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Background: Increasing evidence illustrated that m6A regulator-mediated

modification plays a crucial role in regulating tumor immune and

angiogenesis microenvironment. And the combination of immune

checkpoint inhibitor and anti-angiogenic therapy has been approved as new

first-line therapy for advanced HCC. This study constructed a novel prognosis

signature base on m6A-mediated modification and explored the related

mechanism in predicting immune and anti-angiogenic responses.

Methods: Gene expression profiles and clinical information were collected

from TCGA and GEO. The ssGSEA, MCPCOUNT, and TIMER 2.0 algorithm was

used to Estimation of immune cell infiltration. The IC50 of anti-angiogenic drugs

in GDSC was calculated by the “pRRophetic” package. IMvigor210 cohort and

Liu et al. cohort were used to validate the capability of immunotherapy

response. Hepatocellular carcinoma single immune cells sequencing

datasets GSE140228 were collected to present the expression landscapes of

5 hub genes in different sites and immune cell subpopulations of HCC patients.

Results: Three m6A clusters with distinct immune and angiogenesis

microenvironments were identified by consistent cluster analysis based on

the expression of m6A regulators. We further constructed a 5-gene

prognosis signature (termed as m6Asig-Score) which could predict both

immune and anti-angiogenic responses. We illustrated that high m6Asig-

Score is associated with poor prognosis, advanced TNM stage, and high

TP53 mutation frequency. Besides, the m6Asig-Score was negatively

associated with immune checkpoint inhibitors and anti-angiogenic drug

response. We further found that two of the five m6Asig-Score inner genes,

B2M and SMOX, were associated with immune cell infiltration, immune

response, and the sensitivity to sorafenib, which were validated in two

independent immunotherapy cohorts and the Genomics of Drug Sensitivity

in Cancer (GDSC) database.

Conclusion: We constructed a novel prognosis signature and identified B2M

and SMOX for predicting immune and anti-angiogenic efficacy in HCC, which
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may guide the combined treatment strategies of immunotherapy and anti-

angiogenic therapy in HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignant tumors and the third cause of cancer-related deaths in

the world (Sung et al., 2021). Unfortunately, most patients with

liver cancer are diagnosed at an advanced stage, and they have no

chance of radical surgical resection (Xu et al., 2018). The

combination treatment for advanced HCC clinical trials,

IMbrave150 phase 3 trial (Atezolizumab plus Bevacizumab)

(Finn et al., 2020a), ORIENT-32 phase 3 trial (Sintilimab plus

bevacizumab similar IBI305) (Ren et al., 2021), COSMIC-312

(Cabozantinib plus Atezolizumab) phase 3 trial (Kelley et al.,

2022), and KEYNOTE-524 phase 1b trial (Pembrolizumab plus

Lenvatinib) (Finn et al., 2020b), and the LAUNCH phase 3 trial

(Lenvatinib combined with transarterial chemoembolization)

(Peng et al., 2022) have enhanced the overall survival and

response rate. And the combination of immune checkpoint

inhibitors and anti-angiogenic drug treatment has been

authorized as a preferred first-line treatment for advanced

HCC. However, only a small subset of HCC patients could

benefit from this combination treatment.

With a further understanding, it has been realized that the

tumor cells “do not act alone”, but interact directly or indirectly

with stromal cells, immune cells, and non-cellular components

(Fang and Declerck, 2013). Diverse environmental and genetic

factors together regulated the HCC immune and angiogenesis

microenvironment (Hou et al., 2020), which controls malignant

progression and response to therapy. Up to now, the overall

survival rate in the most effective IMbrave150 phase 3 trial was

only 30%. And the phase III LEAP-002 study, immune

checkpoint inhibitors combine with anti-angiogenic drug

treatment (Lenvatinib plus pembrolizumab), as first-line

therapy for advanced hepatocellular carcinoma had not

achieved the expected results in advanced HCC (Finn1 et al.,

2022). Therefore, a comprehensive analysis of the TIME

components and anti-angiogenic subtypes pathways may

predict and guide the combination treatment of immune and

anti-angiogenic drugs, and find new therapeutic biomarkers

(Binnewies et al., 2018).

m6A (N6-methyladenosine) is one of the most abundant

RNA modifications in eukaryotic cells (He et al., 2019), which

plays a considerable role in regulating the tumor immune

microenvironment. As a dynamic reversible process, m6A

modification is regulated through binding proteins,

methyltransferases, and demethylases (Zaccara et al., 2019),

also known as “readers”, “writers” and “erasers”. Furthermore,

several studies have shown that the m6A-related signatures were

associated with TIME in gastric cancer, colorectal cancer, low-

grade glioma, as well as HCC (Zhang et al., 2020; Li et al., 2021a;

Chong et al., 2021; Du et al., 2021). However, there were few

studies focused on m6A-related signatures and the sensitivity of

anti-angiogenic drugs.

In this study, we systematically analyzed 26 m6A regulators

in HCC including the somatic mutation, copy number variation

(CNV), and mRNA transcriptome. Besides, we identified three

m6Aclusters with distinct immune and angiogenesis

microenvironments and constructed a 5-gene prognosis

signature (m6Asig-Score) based on m6A-related different

genes (DEGs). We further found that two of five m6Asig-

Score inner genes, B2M and SMOX, were associated with

immune cell infiltration, immune response, and sensitivity to

sorafenib. We validated these results in two independent

immunotherapy cohorts and the Genomics of Drug Sensitivity

in Cancer (GDSC) database. Understanding the interactions of

m6A modification with immune and angiogenesis

microenvironment was helpful to select the HCC patients who

would benefit from immune and anti-angiogenic treatment.

Data and methods

HCC datasets collection and
preprocessing

The analysis workflow was shown in Figure 1. The copy

number variation (CNV), somatic mutation, mRNA

transcriptome, and clinical information of the TCGA-

LIHC cohort were collected from Xena (https://

xenabrowser.net). The mRNA expression and clinical

information of the GSE76427 cohort were downloaded

from the NCBI GEO database (https://www.ncbi.nlm.nih.

gov/geo/). A total of 592 HCC samples were included in

this study, including those from TCGA-LIHC cohort (non-

tumor = 50, tumor = 375) and GSE76427 dataset (non-

tumor = 52, tumor = 115). The RNA Transcriptome data

(FPKM format) were converted to the transcript format of

millions per kilobase (TPM). The operational functions in the

“SVA” package were employed to eliminate the batch effect

between the GSE76427 queue and the TCGA-LIHC dataset

(Yang et al., 2020). The “Rcircos” package was

suitable for drawing the CNV diagram of 26 m6A

regulators in HCC.
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FIGURE 1
Overview of study design. A total of 490 HCC samples with completed transcriptome and survival information were concluded in this study. We
first explored the multi-omics characteristic landscapes of 26 m6A regulators and identified three different m6Aclusters with distinct immune and
angiogenesis phenotypes. Then, we further constructed a 5-genes prognosis signature termed as “m6Asig-Score” based on 420m6A-related DEGs.
The patients with highm6Asig-Score were associated with poor prognosis, advanced TNM stage and high TP53mutation frequency. Finally, we
explored the capability of m6Asig-Score and 5 hub genes in predicting immunotherapy and anti-angiogenic efficacy. Two independent
immunotherapy cohorts (IMvigor210 and Liu. et al. cohorts) and the Genomics of Drug Sensitivity in Cancer (GDSC) database were used to validate
the immunotherapy and anti-angiogenic efficacy respectively. And the HCC single immune cells sequencing datasets GSE140228 were performed
to present the expression distribution of 5 hub genes.
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Consensus molecular clustering of
24 m6A regulators by PAM

Based on published literature, we curated 26 acknowledged

m6A regulators and analyzed them to identify divergent m6A-

related patterns. The 26 m6A regulators included 15 readers

(EIF3A, ELAVL1, HNRNPA2B1, HNRNPC, FMR1, IGF2BP1-3,

YTHDC1/2, YTHDF1-3, LRPPRC, RBMX), 9 writers (CBLL1,

METTL3/14/16, RBM15/15B, VIRMA, WTAP, and ZC3H13)

and 2 erasers (ALKBH5 and FTO) (Meyer et al., 2015; Chen et al.,

2020; Shulman and Stern-Ginossar, 2020; Li et al., 2021b).

Among these 26 m6A regulators, METTL16 and VIRMA were

not annotated in the GSE76427 cohort. Based on the expression

of 24 overlapping regulators in the combined HCC cohort

(GSE76427 and TCGA-LIHC), we performed a consistent

cluster analysis of medoid (PAM) to determine different

m6A-related modification patterns. The number and stability

of clusters were determined by the R package

“ConsensusClusterPlus”, and conducted for 1,000 times

repetitions (Seiler et al., 2010; Wilkerson and Hayes, 2010).

Gene set variation analysis of KEGG
pathways and calculation of VEGFR score

Gene set variation analysis (GSVA) algorithmwas applied for

investigating pathway variations among different m6A

modification patterns via the “GSVA” package (Hanzelmann

et al., 2013). The KEGG pathways in the MSigDB database

(http://www.gsea-msigdb.org) were downloaded for GSVA

analysis. The genes VEGR1-3 are the targets of anti-

angiogenic drugs Regorafenib, Lenvatinib, Sorafenib, and

Donafenib, which may indicate the therapeutic effect. And the

VEGFR score was estimated by Gene set variation analysis

(GSVA) based on VEGR1-3 gene expression.

Estimation of immune cell infiltration by
ssGSEA, MCPCOUNT, and TIMER
2.0 algorithm

The fraction of infiltration immune cells was evaluated by the

single-sampleGSEA (ssGSEA) algorithm via the “GSVA” package, in

which 28 immune cell types were identified by specific feature gene

markers curated from previous studies (Charoentong et al., 2017; Jia

et al., 2018). The ssGSEA enrichment score represents the relative

abundance of each type of immune cell, and the unit distribution is

normalized from 0 to 1. MCPCOUNTwas employed to estimate the

fraction of endothelial cells, fibroblasts, and 8 immune cell subsets

with the mRNA transcriptome profiles (Becht et al., 2016). Tumor

Immune Estimation Resource (TIMER 2.0; cistrome.shinyapps.io/

timer) was used to estimate the molecular features of 6 immune cell

subsets (Li et al., 2017).

Identification of m6A-related different
expression genes

The previous algorithm “PAM” was employed to classify

HCC patients into three different m6Amodification clusters. The

“limma” package was performed to evaluate DEGs in HCC

samples, and the “heatmap” package was used for describing

the expression landscape of DEGs among three different m6A

clusters. Adjusted p value < 0.001 was considered the significant

criterion for identifying DEGs.

Construction of a prognosis signature
based on m6A-related DEGs

A total of 370 TCGA-LIHC samples with completed

survival information were randomly divided into the

TCGA training and TCGA testing cohorts via the “caret”

package. The mRNA expression of 420 m6A-related DEGs

was extracted from the TCGA training, TCGA testing, and

GSE76427 cohorts. The process and outcome of the

univariate-Cox, lasso-Cox, and multivariate-Cox regression

analysis were performed via “survival” and “glmnet”

packages. The m6A-related DEGs with a remarkable

prognostic value (p < 0.05) were filtrated. In the

multivariate Cox regression analysis, the m6A-related

prognosis signature (termed as m6Asig-Score) was

expressed as follows: m6Asig-Score = ∑
n

i
coefi*mRNAi. The

optimal cutoff value of m6Asig-Score was selected by the

“surv_cutpoint” function of “survival” package, and the

patients in the TCGA training cohort were classified into

the high- and low-m6Asig-Score groups. The TCGA testing

and GSE76427 cohorts were also assigned into high- and low-

m6Asig-Score groups by the same cutoff value. The

Kaplan–Meier survival curves and time-ROC curves were

performed via “survminer” and “survivalROC” packages.

Genomic and clinical data of the
immunotherapeutic cohorts

We systematically explored the publicly obtained

immunotherapeutic cohort, which contained gene expression

profiles and integral clinical information. Two

immunotherapeutic cohorts (IMvigor210 cohort and Liu et al.

cohort) were finally enrolled in this study. The

IMvigor210 cohort (Mariathasan et al., 2018) contained

348 metastatic urothelial carcinoma patients with

Atezolizumab (anti-PD-L1 mAb) therapy and Liu et al. cohort

(Liu et al., 2019) incorporated 121 melanoma patients with anti-

PD-1/PD-L1 therapy. The transcriptome profiles of two

immunotherapeutic cohorts were transformed into the TPM

before further analysis.
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Distribution of 5 hub genes in HCC single
immune cells sequencing dataset

The GSE140228 cohort (Zhang et al., 2019)contained single-

cell RNA sequencing of CD45+ immune cells from tumor tissue,

peritumoral normal liver tissue, blood, and ascites in HCC

patients. The corresponding sequencing data and the sample

annotation information were downloaded in “https://www.ncbi.

nlm.nih.gov/geo/”. The packages “Celldex” and “SingleR” (Aran

et al., 2019) were used to annotate cell types based on reference

cell markers, and to present the expression landscapes of 5 hub

genes in different sites and immune cell subpopulations of HCC

patients.

Estimation of anti-angiogenic drugs IC50
and the immune response biomarkers:
IPS, TIS and TIDE

To explore the prediction of m6Asig-Score in anti-angiogenic

drugs sensitivity. We performed Spearman correlation analysis

between m6Asig-Score and the IC50 of Sorafenib, Erlotinib,

Lapatinib, Dasatinib, and Pazopanib. The IC50 of anti-

angiogenic drugs in GDSC (Genomics of Drug Sensitivity in

Cancer) database, which contained a large panel of cancer cell

lines, was calculated by the “pRRophetic” package (Geeleher

et al., 2014). Immunophenoscore (IPS) is a powerful biomarker

for predicting immunotherapy response, which was used to

estimate the determinants of tumor immunogenicity based on

four panels of immune-related molecules: MHC, immune

checkpoints, effector cells and suppressor cells (Charoentong

et al., 2017). The IPS data of TCGA-LIHC cohort were

downloaded from the Cancer Immunome Atlas (https://tcia.

at/). Tumor Inflammation Signature (TIS), an 18-gene

signature, which symbolizes the presence of a suppressed

adaptive immune response, was evaluated to predict anti-PD-

1(pembrolizumab) therapy benefit, (antigen presentation, and

IFN gamma and cytotoxic cells) in the TME (Danaher et al.,

2018). In addition, Tumor Immune Dysfunction and Exclusion

(TIDE) was applied to survey two different tumor immune

escape mechanisms, cytotoxic T lymphocytes (CTLs)

dysfunction and immunosuppressive factor rejection of CTL

(Jiang et al., 2018). Patients with higher TIDE scores were

more likely to escape anti-tumor immunity, thereby achieving

lower effectiveness of Immunotherapy.

Statistical analyses

This study performed R-4.0.2 for statistical analyses.

Student’s t-test or Wilcoxon rank-sum test were used to

estimating the statistical significance of two groups’

comparisons (normally or non-normally distributed variables).

For comparisons among three groups, the one-way ANOVA

analysis and Kruskal–Wallis tests were applied as nonparametric

and parametric methods (Hazra and Gogtay, 2016). Kaplan-

Meier survival analysis was utilized to explain the prognosis

association of distinct m6Amodification patterns, m6Asig-Score,

and the 5 hub genes expression. The mutation landscape of two

m6Asig-Score subgroups was presented through the R package

“maftools” (Mayakonda et al., 2018). The CNV landscape in

human chromosomes of 26 m6A regulators was adopted by the

“RCircos” package (Zhang et al., 2013). The test was bilateral, and

p < 0.05 was considered significant, and the adjusted p-value

(FDR, false discovery rate) was used for multi hypothesis test

(Ferreira, 2007).

Results

Multi-omics characteristic landscapes of
26 m6A regulators in HCC

The overview of this work was shown in Figure 1. In this

study, we determined 26 m6A regulators, including 15 readers

(EIF3A, ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1-3,

LRPPRC, RBMX, YTHDC1/2, YTHDF1-3), 9 writers (CBLL1,

METTL3/14/16, RBM15/15B, VIRMA, WTAP and ZC3H13)

and 2 erasers (ALKBH5 and FTO). Metascape analyses

showed that 26 m6A regulators were markedly enriched in

RNA methylation, RNA stability, and C-complex spliceosome

pathways (Figure 2A). In the TCGA-LIHC cohort, we explored

the somatic mutation landscape of 26 m6A regulators. The

results showed that 35 of 361 (9.7%) HCC samples

experienced somatic mutations, primarily including missense

mutations, nonsense mutations, and splice site mutations

(Figure 2B). The CNV landscape of 26 m6A regulators

revealed that VIRMA, HNRNPC, METTL3, IGF2BP2, and

YTHDF3 showed widespread CNV amplification, while

ZCH13, YTHDF2, WTAP, ELAVL1, METTL16, and EIF3A

presented a tendency to CNV deletions (Figure 2C). Further

analysis demonstrated that IGF2BP1-3, METTL16, METTL3,

RBMX, RBM15B, and VIRMA were significantly upregulated,

whereas ALKBH5, CBLL1, EIF3A, METTL14, YTHDC1, and

ZC3H13 were significantly downregulated (Figure 2D). We

further explored the association between 26 m6A regulators

and the prognosis of HCC patients through univariate Cox

analysis. The forest-plot of disease-free survival (DFS) and

overall survival (OS) showed that the ALKBH5 was

significantly associated with better DFS and OS and could be

recognized as a protective factor, while the IGF2BP2 was a risk

factor and related to worse DFS and OS (Supplementary Figures

S1A,B). The above analyses demonstrated a high heterogeneity of

the multi-omics alteration landscape for 26 m6A regulators,

which presented the crucial role of m6A regulators in HCC

relapse and progression.
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FIGURE 2
Multi-omics characteristic landscapes of 26m6A regulators and relevant biological pathway of m6Amodification pattern in HCC. (A) The intra-
clusters similarities of 26 m6A regulators were visualized by the metascape enrichment network, and the cluster annotations were presented with
color code, including methylation, stability, and C complex spliceosome. (B) Genetic mutations landscape of 26 m6A regulators was found in 35of
the 361 HCC patients, with a frequency of 9.7%, and the mutation frequency of each regulator were shown on the right. (C) The bar plot
indicated the CNV alterations frequency of regulators in the TCGA-LIHC cohort. The amplification frequency was presented in pink dot, and the
deletion frequency was in green dot. (D) The transcriptome landscape of regulators between normal and HCC samples in TCGA-LIHC cohort. The
statistical p-value was showed by the asterisks above (ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001). (E) The interaction of expression on 24 m6A
regulators were sequenced in both TCGA and GSE76427 HCC cohorts. The 24 m6A regulators were depicted into three RNA modification types by
the left half of circle in different colors. Erasers, red, Readers, yellow; Writers, blue; and the lines connecting each m6A regulator represented their
interaction with each other. The size of each circle was referring to the overall survival (OS) p–value. The green dot on the right half of circle indicated

(Continued )

Frontiers in Molecular Biosciences frontiersin.org06

Wang et al. 10.3389/fmolb.2022.1034928

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1034928


Identification ofm6A-relatedmodification
patterns and relevant biological pathway

TCGA-LIHC cohort and GSE76427 cohort with available

survival data were enrolled in this study. Among 26 m6A

regulators, METTL16 and VIRMA were not annotated in the

GSE76427 cohort. The comprehensive interaction network of

24 m6A regulators illustrated the prognostic significance and

their cross-talks in HCC patients (Figure 2E). Furthermore, we

performed a consistent cluster analysis of medoid (PAM) and

determined three disparate m6A-related modification patterns

based on the expression of 24 m6A regulators (Supplementary

Figures S2A–E). Three m6A-related modification patterns

termed as the m6Acluster-A (n = 159), m6Acluster-B (n =

151) and m6Acluster-C (n = 175). The patients in

m6Acluster-A dominated better overall survival, while the

m6Acluster-C had the worst prognosis (p = 0.047, log-rank

test). Moreover, the principal component analysis (PCA)

demonstrated that m6A-related patterns were completely

distinguished among three distinct m6Aclusters

(Supplementary Figure S2F). We also noticed that YTHDC2,

and ZC3H13 were significantly increased in the m6Acluster-A

subtype; IGF2BP1, IGF2BP2, IGF2BP3, CBLL1, RBMX,

METTL3 and RBM15B were significantly elevated in the

m6Acluster-C subtype; and the m6Acluster-B subtype shared

intermediate expression in most 26 m6A regulators

(Supplementary Figure S3A). We further explored the

biological behaviors of three distinct m6A-related patterns via

GSVA analysis. The heatmap showed that m6Acluster-A

enriched with immune activation including T cell receptor,

NOD-like receptor, and Toll-like receptor signaling pathways

(Figure 2G). The m6Acluster-B associated metabolic

reprogramming pathways such as the PPAR signaling

pathway and glycerolipid metabolism pathway (Supplementary

Figure S3B). Whereas the m6Acluster-C was prominently related

to the cell cycle pathway and base excision pathway

(Supplementary Figure S3C).

Immune and angiogenesis
microenvironment characteristics in three
m6A-related modification patterns

Immune cell infiltration analyses demonstrated that the

m6Acluster-A enriched active immune cells, such as CD8+

T cells and eosinophils. The m6Acluster-C was enriched in

innate immune cells, such as CD4+ T cell, Type 2 T helper

cell, and myeloid dendritic cell, but lower in eosinophil

(Figure 3A). We further confirmed the immune cell

infiltration characteristics with MCPCOUNT and TIMER2.0.

The CD4+ T cell, monocyte/macrophage, and myeloid dendritic

cell were remarkably enriched in m6Acluster-C (Figures 3B,C).

Angiogenesis microenvironment characteristics analyses showed

that FGFR-related and VEGF-related genes expression were

significantly enhanced in m6Acluster-C (Figure 3D). However,

the patients in m6Acluster-C did not exhibit a matching

prognostic benefit in Figure 2F. The previous study showed

that tumors with immune exclusion phenotypes also showed

abundant immune cells distributed in the stroma circumambient

tumor cell nests (Chen and Mellman, 2017). Therefore, we

assumed that stromal and angiogenesis activation in

m6Acluster-C may inhibit the anti-tumor effect of immune cells.

Construction of a prognosis signature
base on m6A-related DEGs

In total, we identified 420 significant m6A-related DEGs

(different expression genes) and as shown in the Venn diagram

(Figure 4A, adjusted p < 0.05). We further explored the GO

enrichment analysis, and the result showed that 420 DEGs were

mostly enriched in immune response pathways (Figure 4B). In the

TCGA-LIHC training cohort, 61 of 420 DEGs were selected through

univariate Cox, and 10 of 61 DEGs were further screened by the

lasso-Cox regression algorithm (Figures 4C,D). Finally, 5 prognostic-

related hub DEGs were identified by multivariate Cox regression

analysis, The forest-plot showed the hazard ratio of 10 lasso genes

and 5 hub genes (Figures 4E,F). Kaplan-Meier analysis indicated that

the patients with high expression of B2M and LCAT were

significantly related to poor prognosis (Supplementary Figures

S4A,D; both p < 0.05, Log-rank test), while high expression of

DPH2, SMOX and TLL2 indicated better prognosis

(Supplementary Figures S4G,J,M; all p < 0.05, Log-rank test). And

the prognosis value of B2M, DPH2 and TLL2 were confirmed in the

TCGA-LIHC testing cohort and GSE76427 cohort (Supplementary

Figures S4B,C,H,I,K,L; all p < 0.05, Log-rank test). While the

prognosis of LCAT in GSE76427 cohort (Supplementary Figure

S4F; p = 0.462, Log-rank test) and TLL2 in TCGA-LIHC testing

(Supplementary Figure S4N; p = 0.680, Log-rank test) and

GSE76427 cohorts (Supplementary Figure S4O; p = 0.158, Log-

rank test) did not have a significant difference, which may due to

tumor heterogeneity and the samples selection differences.

FIGURE 2 (Continued)
favorable factors for HCC prognosis, while the purple dot represented risk factors. (F) Kaplan-Meier curves of overall survival (OS) for merged
HCC cohorts (TCGA-LIHC and GSE76427 cohorts) among three distinct m6A clusters. The numbers of patients in m6Aclusters A, B and C
phenotypes are 159, 151, and 175, respectively (Log-rank test, p < 0.05). (G)Heatmap indicated the significant KEGG pathways curated fromMSigDB
in m6Acluster A vs. m6Acluster B.
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FIGURE 3
Immune and angiogenesismicroenvironment characteristics in distinctm6Amodification patterns. (A) The fraction of TME cells in three distinct
m6A-related patterns. (B,C) The abundance of tumor-infiltrating immune cells in three m6A-related patterns were calculated via MCPCOUNT and
TIMER2.0 algorithm. B, CIBERSORT; C, TIMER2.0. (D) The abundance of each 21 vascular-related gene expression in threem6A-related patterns. The
top and bottomof the boxesmanifested the value of the interquartile range, and the lines in the boxes representedmedian value. The fraction of
TME infiltrating cells among three m6Acluster were compared via the Kruskal–Wallis H test, and gene expression difference was compared via the
one-way ANOVA test.
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FIGURE 4
Construction of a prognosis signature based on m6A-related differential expression genes. (A) The Venn diagram indicated 420 m6A-related
DEGs among threem6A-related clusters. (B)GO enrichment analysis for 137m6A-related and prognosis significant DEGs. The dot size indicated the
counts of genes enriched, and the dot colormanifested the p value. (C,D) Lasso coefficient profiles and optimal parameter (lambda) selection used 5-
fold cross-validation. A coefficient profile plot was produced against the log(lambda) sequence. The partial likelihood deviance (binomial
deviance) curve was plotted versus log(lambda). Dotted vertical lines were drawn at the optimal values by using theminimum criteria and the 1-SE of
the minimum criteria. Abbreviations: SE, standard error. (E,F) The Cox forest-plots of 10 Lasso genes and 5multivariate Cox genes in the TCGA-LIHC
training cohort.
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FIGURE 5
Estimation and validation of m6A significant score (m6Asig-Score). (A–C) The assessment of risk for m6Asig-Score in three distinct HCC
cohorts, different colors of curves represented risk score. High risk was presented in tomato, and low risk was in green. (D–F) The plots of different
colors and locations represented OS status and survival time in three HCC distinct cohorts. Blue, dead; green, alive. (G–I) The heatmap indicates
5 hub genes expression between high and lowm6Asig-Score in three distinct HCC cohorts. (J–L) Kaplan-Meier analysis of overall survival (OS)
for high and low m6Asig-Score groups in three distinct HCC cohorts. (M–O) Time-ROC curves of 1-, 2-,3-, and 5-year OS in three distinct HCC
cohorts.
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FIGURE 6
Relevance exploration of m6Asig-Score with clinical features and tumor somatic mutation. (A) Overall survival Kaplan-Meier analysis for high
and low m6Asig-Score groups in merged HCC cohort (p < 0.001, Log-rank test). (B) The Alluvial diagram explained the analysis workflow of
m6Acluster, m6Asig-Score, TNM stages and survival status. (C–E) The m6Asig-Score was compared among distinct m6Acluster, TNM stage and OS
status. (F) The tumor somatic mutation waterfall between high m6Asig-Score (left) and low m6Asig-Score (right) subgroup in the TCGA-LIHC
cohort. The upper number of the bar plot indicated tumor mutation burden (TMB), and the right number showed mutation frequency.
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We further constructed a prognosis signature termed as

m6Asig-Score to predict the prognostic risk of HCC (details

in Methods). The m6Asig-Score, survival time, alive status and

the heatmap of 5 hub genes expression of HCC were exhibited in

Figures 5A–I. The patients with increasing m6Asig-Score had a

high fraction of death status, and high expression of DPH2,

SMOX, TLL2, AND low expression of LCAT and B2M. The

optimal cutoff value of m6Asig-Score was selected by the

“surv_cutpoint” function of “survival” package, and the

patients in the TCGA-LIHC training, TCGA-LIHC testing,

and GSE76427 cohorts were classified into high m6Asig-Score

and low m6Asig-Score groups. In the TCGA-LIHC training

cohort, the Kaplan-Meier survival analysis indicated patients

with low m6Asig-Score were probably led to a better

prognosis than patients with low m6Asig-Score (Figure 5J, p <
0.001, Log-rank test), and the result was confirmed in TCGA-

LIHC testing and GSE76427 cohorts (Figures 5K,L, both p <
0.001, log-rank test). In the TCGA-LIHC training cohort, the

ROC curve analysis exhibited that the AUC values of 1-, 2-,3-,

and 5-year survival was 0.760, 0.775, 0.816, and 0.721,

respectively (Figure 5M). And similar results were found in

TCGA-LIHC testing and GSE76427 validation cohorts

(Figures 5N,O).

Relevance exploration of m6Asig-Score
with clinical features and tumor somatic
mutation

A total of 485 HCC patients were classified into the high

m6Asig-Score and low m6Asig-Score groups based on the

optimal cutoff value of m6Asig-Score (high group includes

138 patients and low group includes 347 patients). The

patients with low m6Asig-Score led a better prognosis than

patients with high m6Asig-Score in the total cohort as well as

in different age (60 and above) and TNM stage (I/II and III/IV)

subgroups (Figure 6A, Supplementary Figures S5A–D; all p <
0.001, Log-rank test). The alluvial diagram explained the analysis

workflow of m6Aclusters, m6Asig-Score, TNM stage, and

survival status (Figure 6B). And the consequences showed that

m6Acluster-C exhibited a higher m6Asig-Score, advanced TNM

stage and higher dead risk. Nevertheless, m6ACluster-A was

associated with lower m6Asig-Score, early TNM stage and alive

status. The m6Acluster-C exhibited the m6Asig-Score

(Figure 6C, p < 0.001, Wilcoxon rank-sum test). Besides, the

m6Asig-Score of patients in TNM stage II and III/IV was

significantly higher than patients in TNM stage I (Figure 6D,

p < 0.001, Wilcoxon test), and the m6Asig-Score of patients in

dead status was also significantly higher than patients in alive

status (Figure 6E, p < 0.001, Wilcoxon rank-sum test). The

somatic mutation landscapes illustrated that the somatic

mutation rates of TP53 (40% vs. 15%), OBSCN (11% vs. 5%)

and FAT3(11% vs. 4%) were significantly higher in the high

m6Asig-Score subgroup than in low m6Asig-Score subgroup

(Figure 6F, p < 0.05, Fisher’s exact test). These data indicated

the potentially complex interaction between the prognosis

signature m6Asig-Score and HCC somatic mutations.

We further evaluated the TIME cell infiltration between two

m6Asig-Score subgroups. The low m6Asig-Score subgroup was

remarkably enriched in adaptive immune cells, such as activated

CD8+ T cell, activated B cell, eosinophil, natural killer cell and Th

1 cell. While the high m6Asig-Score group was enriched in innate

immune cells, such as CD4+ T cells, immature dendritic cells and

Th 2 cells (Supplementary Figure S6A). Furthermore, we

compared the RNA expression levels of 21 vascular-related

genes between two m6Asig-Score subgroups. In the low

m6Asig-Score subgroup, the VEGFR1-3 were significantly

highly expressed, while the FGFR 1, FGFR 3, PDGFRL,

VEGFA, and VEGFB were significantly low expressed

(Supplementary Figure S6B). The results were confirmed in

the correlation between m6Asig-Score and known TME

signatures and the expression of vascular-related genes

(Supplementary Figures S6C,D).

The potential of m6Asig-Score in
predicting immunotherapeutic and anti-
angiogenic therapy response

ICIs treatments represented by PD-1/PD-L1 inhibitors

have made a great break in cancer treatment. As well as PD-

L1, TMB, and MSI (Chen et al., 2019a; Chen et al., 2019b), the

IPS, TIS, and TIDE were recently identified and widely

applied to predict the immune response (Charoentong

et al., 2017; Danaher et al., 2018; Jiang et al., 2018).

Likewise, our study indicated that the TIS and IPS were

markedly elevated in the low m6Asig-Score subgroup, and

TIDE (Exclusion, MDSC, and M2) was prominently

decreased in the low m6Asig-Score subgroup (Figures

7A–C, all p < 0.001). Furthermore, we investigated the

capability of m6Asig-Score in predicting patients’ response

to immunotherapeutic in two independent cohorts

(IMvigor210 cohort and Liu et al. cohort). The results

showed that patients in the IMvigor210 cohort with low

m6Asig-Score presented significant prolong overall survival

probability (Figure 7D, p < 0.001, Log-rank test), and the

m6Asig-Score was significantly higher in CR/PR (complete

response or partial response) patients than that in SD/PD

(stable disease or progressive disease) patients (Figure 7E, p <
0.001, Wilcoxon test). And similar results were also found in

Liu et al. cohort (Figure 7F, p < 0.001, log-rank test;

Figure 7G, p = 0.019, Wilcoxon test).

To further explore the sensitivity prediction of m6Asig-Score

in anti-angiogenic drugs. We performed Spearman correlation

analysis between m6Asig-Score and the IC50 of Sorafenib and

Pazopanib. The outcome indicated that m6Asig-Score was
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significantly positively correlated with the IC50 of Sorafenib and

Pazopanib (Figure 7H and Supplementary Figure S7A, both p <
0.05, Spearman correlation test). This finding indicated that

patients with low m6Asig-Score, were more likely to benefit

from anti-angiogenic therapy.

We further explored the correlation between 5 hub genes and

Sorafenib targeted genes. The heatmap showed that B2M

significantly correlated with VEGFR1/2, while SMOX

negatively correlated with VEGFR1-3 (Supplementary Figure

S7B, p < 0.01, Spearman correlation test). The VEGR1-3 are

FIGURE 7
Prediction of m6Asig-Score in immunotherapy and anti-angiogenic therapy. (A–C) The relative distribution comparison of TIS (A), IPS (B) and
TIDE (C) between high m6Asig-Score and lowm6Asig-Score groups. (D) Kaplan-Meier analysis between high m6Asig-Score and lowm6Asig-Score
groups in IMvigor210 cohort (p < 0.001, Log-rank test). (E) The comparison of m6Asig-Score between SD/PD and CR/PR two groups in
IMvigor210 cohort. (F) Kaplan-Meier analysis between high m6Asig-Score and low m6Asig-Score groups in Liu. cohort (p = 0.002, Log-rank
test) (G) The comparison of m6Asig-Score between SD/PD and CR/PR two groups in Liu. cohort. (H) Spearman correlations analysis between
sorafenib-IC50 and m6Asig-Score. (I) Overall survival Kaplan-Meier curves for high VEGFR-score and low VEGFR-score groups in the merged HCC
cohort (p = 0.003, Log-rank test). (J) Kaplan-Meier survival analyses for patients stratified by m6Asig-Score and VEGFR-score. H, high; L, Low; Ve.,
VEGFR; m6A., m6Asig-Score (p < 0.0001, Log-rank test).
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FIGURE 8
Potential mechanism of 5 hub genes in immunotherapy and anti-angiogenic therapy. (A) correlation heatmap between 5 hub genes and
22 infiltration immune cells. (B,C)Overall survival Kaplan-Meier analysis between patients with high and low B2M expression in IMvigor210 cohort (B)
and Liu et al. Cohort (C). (D,E)Overall survival Kaplan-Meier analysis between patients with high and low SMOX expression in IMvigor210 cohort (D)
and Liu et al. Cohort (E). (F) correlation heatmap of between 5 hub genes and the known vascular gene signatures score. (G,H) Correlation
scatter plot of Sorafenib-IC50 and the expression of B2M (G) and SMOX (H). (I) The t-SNE plot of immune cell clusters in GSE140228 single immune
cell cohort. (J,K) B2M expression in the t-SNE plot (J) and violin plot (K). (L,M) SMOX expression in t-SNE plot (L) and violin plot (M).
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the targets of anti-angiogenic drugs such as Sorafenib,

Regorafenib and Lenvatinib, which may indicate the

therapeutic effect. We further explored the correlation

between vascular-related gene signatures and the IC50 of anti-

angiogenic drugs. Our results revealed that m6Asig-Score

significantly negatively correlated with the angiogenesis and

VEGFR signatures, and positively correlated with the FGFR

signature (Supplementary Figure S8A). And the VEGR and

FGF signatures were significantly negatively correlated with

the IC50 of Sorafenib (Supplementary Figures S8B,C; all p <
0.05, Spearman correlation test). The PDGFR and VEGF

signatures significantly positively correlated with the IC50 of

Sorafenib (Supplementary Figures S8D,E; all p < 0.05,

Spearman correlation test). The FGFR, PDGF and

angiogenesis signatures have no significant correlation

(Supplementary Figures S8F–H; all p < 0.05, Spearman

correlation test). These findings indicated that the VEGFR

signature can predict the efficacy of the anti-angiogenic drug

Sorafenib therapeutic. As expected, we found that the patients

with high VEGFR signature presented a prolonged survival time

(Figure 7I, p = 0.004, Log-rank test), and the patients with both

high VEGFR signature and low m6Asig-Score exhibited a

prominent survival benefit (Figure 7J, p < 0.001, Log-rank

test). To sum up, our findings convincingly demonstrated that

the m6Asig-Score was a powerful biomarker for

predicting the immunotherapeutic and anti-angiogenic

responses to HCC.

The potential mechanism of 5 hub genes
in immunotherapeutic and anti-
angiogenic therapy.

To explore the potential mechanism of 5 hub genes in

immunotherapeutic and anti-angiogenic therapy. We first

explored the correlation between 5 hub genes and immune cell

infiltration. The correlation heatmap showed that the expression of

B2M is significantly positively correlated with activate immune cells,

such asM1macrophages, CD8+ T cells, and gammadelta (γδ) T cells.

And the expression of SMOX is significantly positively correlated

with suppressive immune cells (Figure 8A, p < 0.01, Spearman

correlation test). As expected, the patients in IMvigor210 and Liu

et al. cohorts with high B2M expression presented significant prolong

overall survival probability (Figures 8B,C; all p < 0.05, Log-rank test),

and the patients with high SMOX led to poor immunotherapeutic

benefit (Figures 8D,E; all p < 0.05, Log-rank test). In addition, the

expression of B2M is significantly positively correlated with

angiogenesis and VEGFR signatures, while SMOX is significantly

positively correlated with PDGFR, VEGFR and FGFR signatures

(Figure 8F, p < 0.01, Spearman correlation test). As expect, the

expression of B2M were significantly positively correlated with

Sorafenib-IC50 (Figure 8G, R = −0.32, p < 0.01, Spearman

correlation test), and the expression of SMOX were significantly

negatively correlated with Sorafenib-IC50 (Figure 8G, R = 0.11, p <
0.01, Spearman correlation test).

We further explored the distribution of 5 hub genes in single

immune cells from tumor tissue, peritumoral normal liver tissue,

blood, and ascites of HCC patients. Figure 8I presented the t-SNE

plot of immune cell clusters in the GSE140228 single immune cell

cohort. The t-SNE plot and violin plot showed that B2M was

over-expressed in most immune cells (Figures 8J,K), while the

SMOX was down-expressed (Figures 8L,M). Similar results were

found in tumor tissue, peritumoral normal liver tissue, blood and

ascites, respectively (Supplementary Figures S9A–L). The

patients in IMvigor210 and Liu et al. cohorts with high

expression of DPH2 were associated with immunotherapeutic

benefits (Supplementary Figures S10A,B; all p < 0.05, Log-rank

test), but the expression of LCAT and TLL2 were not significantly

associated with immunotherapeutic response (Supplementary

Figures S10D–E,G,H; all p > 0.05, Log-rank test). Besides, the

expression of DPH2 was not significantly correlated with

Sorafenib-IC50 (Supplementary Figure S10C, p = 0.9,

Spearman correlation test), and the expression of LCAT was

significantly negatively correlated with Sorafenib-IC50

(Supplementary Figure S10F, R = −0.25, p < 0.001, Spearman

correlation test), and the expression of TLL2 were significantly

positively correlated with Sorafenib-IC50 (Supplementary Figure

S10I, R = 0.15, p < 0.001, Spearman correlation test).

Discussion

In the present study, we elaborated on the relevance in terms of

m6A modification and the immune microenvironment of liver

cancer. First, we identified three distinct m6Aclusters with

different tumor microenvironment. The m6Acluster-A was

classified as an immune-inflamed phenotype with lymphocyte

infiltration, which may predict a better immune response (Galon

and Bruni, 2019). The m6Acluster-B was classified as an immune-

desert phenotype, and m6Acluster-C was classified as an immune-

excluded phenotype with stromal activation. We subsequently

constructed a 5 genes prognosis signature termed as “m6Asig-

Score” to evaluate the overall survival risk of individual HCC

patients. As expected, the m6Asig-Score in immune-excluded and

immune-desert phenotypes was high, as opposed to immune-

inflamed phenotype. Further analyses illustrated that the high

m6Asig-Score was associated with poor prognosis and advanced

TNM stage, suggesting that the m6Asig-Score may serve as a new

potential prognostic marker. Of note, the alteration of TP53 at a

higher frequency and poorer immune response was also detectable in

the highm6Asig-Score group, consistent with the previous study that

TP53 gene mutation could down-regulated HCC immune response

(Long et al., 2019). Besides, we discovered a clear correlation between

the m6Asig-Score and immunotherapy response predictors such as

IPS, TIS and TIDE (Charoentong et al., 2017; Danaher et al., 2018;

Jiang et al., 2018), and validated it in two independent
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immunotherapy cohorts. Nowadays, anti-angiogenic drugs (VEGF

inhibitors) combined with immune checkpoint inhibitors have

become the first-line treatment against advanced HCC.

Interestingly, the m6Asig-Score had a significant negative

correlation with the VEGFR signature (details in method) as well

as the sensitivity of anti-angiogenic drugs. And patients with

H-VEGFR signature and L-m6Asig-Score presented the best

survival benefit. This coincides with the combination strategies of

immunotherapy and anti-angiogenic therapy in advanced HCC.

We further found that two of five m6Asig-Score inner genes,

B2M and SMOX, were associated with immune cell infiltration,

immune response, and sensitivity to sorafenib. B2M, as a crucial

ingredient of MHC class I–mediated antigen presentation by tumor

cells, has been announced to be presented in immune cells (Pereira

et al., 2017; Wang et al., 2021). It is noteworthy that the alteration of

B2M gene could prevail in the emergence of T-cell-based

immunotherapy resistance (Riaz et al., 2017; Hellmann et al.,

2018). On the contrary, the B2M with increased expression

correlated with a more predominant immune response along with

survival benefits (Martinez-Morilla et al., 2021). In our study, the

patients with high B2M expression were enriched in CD8+ T cell

infiltration and associated with better sorafenib sensitivity, which

prompted better immune and anti-angiogenic efficacy. Similarly, our

study also showed that the patients with high B2M expression were

dominated by CD8+ T cell infiltration and exhibited higher sorafenib

sensitivity, which prompted better immune and anti-angiogenic

efficacy. SMOX is generally a critical polyamine catabolic enzyme,

by which the polyamine spermine can be metabolized into

spermidine plus H2O2, giving rise to inflammation and

carcinogenesis (Gobert et al., 2018; Sierra et al., 2020). Several

studies denoted that the SMOX was overexpressed and

accelerated tumor growth in HCC or NSCLC patients (Hu et al.,

2018; Huang et al., 2021). In our study, the patients with high SMOX

were enriched in regulatory T cell (Tregs) infiltration and associated

with disappointing sorafenib sensitivity, which prompted poor

immune and anti-angiogenic efficacy.

Although we systematically reviewed the literature and selected

26 m6Amethylation regulators, more new finding regulators should

be incorporated to enhance our understanding of m6A methylation

modification. The HCC cohorts in our study were collected from

public datasets, which lacked clinical and sub-clinical information on

sorafenib efficacy. In addition, in the absence of appropriate HCC

immunotherapy datasets, we hope that two metastatic urothelial

carcinoma and melanoma immunotherapy cohorts could verify the

prediction of m6Asig-Score, and strengthen our findings. The

m6Asig-Score was significantly negatively correlated with anti-

angiogenic drug sensitivity.

Conclusion

All in all, our study indicated that the m6Asig-Score,

B2M, and SMOX may act as new potential biomarkers in

predicting immunotherapeutic and anti-angiogenic therapy

responses. There are still needed more prospective HCC

cohorts under immune and anti-angiogenesis drugs

treatment to validate our conclusions. And more

clinicopathological characteristics should be considered to

improve the prediction accuracy.
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