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Abstract: Porphyromonas gingivalis has been identified as one of the major periodontal pathogens.
Activity-directed fractionation and purification processes were employed to identify bioactive com-
pounds from bitter melon leaf. Ethanolic extract of bitter melon leaf was separated into five subfrac-
tions by open column chromatography. Subfraction-5-3 significantly inhibited P. gingivalis-induced
interleukin (IL)-8 and IL-6 productions in human monocytic THP-1 cells and then was subjected
to separation and purification by using different chromatographic methods. Consequently, 5β,19-
epoxycucurbita-6,23(E),25(26)-triene-3β,19(R)-diol (charantadiol A) was identified and isolated from
the subfraction-5-3. Charantadiol A effectively reduced P. gingivalis-induced IL-6 and IL-8 produc-
tions and triggered receptors expressed on myeloid cells (TREM)-1 mRNA level of THP-1 cells. In
a separate study, charantadiol A significantly suppressed P. gingivalis-stimulated IL-6 and tumor
necrosis factor-α mRNA levels in gingival tissues of mice, confirming the inhibitory effect against
P. gingivalis-induced periodontal inflammation. Thus, charantadiol A is a potential anti-inflammatory
agent for modulating P. gingivalis-induced inflammation.

Keywords: anti-inflammation; bitter melon; charantadiol A; Porphyromonas gingivalis

1. Introduction

Periodontal diseases are complex, multifactorial diseases characterized by chronic
inflammation of periodontal tissues, including gingival inflammation and alveolar bone
resorption, and eventually tooth loss. Periodontitis begins as acute inflammation of the
gingival tissue driven by polymicrobial infections and aggressive host immune and inflam-
matory responses via production of pro-inflammatory cytokines [1].

Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, has been considered as
a major oral pathogen in the development of chronic periodontitis [2]. P. gingivalis expresses
several known virulence factors, such as lipopolysaccharide (LPS), fimbriae, proteases, and
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outer membrane vesicles [1]. Exposure to P. gingivalis causes innate responses through
toll-like receptor (TLR)-2 and TLR-4 on the host cell surface and can trigger the production
and release of pro-inflammatory mediators, such as interleukin (IL)-8 and IL-6, IL-1β, and
tumor necrosis factor (TNF)-α. These pro-inflammatory cytokines play a significant role in
the development of periodontitis [3]. IL-8 is produced primarily by gingival fibroblasts,
gingival epithelial cells and endothelial cells. It is detectable in diseased periodontal tissues
and has been associated with subclinical inflammation of the initial lesion [4]. Recently, IL-8
has been considered to be a potential therapeutic target for periodontitis [5]. IL-6 and IL-1β
regulate inflammatory cell migration and osteoclastogenesis [4]. Since excessive secretion
of pro-inflammatory mediators has been highly related to periodontitis pathogenesis,
developing a strategy-based approach to suppress P. gingivalis-induced inflammatory
responses may be a promising strategy for the alleviation of chronic periodontal disease.

Natural products from the herbal remedy, medicinal plants, functional foods, and
their constituent have been considered to be effective in the prevention and treatment of
periodontal diseases [6–8]. However, these studies did not purify specific compounds that
have a meaningful anti-inflammatory effect on periodontitis from the crude extracts.

Bitter melon (Momordica charantia) exhibits several biological effects, such as antibacte-
rial, antiviral, antidiabetic, hepatoprotective, immunomodulation, antioxidant, and anti-
inflammatory activities [9,10]. Wild bitter melon (WBM; Momordica charantia L. var. ab-
breviata Seringe) is a wild variety of bitter melon. WBM fruit and young tender leaf are
consumed as vegetables. Ethyl acetate extract of WBM fruits and its saponifiable (S) and
nonsaponifiable (NS) fractions suppressed Cutibacterium acnes (formerly Propionibacterium
acnes)-induced cytokine and matrix metalloproteinase (MMP)-9 levels in vitro and at-
tributed the anti-inflammatory potential to phytol and lutein present in the NS fraction [11].
Polyphenol-enriched extract of WBM leaves effectively attenuates C. acnes-induced inflam-
matory responses by inhibiting infiltrations of neutrophils and IL-1β-expressing leukocytes
in vivo. The anti-inflammatory activity of WBM leaf extract may be attributable to the
phenolic and triterpenoid components [12]. Since WBM leaf extract exerts potent inhibitory
activity against C. acnes-induced IL-8 production [12], its action against P. gingivalis was
examined. We isolated 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (kuguacin R) and
3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD) from WBM leaf extract and demon-
strated that both compounds suppressed P. gingivalis-induced inflammatory responses
with human THP-1 monocytic cell model and prevented periodontal disease progression
in a mouse model of experimental periodontitis [13]. As part of our continuing efforts
directed toward the discovery of bioactive compounds in WBM, 5β,19-epoxycucurbita-
6,23(E),25-triene-3β,19(R)-diol (charantadiol A) was isolated from WBM leaf extract and its
possible anti-inflammatory activity against P. gingivalis was evaluated in this study.

2. Results and Discussion
2.1. Effects of Sub-Fractions from Leaf Extract of Wild Bitter Melon and Charantadiol A on
P. gingivalis-Induced Cytokines in THP-Cells

Previous studies indicated that P. gingivalis can elicit high levels of IL-6 and IL-8
production in a variety of cell types comprising human oral epithelial cells, periodontal
ligament cells and monocytes [13–15]. We previously demonstrated that sub-fractions,
the fraction 5 (Fra. 5) and Fra. 5-2, isolated from crude WBM leaf extract inhibited
P. gingivalis-stimulated IL-8 production by THP-1 cells [13]. In the present study, the Fra.
5-3 (Figure 1) was fractionated and evaluated to determine the fractions that contained
effective substances. Then, co-culture model of heat-inactivated P. gingivalis and THP-1
monocytes was used to evaluate the suppress effects on P. gingivalis-induced inflammatory
responses by the components of Fra. 5-3.
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Figure 1. Schemes of the extraction and isolation of charantadiol A. Due to the C-19 hemiacetal
carbon in charantadiol A (1), its 19(S) epimer (2) was also found as impurity in the NMR spectra.

To determine whether Fra. 5-3 would affect cell viability, THP-1 cells were incubated
firstly in culture medium supplemented with various concentrations of tested samples.
No adverse effect on cell proliferation was observed when the concentration of Fra. 5-3
was below 10 µg/mL by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay (data not shown). Figure 2 shows that the productions of IL-8 and IL-6 were
significantly elevated in response to P. gingivalis stimulation. However, culture medium
supplied with different concentrations of Fra. 5-3 significantly reduced respective cytokine
production by as much as 85% (IL-6) and 81% (IL-8) (Figure 2).

Moreover, charantadiol A, as mixtures of cucurbitane triterpenoid epimers, was
isolated from Fra. 5-3 (Figure 1). No adverse effect on cell proliferation was observed when
charantadiol A concentration was below 20 µM using the MTT assay (data not shown). In
P. gingivalis-stimulated THP-1 cells, treatment of charantadiol A significantly suppressed
P. gingivalis-induced productions of IL-6 (up to 97%) and IL-8 (up to 59%) (Figure 3).
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Figure 3. Effects of charantadiol A on P. gingivalis-induced pro-inflammatory cytokine production in human monocytic
THP-1 cells. Cells were incubated with 0.1% (v/v) DMSO (as a vehicle control), or co-cultured with P. gingivalis (M.O.I. = 10)
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collected and analyzed for the content of IL-8 and IL-6. Experiments were performed three times in triplicate. Each value
represents the mean ± SD. Values with different letters are significantly different at p < 0.05.

Charantadiol A, a cucurbitane-type triterpenoid, is also a biological active component
in bitter melon fruit and shows hypoglycemic effect in streptozotocin-induced diabetic
rats [16]. Cucurbitane-type triterpenoids exert anti-inflammatory activity by inhibiting
nitric oxide production in lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage
cells [17]. In this study, we have demonstrated that charantadiol A is as potent as luteolin,
a well-known antioxidant and anti-inflammatory flavonoid, in suppressing P. gingivalis-
induced inflammatory responses in vitro (Figure 3).

2.2. Effect of Charantadiol A on TREM-1 mRNA Expression Level in P. gingivalis-Stimulated
THP-1 Cells

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a cell surface re-
ceptor of the immunoglobulin superfamily expressed on polymorphonuclear leukocytes,
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monocytes, macrophages, dendritic cells, vascular smooth muscle cells, and is upregulated
in the presence of inflammation to amplify pro-inflammatory cytokine production [18,19].
Co-triggering of TREM-1 and TLR4 results in a synergistic increase in TLR4-mediated
pro-inflammatory cytokine and chemokine secretion [20]. Exposure of P. gingivalis induces
significantly higher expression of TREM-1 mRNA and upregulates the expression of the
TREM-1/DAP12 pathway in monocytes [21,22]. Willi and co-workers reported that pe-
riodontitis patients have higher TREM-1 gingival expression than healthy controls [23].
Doxycycline is used as an adjunct treatment in clinical periodontal therapy and has been
shown to reduce P. gingivalis-induced IL-8 secretion by inhibiting TREM-1 expression and
release [24]. Consistent with the previous findings [21,22,24], the TREM-1 mRNA level was
significantly elevated in response to P. gingivalis (Figure 4). Treatments of charantadiol A
significantly inhibited bacterially induced TREM-1 mRNA expression (Figure 4), and this
effect may partly account for its anti-inflammatory property. Our present results show for
the first time that charantadiol A downregulated P. gingivalis-induced TREM-1 expression.
However, additional studies are needed to further support for the possible mechanisms
underlying inhibitory effect of charantadiol A on pro-inflammatory cytokine production.
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Figure 4. Effect of charantadiol A on P. gingivalis-induced triggering receptors expressed on myeloid
cells-1 (TREM-1) mRNA expression. THP-1 cells were cultured with 0.1% (v/v) DMSO (vehicle
control), or co-incubated with P. gingivalis (M.O.I. = 10) and different concentrations of charantadiol
A (5, 10 or 20 µM) for 4 h to determine the TREM-1 mRNA levels. Experiments were performed three
times in triplicate. Each value shows the mean ± SD. Values with different letters are significantly
different at p < 0.05.

2.3. Effect of Charantadiol A on IL-6 and TNFα mRNA expression in P. gingivalis-Stimulated
Gingival Tissue of Mice

The pro-inflammatory cytokines, IL-1, IL-6, and TNF-α, appear to have central roles
in periodontal tissue destruction [25]. IL-6 plays a crucial role mainly in the initiation and
acute phase of periodontitis [26]. Additionally, IL-6 plays a role in the transition between
acute and chronic inflammation, it enhances T-cell proliferation and accelerates of bone
resorption by increasing osteoclast formation [27]. IL-6 is highly expressed in inflamed
periodontal tissue and gingival crevicular fluid, which has been shown to be related to
the severity of periodontitis [26,28]. TNF-α possesses a wide range of immune-regulatory
functions to stimulate the production of chemokines or cyclooxygenase products, which
consequently amplifies the degree of inflammation [27]. TNF-α has shown to participate
in the initiation of periodontitis by injuring the oral mucosa barrier. Moreover, a high
level of circulating TNF-α derived from periodontal tissue may contribute to systemic
inflammation-associated diseases [26]. In this study, we showed that charantadiol A can
affect immune responses in P. gingivalis-stimulated mouse gingival tissue. As shown in
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Figure 5, P. gingivalis–induced IL-6 and TNF-α mRNA expressions were attenuated by
respective co-injection of charantadiol A (5 µg) or luteolin (50 µg).
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The effectiveness of a conventional mechanical treatment against gingivitis is clear.
However, topical adjunctive therapy with antimicrobials or anti-inflammatory agents has
been applied for periodontal treatment [29]. Most natural products have been applied
topically (as mouthwash, toothpaste, chewing gum etc.). Evidences show a beneficial effect
of anti-inflammatory agents against gingivitis, either as a single treatment modality or
as an adjunctive therapy [30]. Hence, it is worthy to investigate natural products which
possess the beneficial effect on gingival inflammation. We previously described methods for
isolating and purifying of kuguacin R and TCD and demonstrated their anti-inflammatory
action in vitro and in vivo [13]. We showed that pro-inflammatory cytokine (IL-6 and IL-8)
expression was induced by P. gingivalis infection but decreased by treatment with kuguacin
R or TCD [13]. The activation of mitogen-activated protein kinase (MAPK), a signaling
pathway for pro-inflammatory cytokines in periodontitis [31], was modulated by kuguacin
R or TCD [13]. However, the yield of charantadiol A is lower than that of kuguacin R
and TCD, making it difficult to acquire enough of an amount of charantadiol A to explore
more details of its mechanism. Therefore, we are not able to make further analysis as
we did on kuguacin R and TCD in our previous research. Nevertheless, the shortages of
inexpensive, pure kuguacin R, TCD and charantadiol A are still limiting the exploration of
their potentially beneficial applications to human health. Certainly, future investigations
on the toxicological and pharmaceutical evaluation of these cucurbitane triterpenoids are
expected.

3. Materials and Methods
3.1. Plant Materials

WBM (a cultivar of Hualien-1) leaves were obtained from the Hualien District Agricul-
tural Research and Extension Station, Hualien, Taiwan. The fresh aerial parts of WBM were
harvested. WBM leaves were collected and then a voucher specimen (number NTNUHung-
2014-09) was deposited in the Department of Human Development and Family Studies,
National Taiwan Normal University, Taipei, Taiwan. The voucher specimen of the plant
was authenticated by Dr. Po-Jung Tsai, Professor, National Taiwan Normal University,
Taipei, Taiwan. After cleaning with water, the WBM leaves were air-dried and ground
using a blender. Powdered WBM leaves were stored in the dark at −20 ◦C until used.
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3.2. Isolation and Determination of Charantadiol A

In this study, we further optimized our previous method for the preparation of WBM
leaf extract [13]. Dried and powdered WBM leaves (100 g) were extracted twice with 2 L
of ethanol (1:20, w/v) at room temperature on a rotary shaker at 200 rpm in the dark for
24 h. The blended mixture was then centrifuged at 5000× g. The supernatant obtained was
filtered and then evaporated to dryness under reduced pressure (45–50 ◦C), yielding 14.6%
of crude ethanol extract. As shown in Figure 1, crude ethanol extract was chromatographed
on silica gel column chromatography eluted with n-hexane/ethyl acetate (EtOAc) (4:1)
to give five sub-fractions (Fra.1~Fra.5). All samples of the Fra. 5 (25.7 g) were further
chromatographed on a silica gel column (35 mm × 45 cm) eluted with n-hexane: acetone
(Me2CO) (1:1) to further obtain four sub-fractions Fra. 5-1 (1.6 g), Fra. 5-2 (3.9 g), Fra.
5-3 (1.5 g), and Fra. 5-4 (17 g). Fra. 5-3 was further purified on silica gel with acetone to
provides two sub-fractions, Fra. 5-3-1 and Fra. 5-3-2. Charantadiol A was obtained by
purification of Fra. 5-3-2 using semi-preparative HPLC with a Lichrosorb Si gel 60 column
(5 µm, 250 × 10 mm) eluted with CH2Cl2-EtOAc (7:1) at 2 mL/min (3.1 mg). Its chemical
structure was identified by comparison of the spectroscopic data with those of published
in the related references [32].

Nuclear magnetic resonance (1H NMR and 13C NMR) techniques were used for
the structure elucidation of the compounds. NMR spectra were recorded on a Bruker
spectrometer (400 MHz for 1H NMR and 100 MHz for 13C NMR) instrument and using
CDCl3 as solvent (Supplementary Figure S1).

5β,19-epoxycucurbita-6,23(E),25-trien-3β,19(R)-diol. amorphous white powder; [α]25D-
122.1◦ (c 0.2, CHCl3); IR (KBr) νmax 3421, 3028, 2947, 2875, 1645, 1608, 1450, 1420, 1381,
1118, 1082, 983, 941, 879, 756 cm−l; lH NMR (400 MHz, CDC13) δH: 6.10 (1H, d, J = 15.2 Hz,
H-24), 6.07 (1H, dd, J = 2.0, 10.0 Hz, H-6), 5.64 (1H, dd, J = 4.0, 10.0 Hz, H-7), 5.61 (1H, m,
H-23), 5.11 (1H, d, J = 8.0 Hz, H-19), 4.84 (2H, br s, H-26), 3.75 (1H, d, J = 9.6 Hz, 3-OH), 3.38
(1H, m, H-3), 2.81 (1H, br s, H-8), 2.67 (1H, J = 8.0 Hz, 19-OH), 2.46 (1H, t, J = 8.8 Hz, H-10),
1.82 (1H, s, Me-27), 1.19 (1H, s, Me-28), 0.89 (1H, d, J = 6.4 Hz, Me-21), 0.87, 0.86, 0.83 (each
3H, s, Me-29, Me-18, Me-30); 13C NMR (100 MHz, CDCl3) δC: 14.7 (C-18), 17.3 (C-1), 18.7
(C-27), 18.7 (C-21), 19.7 (C-30), 20.5 (C-28), 23.1 (C-11), 24.0 (C-29), 27.1 (C-2), 28.0 (C-16),
30.5 (C-12), 33.5 (C-15), 36.6 (C-20), 37.2 (C-4), 39.8 (C-22), 40.6 (C-10), 41.4 (C-8), 45.1 (C-13),
48.0 (C-9), 48.5 (C-14), 50.2 (C-17), 76.0 (C-3), 86.6 (C-5), 105.4 (C-19), 114.1 (C-26), 129.2
(C-23), 132.4 (C-7), 132.7 (C-6), 134.2 (C-24), 142.2 (C-25); EI-MS m/z 408 [M-HCO2H]+ (9),
384 (11), 360 (5), 319 (4), 309 (6), 281 (16), 272 (17), 229 (13), 173 (11), 91 (29), 86 (72), 58 (100).

3.3. Cell Culture

The THP-1 cell line (BCRC 60430) was obtained from the Bioresource Collection and
Research Center and maintained in RPMI 1640 (Gibco) supplemented with 10% heat-
inactivated fetal bovine serum (FBS, Gibco), penicillin (100 U/mL), and streptomycin
(100 µg/mL) at 37 ◦C in a humidified atmosphere with 5% CO2. A suspension of THP-1
cells (1 × 105 cells/well) was cultured in 96-well culture plates with treatment of various
concentrations of tested samples for 24 h at 37 ◦C in a humidified atmosphere of 5% CO2.
The cell viability of THP-1 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT; Sigma-Aldrich; St. Louis, MO, USA) assay described
elsewhere [13].

3.4. Preparation of Heat-Inactivated P. gingivalis

The P. gingivalis strain BCRC14417 was obtained from the Bioresource Collection
and Research Center, Hsinchu, Taiwan. Bacterial suspensions to induce periodontitis
of mice were prepared by a method described elsewhere [13]. Briefly, P. gingivalis was
cultured anaerobically in tryptic soy broth (TSB, Difco, Detroit, MI, USA) supplemented
with 2.5% yeast extract, hemin, and menadione at 37 ◦C. The numbers of bacteria were
determined with a spectrophotometer (at an optical density at 600 nm) based on a standard
curve established by colony formation on bacterial plates. To prepare heat-inactivated



Molecules 2021, 26, 5651 8 of 10

P. gingivalis, bacterial suspensions in phosphate-buffered saline (PBS) were heated at 80 ◦C
for 30 min, washed with PBS, and re-suspended in RPMI 1640 medium (Gibco, Carlsbad,
CA, USA).

3.5. Stimulation of THP-1 Cells with P. gingivalis and Cytokine Measurements

Fra. 5-3 and charantadiol A were re-dissolved in dimethyl sulfoxide (DMSO; RDH
Chemical Co., Spring Valley, CA, USA) to 20 mg/mL of stock solution for the sequential
experiments. A well-established co-culture model of P. gingivalis and THP-1 cells was
used to investigate the anti-inflammatory properties of WBM leaf extracts [13]. Briefly,
THP-1 cells (2 × 105 cells/well) were seeded in 96-well plates with serum-free medium
and were stimulated with heat-inactivated P. gingivalis at multiplicity of infection (M.O.I.)
of 10 (bacteria/THP-1 cell) alone or in combination with various concentrations of tested
WBM extraction samples, DMSO (0.1%) as a vehicle control, and luteolin (Sigma, as a
positive control) at 37 ◦C with 5% CO2 humidified atmosphere. After incubation for 24 h,
the cell-free supernatants were collected, and the amount of IL-6 or IL-8 was determined
using the respective enzyme immunoassay kits (Invitrogen, Carlsbad, CA, USA).

3.6. RNA Extraction of THP-1 Cells and Quantitative Real-Time Polymerase Chain
Reaction (PCR)

THP-1 cells were cultured in 6-cm cell culture dishes (4 × 106 cells/dish) for 24 h, and
then co-incubated with heat-inactivated P. gingivalis (M.O.I. = 10) with various concen-
trations of tested samples (charantadiol A or luteolin). Cells were harvested and washed
with PBS. Total RNA of human THP-1 cell samples was extracted and isolated with the
TRIzol reagent (Invitrogen), according to the manufacturer’s instructions. cDNA was
then synthesized from the RNA in a reaction mixture of oligo (dT) primers and reverse
transcriptase (Promega, Madison, WI, USA), following the manufacturer’s instructions.
Primers and probes were selected for the genes: GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) was used as the housekeeping gene. We used the forward 5′-CCA TAG
GAG AGC AAC AGA-3′ and reverse 5′-GCC TCG TTC TAG TCA CAT ACA-3′ primers for
triggering receptor expressed on myeloid cells (TREM-1), and the forward 5′-GTG AAG
GTC GGA GTC AAC G-3′ and reverse 5′-TGA GGT CAA TGA AGG GGT C-3′ primers
for GAPDH. These primer pairs amplified, respectively, a 106 bp fragment of the TREM-1
cDNA and a 112 bp fragment of the GAPDH cDNA. Real-time PCRs were conducted in
an iCycler iQ Real-Time detection system (Bio-Rad, Hercules, CA, USA) using iQTM SYBR
Green Supermix (Bio-Rad). The relative amounts of the PCR products were analyzed by
iQ™5 optical system software (ver. 2.1; Bio-Rad). All expression levels were normalized
using the GAPDH as an internal standard in each sample. Fold expression was defined as
the fold increase relative to controls.

3.7. Effect of Charantadiol A on P. gingivalis-Induced Cytokine Expression In Vivo

We evaluated the protective effects of charantadiol A or luteolin on P. gingivalis-
stimulated periodontal inflammation in a mouse model by using the method described
elsewhere [13]. Six-week-old male C57BL/6 mice were obtained from the National Lab-
oratory Animal Center (Taipei, Taiwan). The mice were housed in groups of 5 per cage,
under standard temperature-controlled conditions with a 12 h/12 h light–dark cycle and
free access to food and water throughout the experiments. All animal experiments were
conducted in accordance with the Guide for the Care and Use of Laboratory Animals and
were approved by the Animal Care Committee of the National Taiwan Normal University
(IACUC Permit No. 103020). Throughout the period of the study, mice were fed with
sterile standard solid mice chow diet and sterile water. Periodontitis was induced by an
intra-gingival injection of heat-inactivated P. gingivalis according to the methods by Tsai
et al. [13]. After 1 week of adaptation, animals were randomly divided into five groups
(n = 5). Heat-inactivated P. gingivalis (1 × 109 CFU in PBS) or PBS (as vehicle control) was
injected once daily into the mandibular (lower inset) gingival tissues of mice for 3 days.
To study the effects of charantadiol A or luteolin, they were respectively administered
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once daily for 3 days with co-injection of heat-inactivated P. gingivalis suspensions. After
14 days of bacterial injection, mice were then sacrificed with carbon dioxide asphyxiation.
The gingival tissues were excised for the extraction of total RNA. P. gingivalis-induced IL-6
and TNF-α expression were determined by reverse transcription qualitative polymerase
chain reaction (RT-qPCR) as previously described [13].

3.8. Statistical Analysis

All data are presented as means ± SD. Statistical analyses were performed using the
SPSS 20.0 statistical package (Chicago, IL, USA). The data were evaluated for statistical
significance with the one-way ANOVA followed by Duncan’s multiple range tests. A
p value of <0.05 was considered statistically significant.

4. Conclusions

In conclusion, we have demonstrated that charantadiol A suppressed P. gingivalis–
stimulated TREM-1 expression, thereby reducing the levels of pro-inflammatory mediators
in THP-1 cells. Furthermore, charantadiol A exerted anti-inflammatory effect in periodonti-
tis mimicking conditions in mice. Altogether, charantadiol A is an attractive cucurbitane
for periodontitis treatments, and more investigations can be expected for further support
the efficacy of charantadiol A on periodontitis.

Supplementary Materials: The following are available online. Supplementary Figure S1. Spectra
of charantadiol A. 1H NMR (400 MHz) of charantadiol A (a), 13C NMR, DEPT-135, DEPT 90 spec-
tra (100 MHz) of charantadiol A (b), EI-MS spectrum of charantadiol A (c), and IR spectrum of
charantadiol A (d).
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