across
species, TFs, along with other regulatory proteins, were
more diverse as compared to other proteins (63). At least
some TFs in human show high variation across popula-
tions, hinting at their role in local adaptation (64), although
TFs may still be more conserved than their TGs on average.
However, analysis of this sequence variation in our frame-
work is complicated by the presence of long signaling cas-
cades in eukaryotes, since many TGs also play crucial roles
in gene regulation.

In prokaryotes, previous studies have established the flex-
ibility of TRN across species (3). Either two bacteria have
vastly different set of TFs, as compared to TGs (2), or the
gene-expression of only a small set of regulons is conserved
(9). With our study, we highlight the presence of strong se-
lective constraints on gene regulation, at least over small
evolutionary distance. A large proportion of mutations in
TFs seems to be deleterious. However, a small portion that
can be beneficial in a novel environment, re-adjusts and op-
timizes the metabolic flux to the prevalent condition, and
thereby both directs and constraints the future course of
adaptation.
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