
����������
�������

Citation: Esengönül, M.; Marta, A.;

Beirão, J.; Pires, I.M.; Cunha, A. A

Systematic Review of Artificial

Intelligence Applications Used for

Inherited Retinal Disease

Management. Medicina 2022, 58, 504.

https://doi.org/10.3390/

medicina58040504

Academic Editors: Maurizio

Cammalleri and Rosario Amato

Received: 2 March 2022

Accepted: 30 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

medicina

Review

A Systematic Review of Artificial Intelligence Applications
Used for Inherited Retinal Disease Management
Meltem Esengönül 1,2, Ana Marta 3,4 , João Beirão 3,4, Ivan Miguel Pires 1,5 and António Cunha 1,6,*

1 Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados,
5001-801 Vila Real, Portugal; meltem.esengonul@gmail.com (M.E.); impires@it.ubi.pt (I.M.P.)

2 Department of Life Sciences Engineering, University of Applied Sciences Technikum Wien,
1200 Vienna, Austria

3 Department of Ophthalmology, Porto University Hospital Center, 4099-001 Porto, Portugal;
analuisamarta2@gmail.com (A.M.); brandaobeirao@gmail.com (J.B.)

4 Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
5 Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
6 Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal
* Correspondence: acunha@utad.pt; Tel.: +351-931-636-373

Abstract: Nowadays, Artificial Intelligence (AI) and its subfields, Machine Learning (ML) and
Deep Learning (DL), are used for a variety of medical applications. It can help clinicians track the
patient’s illness cycle, assist with diagnosis, and offer appropriate therapy alternatives. Each approach
employed may address one or more AI problems, such as segmentation, prediction, recognition,
classification, and regression. However, the amount of AI-featured research on Inherited Retinal
Diseases (IRDs) is currently limited. Thus, this study aims to examine artificial intelligence approaches
used in managing Inherited Retinal Disorders, from diagnosis to treatment. A total of 20,906 articles
were identified using the Natural Language Processing (NLP) method from the IEEE Xplore, Springer,
Elsevier, MDPI, and PubMed databases, and papers submitted from 2010 to 30 October 2021 are
included in this systematic review. The resultant study demonstrates the AI approaches utilized on
images from different IRD patient categories and the most utilized AI architectures and models with
their imaging modalities, identifying the main benefits and challenges of using such methods.

Keywords: inherited retinal disease; artificial intelligence; machine learning; deep learning; systematic review

1. Introduction

Inherited Retinal Diseases (IRDs) are hereditary illnesses that impact 1 in every
3000 people globally. They can be characterized by dominant, recessive, or X-linked
mutations caused by Mendelian defects in the 280 identified genes thus far [1,2]. Accord-
ing to a recent analysis of 10,044 mutations by studying changes in 187 IRD-associated
genes, researchers have calculated that 2.7 billion people worldwide are carriers of an IRD
disease-causing mutation, with 5.5 million predicted to be afflicted [3]. There are several
types of IRDs, such as Retinitis Pigmentosa (RP), Choroideremia, Stargardt Disease (STGD),
Cone-Rod Dystrophy (CRD), Leber Congenital Amaurosis, etc. One of the most common
types of IRD is Retinitis Pigmentosa, which can be distinguished by a gradual, cumulative
degeneration of photoreceptors, most notably rods, usually accompanied by cone photore-
ceptor degeneration [4,5]. It is stated that early RP decreases night and peripheral vision,
although central vision stays unchanged until subsequently in the disease [4].

On the other hand, Choroideremia is an X-linked hereditary retinal disease that
causes peripheral visual field reduction while preserving the field of vision in the central
retina [6,7]. Patients with Choroideremia have night blindness and peripheral visual
field loss progress over 3–5 decades. Most patients maintain good visual acuity until a
central island of foveal vision is lost. The prevalence rate of Stargardt Disease (STGD) is
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estimated at around 1 in 10,000, which converts it into the most common type of juvenile-
onset macular degeneration [8,9]. When clearance is disrupted, lipofuscin accumulates
prematurely in retinal pigment epithelial (RPE) cells, which is a characteristic of the illness
and is considered to cause toxicity and, eventually, photoreceptor cell death [8].

There are several techniques used in the detection of IRDs. Ophthalmologists deter-
mine first the visual function by identifying two main characteristics: refraction and visual
acuity [10]. They often assess visual fields (or perimeter) and color vision, usually altered
in these patients. This might have implications for legal purposes (e.g., driving license).
Besides these examinations, Electroretinography (ERG) and Electrooculography (EOG) can
still be practical in the field [11,12]. The most widely used technique is retinal imaging,
which aids in diagnosing retinal disorders such as minimally observable alterations that
cannot be identified with fundus examination alone [13,14]. Thus, the use of retinal imaging
surpassed the retina physiological exams. The two most important technologies used in
the detection of IRD are high-resolution optical coherence tomography (OCT) and fundus
autofluorescence (FAF) [15,16]. The OCT approach has allowed the detection of distinct
patterns of posterior pole changes and involvement of peripapillary retinal nerve fiber layer
(RNFL) thickness in IRD patients [17–20]. In FAF, on the other hand, the retina’s inherent
fluorescent material is seen, which is mostly lipofuscin [21]. Wide-field research revealed a
link between aberrant FAF regions and visual function in RP and CRD [21]. In recent years,
there have been several advancements in the treatment of inherited retinal disorders, which
include drug therapies like neuroprotectants, visual cycle modulators, anti-inflammatory
drugs, and antioxidants [22] and gene therapies via gene replacement and gene editing,
such as Adeno-Associated Virus (AAV) mediated Luxturna, as well as optogenetics [23].

Artificial Intelligence (AI) technology is gaining popularity with retinal imaging due
to enhanced processing power, massive data, and novel algorithms [24]. Machine Learning
(ML) is a branch of AI that seeks to answer the challenge of creating machines that learn
independently [25]. Whereas Deep Learning (DL), a subset of ML, enables computational
models of numerous processing layers to learn data representations with varying degrees
of abstraction [26]. AI and its subfields can be used for several biomedical applications. It
can assist physicians in following the patient disease cycle, help them with diagnosis, and
show suitable treatment options. Each method used may answer one or more specific AI
problem types, such as segmentation, prediction, recognition, classification, and regression.
However, the number of AI featured studies related to IRDs is still only a few. Thus, this
study aims to review artificial intelligence techniques applied to Inherited Retinal Disease
management from diagnosis to treatment. The review includes papers submitted until
30 October 2021.

The novelty of this paper compared to previous systematic reviews on the subject
is that although several studies are investigating the use of AI in ophthalmology, many
of them include diseases such as Diabetic Retinopathy, Glaucoma, Age-related Macular
Degeneration, and others. This paper focuses on specifically Inherited Retinal Diseases
and broadens the spectrum of ophthalmologic use of AI. It also uses a Natural Language
Processing (NLP) based reviewing technique to determine the AI methods applied to IRD
images, the most common architectures, and the imaging modalities used. In other words,
a type of AI is used as a tool to detect AI methods used for IRD management, which is also
a newer methodology in the field. The occurrences of several properties are identified with
statistical analysis methods, relative graphs are derived, and the most relevant keywords
are correlated with occurrence mapping. The implication of using such technologies in the
medical field is highlighted with advantages and disadvantages. In Section 2, materials and
methods are described in more detail, including the research questions, inclusion criteria,
exclusion criteria, search strategy, and extraction of study characteristics. The search results
are then reported in Section 3, where the 11 included articles are extensively evaluated. In
Section 4, an examination and summary of the findings can be seen, and in Section 5, the
study’s conclusion and future perspective are indicated.
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2. Materials and Methods
2.1. Research Questions

In this study, five essential research questions were considered, which are the following:

• Which artificial intelligence, machine learning, and deep learning methods are used
for IRD management? (RQ1);

• In which way can these methods improve IRD detection? (RQ2);
• Which algorithms/architectures are most used in IRD management? (RQ3);
• What are the complications of using these methods for IRD detection? (RQ4);
• What imaging modalities are used along with these methods for different types of IRD

identification? (RQ5).

2.2. Inclusion Criteria

This study explores the association of artificial intelligence, machine learning, and
deep learning methods with Inherited Retinal Disease Management. For this systematic
review, the inclusion criteria consist of studies that:

• are published in the English language;
• are published between the years 2010 and 2021;
• investigate Inherited Retinal Diseases or their subtypes;
• use at least one of the artificial intelligence, machine learning, or deep learning techniques;
• are addressing the five main artificial intelligence problems (Segmentation, Prediction,

Recognition, Classification, and Regression);
• are not categorized as either survey or review;
• conform to the “Explainability” rule of artificial intelligence.

2.3. Exclusion Criteria

On the other hand, the exclusion criteria used in this systematic review are reports that:

• are not published in the English language;
• are published before 2010 and after the completion of the study (30 October 2021);
• do not clearly state the purpose, dataset, patient distribution, methods, and conclusion

of the study;
• are not human studies;
• do not investigate Inherited Retinal Diseases or their subtypes;
• do not use any artificial intelligence, machine learning, or deep learning techniques;
• are categorized as either survey or review;
• do not conform to the “Explainability” rule of artificial intelligence.

2.4. Search Strategy

Several electronic databases were utilized to identify papers that conform to the
inclusion and exclusion criteria in this systematic review. These databases are IEEE Xplore,
Springer, Elsevier, MDPI, and PubMed, using a novel natural language processing (NLP)
approach. This method automates the process of scanning scientific papers and trend
analysis meta-studies [27]. It provides a rigorous and complete qualification and relevancy
assessment of publications by employing NLP, allowing the user to refocus on reviewing
a smaller range of potentially related papers [27]. This systematic review was conducted
using the following research terms: “Inherited retinal disorder” AND “Inherited retinal
disease” OR “Fundus autofluorescence”. This systematic review aims to illuminate artificial
intelligence-associated methods used for Inherited Retinal Disease management from
diagnosis to treatment. The study was conducted with all authors who reviewed each
paper individually to investigate the conformity of the paper to the inclusion criteria
unanimously and the exclusion criteria. This study was completed on 30 October 2021.
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2.5. Extraction of Study Characteristics

The study analysis results show that there are various critical pinpoints associated
with IRD management and AI methods, such as disease type, imaging modality, dataset
size, patient distribution, the purpose of the study, identified AI problem type(s), applied
algorithms, architectures of the algorithms, and their best performance results. The resulting
chart can be seen below in Table 1.

2.6. Statistical Analysis Methods

After selecting the studies for the meta-analysis, each property occurrence, such as the
disease type, patient distribution cohort numbers, imaging modality, dataset size category,
identified AI problem types, algorithms, and models, were counted. The results are given
in the following Section 3.

Several graphs were obtained using the statistical analysis methods of the total valid
reports to evaluate the frequency of common keywords, different IRD disease types, AI
problems, and affected eye parts. Using the pivot analysis with special keywords, the
occurrences were counted regarding several properties such as but not limited to: Year,
Source, Study Type, Disease Type, Affected Eye Parts, Symptoms, General AI Topics, AI
problem, AI Algorithms, and Explainability rule. Relevant graphs were later presented in
Section 4, Discussion, including the keyword occurrence map and the distribution graphs
of several properties.
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Table 1. Study Analysis.

Reference Disease Type (s) Imaging Modality Dataset Size Patient Distr. Purpose AI Problem Algorithm Model (s) Best Performance

Camino et.al.
(2018) [28]

Chloridemia, Retinitis
Pigmentosa (RP)

Optical Coherence
Tomography (OCT) 20 OCT Scans 20 Chloridemia,

and 22 RP Subjects

To develop an adaptable method for
different retinal diseases, using a DL
method with multi IRD training for
segmentation of preserved Ellipsoid

Zone (EZ).

Segmentation,
Classification CNNs MatConvNet JSS: 0.912 ± 0.055

Davidson et.al.
(2018) [29]

Stargardt Disease
(STGD)

Adaptive Optics
Scanning Light

Ophthalmoscope
(AOSLO)

290 images 8 STGD, and 17
Healthy Subjects

To automatically detect cones in both
healthy and unhealthy subjects with

STGD using MDRNN from
AOSLO images.

Segmentation,
Classification MDRNNs MDLSTM blocks Dice Score: 0.9577

Wang et.al.
(2018) [30] Chloridemia Optical Coherence

Tomography (OCT) 20 OCT Scans
9 Chloridemia,
and 5 Healthy

Subjects

To automatically detect continuous
areas of preserved EZ structure in

order to identify Chloridemia from
OCT images with ML techniques.

Segmentation Ensemble
Classifiers Random Forest JSS: 0.876 ± 0.066

Fujinami-Yokokawa
et.al. (2019) [31]

Macular Dystrophy,
Retinitis Pigmentosa

(RP)

Spectral Domain
Optical Coherence

Tomography (SD-OCT)

178
SD-OCT scans

30 Macular
Dystrophy, 28 RP,
and 17 Healthy

Subjects

To predict genes responsible for IRD
in Macular Dystrophy and compare

with RP using DL methods.

Prediction,
Classification DNNs Inception V-3 Accuracy: 1.0

Charng et.al.
(2020) [32]

Stargardt Disease
(STGD)

Fundus
Autofluorescence

(FAF)
47 images 24 STGD Subjects

To use hyperautofluorescent flecks in
FAF images to measure structural

outcome in STGD1 using a DL based
fleck segmentation method.

Segmentation CNNs ResNet-UNet Dice Score: 0.80

Iadanza et.al.
(2020) [33]

Retinis Pigmentosa
(RP) Pupillometer 30 chromatic

pupillometry data
28 RP, and 10

Healthy Subjects

To define effective protocols and
systems for an early diagnosis and

monitoring through CP.
Classification

Feature
Extraction,

SVM

Linear SVM,
Gaussian radial
basis function

(RBF)

Accuracy: 0.846,
Sensitivity: 0.937,
Specificity: 0.786

Miere et.al.
(2020) [34]

Retinitis Pigmentosa
(RP), Best Disease (BD),

Stargardt Disease
(STGD)

Fundus
Autofluorescence

(FAF)
483 images

73 Healthy, and
125 STGD, 160 RP,

125 BD eyes

To automatically classify different
IRDs such as STGD, RP, and BD by
means of FAF images using a DL

algorithm.

Classification CNNs ResNet101 ROC-AUC: 0.999
PRC-AUC: 0.999

Shah, Ledo, and
Rittscher (2020) [35]

Stargardt Disease
(STGD)

Optical Coherence
Tomography (OCT) 749 OCT scans 60 STGD, and 33

Healthy Subjects

To identify whether DL might be
utilized for the automated

classification of OCT images from
patients with STGD using a smaller

dataset.

Classification CNNs VGG19, custom
LeNet

Accuracy 0.990,
Sensitivity 0.998,
Specificity 0.980
and JSS 0.990;

Sumaroka et.al.
(2020) [36]

Blue Cone
Monochromacy (BCM)

Optical Coherence
Tomography (OCT) 42 OCT scans 26 IRD Subjects,

16 BCM Subjects

To predict the foveal visual outcomes
of BCM treatment with different

genotypes by using ML techniques
on OCT images.

Prediction,
Segmentation

Ensemble
Classifiers Random Forest RSME: 0.159

Chen et.al.
(2021) [37]

Retinitis Pigmentosa
(RP) Fundus Photography 1670 images 1153 RP, and 517

Healthy eyes

To detect the presence of RP based on
color fundus photographs using a

DL model.

Recognition,
Classification CNNs

Inception V3,
Inception Resnet
V2, and Xception

Accuracy: 0.960,
AUROC: 0.9946,

Sensitivity: 0.9571
Specificity: 0.9853

F3: 0.9599

Miere et.al.
(2021) [38]

Geographic Atrophy
(GA), Stargardt
Disease (STGD),

Pseudo-Stargardt
Pattern Dystrophy

(PSPD)

Fundus
Autofluorescence

(FAF)
314 images 110 GA, 204 STGD

or PSPD eyes

To automatically classify GA on FAF
images according to its etiology

using DL techniques.
Classification DCNNs ResNet101 Accuracy: 0.921,

AUC-ROC: 0.990
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3. Results

The following Figure 1 represents the Flow diagram adapted from the study by
Page et al. [39]. A total of 20,906 articles were identified using the NLP method from the
databases mentioned above. There were no other additional registers considered in this
study. By analyzing the articles, it was found that 10,801 of them were duplicates, so they
were removed before the screening. For the screening process, there were 10,105 articles
included. The screening process removed 4835 due to incomplete data and 47 because of
invalid years. Thus, 4882 records were excluded in the first screening process by evaluating
the title/abstract. A total of 5223 papers were assessed for eligibility, and 4919 were not
included due to not conforming to inclusion criteria six, indicating that articles were either
survey or review types. Later, 293 were excluded due to the lack of artificial intelligence,
machine learning, or deep learning methods. Finally, 11 studies are included in the review
as part of the qualitative and quantitative analyses.
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Using the meta-data analyses, necessary information is gathered. This research con-
sists of articles published from 2010 to the search’s completion date, 30 October 2021.
Table 1 depicts the distribution of the article selection and provides a relevant comparison
regarding the types related to the specific properties extracted from the articles. Most of the
articles included were from 2020 with a 46% rate, followed by 2018 with a 27% rate. As
shown in Table 1, eight different disease types were associated with the included articles,
such as Retinitis Pigmentosa, Stargardt Disease, Chloridemia, Macular Dystrophy, Best
Disease, Blue Cone Monochromacy, Geographic Atrophy, and Pseudo-Stargardt Pattern
Dystrophy. However, in some cases, more than one type of disease was related to the
study; thus, the number of occurrences was counted to reveal which one was used the
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most. Retinitis Pigmentosa and Stargardt Disease shared the rate with 29% representing
five occurrences each, followed by Chloridemia with a 12 percent rate. The remaining
categories occurred once, each representing a 6% percentile with 30% of the whole. When
it comes to IRD screening, the imaging modality used to capture the images is also crucial.
As a result of the analyses depicted in Table 1, six different modalities were identified
for IRD screening: Optical Coherence Tomography, Adaptive Optics Scanning Light Oph-
thalmoscope, Spectral Domain Optical Coherence Tomography, Fundus Autofluorescence,
Pupillometer, and Fundus Photography. The most used modality appears to be Optical
Coherence Tomography with an occurrence rate of 37%, followed by Fundus Autofluores-
cence with 27%. All the articles mentioned in Table 1 dealt with small datasets with image
numbers below 2000. Small dataset use can affect the outcome widely in many cases, and
in fact, some authors mention difficulties using such images.

Nonetheless, they are a considerable contribution to the field. If we were to categorize
dataset size ranges into four categories with an image number between 0–100, 101–500,
501–1000, and over 1000 images, we can see a clear distinction that most of them fell into
the category of 0–100 with a percentage of 46%. It may also be argued that these were
mostly related to image segmentation. In these cases, patches may be used, thus featuring
fewer data. Still, we also need to look at the distribution of patient numbers. Suppose
we use a similar range approach to the dataset categorization. In that case, we can see
that again, most of the patient data size fell into the first category with a patient number
between 0–100 with a value of 73%. Although here, one of the studies does not specify the
number of patients but only the number of eyes. Due to the varying availability of patients,
studies also show different numbers of cohorts utilized to perform the IRD screening
methodologies. The dataset’s variability can sometimes be beneficial or may cause other
issues. We can categorize these into four main types: studies using one cohort, two cohorts,
three cohorts, and four cohorts. With the most significant majority of 73%, studies favored
using two cohorts featuring mostly one healthy group and another with a specific disease
which is the minimum to apply image classification algorithms.

A total of 7 different algorithms are distinguished from the methodologies. These
algorithms included CNNs, MDRNNs, Ensemble Classifiers, DNNs, Feature Extraction,
SVMs, and DCNNs. Most used algorithms were identified as CNNs with a 42% rate.
Several models were chosen for the application featuring 12 distinct model types for these
algorithms. For the CNNs, Inception V-3 and Resnet101 appeared to be used slightly more
than others, with a 13% occurrence rate each. It is difficult to compare each performance
of the models as they are based on different datasets with different sizes and different
imaging modalities and algorithms. However, it can be said that most similar AUC-ROC
scores were achieved in the studies both using Resnet101 from [34,38], although they were
applied to varying cohorts.

The study [28] uses a CNN-based algorithm with a MatConvNet architecture to auto-
matically segment the IRD types such as Retinitis Pigmentosa and Choroideremia from
OCT images. The method used in the article follows a 5-step approach: preprocessing, man-
ual grading, patch extraction, neural network training using patches, and postprocessing.
They train the CNN algorithm using B-scan patches encompassing portions of the Ellipsoid
Zone (EZ), marked depending on the occurrence of en face images at the patch’s central
A-line point. The authors mention that in comparison to manual segmentation by a profes-
sional, their process, the further bimodal thresholding of probability maps using an Otsu
scheme and morphological procedures generating binary maps of the segmented preserved
photoreceptor regions, provides good accuracy results. In total, 81,600 patches of B-scans
obtained from 20 Chloridemia and 22 Retinitis Pigmentosa patients apply to the segmenta-
tion and classification problem of IRD, namely for the measurement of preserved Ellipsoid
Zone loss. To evaluate the performance of the used method Jaccard Similarity Score (JSS)
was measured. For automatic segmentation of Retinitis Pigmentosa, the JSS value was
assessed as 0.894 ± 0.102 instead of the best performance value of 0.912 ± 0.055 for Chlo-
ridemia compared to manual grading. Here, the main issue faced seems to be the lack of
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inter-subject illustration. As the number of subjects is low, the features extracted pose a
poor representation of the whole population of the diseased. Authors add that the IRD
type variation is lacking as well. They propose in the future to operate along with other
institutions to gain access to more extensive databases to avoid the problem. Overall,
this study demonstrates that it is possible to use an automated algorithm to segment and
classify the preserved effectively and disrupted EZ areas in Choroideremia and Retinitis
Pigmentosa and even other types of IRD with further research from OCT images.

The authors of [29] apply a robust automated cone identification technique based on
a Multi-Dimensional Recurrent Neural Network (MDRNN) on images from an Adaptive
Optics Scanning Light Ophthalmoscope (AOSLO) to identify cone photoreceptors in both
healthy subjects and Stargardt Disease subjects. For this segmentation and classification
of problem-based network architecture, the authors use a combination of convolutional
layers, MDLSTM layers, and fully connected layers to find the best model with a Dice
score of 0.9577 for the validation set. There were 290 images used for this study from
8 Stargardt Disease patients and 17 healthy subjects. Authors depict that the main challenge
with utilizing gradient-based learning algorithms from AOSLO split detection images
is discovering local optima and categorizing everything as background. To avoid this
issue and overcome the imbalanced classes, Generalized Dice Loss (GDL) is used in this
study. Another significant issue is the necessity of deeper investigation before the extensive
application of such methodologies. Authors add that to guarantee strong performance, it is
critical to carry out a systematic clinical assessment of the approach, taking into account
a wider variety of diseases and AOSLO imaging instruments. Nevertheless, this study
can aid the detection of the location of the cone structures both in healthy and unhealthy
subjects with Stargardt Disease in a fast and robust manner.

In [30], the authors also focus on the Ellipsoid Zone segmentation, like in the study [29],
in which they investigate 16 eyes of patients with Choroideremia with a machine learning
algorithm based on random forests that were created to automatically recognize continuous
patches of maintained ellipsoid zone structures from OCT images. The authors use 20 volu-
metric scans obtained from the nine Choroideremia and five healthy subjects to train the
random forest classifier. They achieve, before post-processing, a JSS value of 0.845 ± 0.089
when compared to a value of 0.876 ± 0.066 after post-processing. Twelve characteristics
based on maximum reflectance, minimum reflectance, and minimum reflectance position
projections were employed for categorization. The authors mention that the brightness in
the images created by reflectance value projections and the blackness in the images gener-
ated by minimum position projection were the significant features that aided in identifying
either partially or entirely preserved EZ regions. Thus, one major challenge of the study
is the shadows created by big vessels in the inner retina, vitreous floaters, or pupil color
fringing. However, the authors point out that using Gaussian filters with gradually more
significant kernels for projections of maximum reflectance and minimum reflectance may
reduce the errors associated with shadows.

In [31], a Deep Neural Network method used Medic Mind, an online deep learning
platform that uses the Inception V-3 pre-trained model, for the identification of the genetic
marker of both Inherited Retinal Disease (IRD) types: Macular Dystrophy induced by
ABCA4 and RP1L1 gene mutations, Retinitis Pigmentosa induced by EYS gene mutations
as compared to healthy individuals is demonstrated. In total, 178 images were obtained
from 75 individuals with ten patients with the ABCA4 gene, 20 patients with the RP1L1
gene, 28 patients with the EYS gene, and 17 healthy subjects using horizontal, vertical
cross-sectional scans spectral-domain optical coherence tomography (SD-OCT) were used.
The mean training accuracy ranged from 90.6 to 100.0 percent for the classification problem,
whereas testing accuracy was 90.9 percent (82.0–97.6). Furthermore, the classification
performance accuracy per gene category was 100% for ABCA4, 78.0% for RP1L1, 89.8%
for EYS, and 93.4 percent for Healthy. The study identifies the main challenge as the lack
of more extensive datasets withholding rare types of IRDs and difficulty in identifying
identical structural alterations within the same cohort. As a solution, the authors suggest
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using more extensive mechanism groups/cascades and various morphologies as part of
the training set.

In [32], a deep learning-based technique to segment hyper autofluorescence visible
flecks from FAF images to measure structural aspects of Stargardt Disease is implemented.
The authors use a CNN approach with encoder and decoder parts for this segmentation
problem. A ResNet-34 pre-trained model is used for down-sampling whereas, for up-
sampling, a U-Net pre-trained model is used. There are 47 images used for this ResNet-
UNet model, consisting of 31 patients showing definite, well-defined so-called pisciform
(fishbone) pattern lesions, whereas 16 patients had sparsely speckled lesions with no
pisciform lesions. Before training the dataset, the authors applied the Contrast Limited
Adaptive Histogram Equalization (CLAHE) method to pre-process the images and augment
the pictures using rotation, inversion, and magnification techniques. For the performance
measurement, Dice Loss Score between manual and automatic segmentation is quantified,
and 0.8 is the best result achieved in this measurement for subject ID 10 with a discrete fleck
type. Due to the rarity of these Stargardt patients (STGD1), a minimal number of images
were utilized. To avoid this limitation, they adopted a patch-based strategy. However, their
training set still included eyes with few flecks and speckled FAF signals; in the future, the
authors suggest not utilizing these images instead of applying the algorithm to a dataset
with the maximum number of well-defined pisciform fleck lesions. They also find that
CLAHE creates a constraint in the study as it changes the look of the hyperautofluorescent
specks instead of manual segmentation from the raw images. For further studies, it is
advised to either segment FAF images after CLAHE manually or investigate alternative
image modification techniques, such as the area erosion approach, to preserve the look of
the hyperautofluorescent flecks.

The authors of [33] use a chromatic pupillometer to detect Retinitis Pigmentosa
amongst pediatric patients by employing a machine learning-based Clinical Decision
Support System (CDSS). The characteristics retrieved from the pupillometric data are clas-
sified using two separate Support Vector Machines (SVMs), one for each eye. In this study,
the authors can achieve an accuracy value of 0.846, a sensitivity of 0.937, and a specificity of
0.786, which are promising for future practice. Importing raw data and pupillary diameter
data pre-processing, feature extraction of pupillary data and reduction, optimization of
hyperparameter, and ultimately training the supervised classifier are the primary phases of
utilizing the classifier. Out of the 38 chromatic pupillometry data, only 30 were used due to
signal interference used for this classification problem.

One advantage of this method of data extraction mentioned by the authors is that
in comparison to traditional diagnostic procedures, notably electrorheological tests, no
electrodes are required on the patient’s body in this situation: this seems to be especially
useful when working with younger individuals. As well as this, the duration of the
examination is relatively shorter than the traditional electroretinogram. Still, some issues
seem to be faced during the application of the process. Due to the limited quantity of data
supplied for this study, the authors point out that more experiments with a more significant
data source are needed to test the overall system performance by other devices. The typical
appearance of movement artifacts emerged as an important issue during the data collection
stage. Authors suggest studying other systems with various frames and technologies based
on smartphones.

In [34], several types of IRD, such as Retinitis Pigmentosa (RP), Best Disease (BD),
and Stargardt Disease (STGD), are investigated. For this classification problem of subtypes
of IRD, they utilize a multilayer deep convolutional neural network (CNN) based on a
pre-trained ResNet101 model from FAF images. A total of 483 FAF images were used to
train and validate the DCNN. The FAF images from patients are 73 from healthy subjects
and 410 from subjects with IRDs: 125 from STGD patients, 160 from RP patients, and
125 from BD patients. Authors also apply augmentation techniques for dealing with a
small dataset and an Adam optimizer. The system achieved a ROC-AUC of 0.998 and a
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PRC-AUC of 0.986 for STGD, as per RP ROC-AUC evaluated at 0.999 and PRC AUC at
0.999 being the best performance.

On the other hand, BD performance results in ROC-AUC of 0.995 and PRC AUC of
0.988, similar to healthy controls were with ROC-AUC of 0.998 and the PRC-AUC of 0.989.
As for the accuracy, the program performs beneficiary results for further applications with
the IRD classifier system with an overall accuracy score of 0.95. In this study, one of the
significant drawbacks mentioned by the authors is the use of a relatively small dataset,
and the dataset lacks the rarest types of IRD. It uses the most common three in which
they had sufficient training data. The authors believe that the model may not perform
as well when trained on different images since the variability of the dataset is due to
eye-level segmentation of the dataset and the usage of a training/validation/test split. The
molecular genetic testing for a portion of the included eyes seems to be also not provided.
Thus, authors suspect difficulty in predicting the classification algorithm in a clinical
environment due to the broad spectrum and genotypic and phenotypic heterogeneity of
IRDs. Furthermore, picture noise and considerable inter-individual and intra-individual
heterogeneity in media opacities, lipofuscin concentration, and genetic expression influence
FAF imaging and may provide a big obstacle. To tackle these obstacles, the authors mention
confidence estimates and KDE graphs to complement the work and application on a larger
dataset that might be available with the collaboration of more institutions.

The authors of [35] apply two different CNN-based models to classify Stargardt
Disease patients from healthy individuals. For the first approach, they use a pre-trained
network based on VGG19, whereas, for the second, a custom network is used, such as
LeNet from [40]. For model 1, training based on a pre-trained VGG19 framework took
50 epochs to emerge to the peak accuracy of 99.8 percent on the validation set. When the
proposed method ran on different testing data, it produced findings with 99.0 percent
accuracy, 96.0 percent sensitivity in moderate STGD, 99.5 percent sensitivity in severe
STGD, 98.0 percent specificity, and a mean JSS of 0.958. When used as a binary classification
algorithm, it produces a result of the accuracy of 99.6%, sensitivity of 99.8%, specificity of
98.0%, and a JSS of 0.990.

In comparison, to achieve over 90% accuracy on the validation set, training model 2
took over 250 epochs. In total, 749 OCT scans were obtained from 60 STGD patients
and 33 healthy subjects for the classification problem from OCT images. Apart from the
common issue of a small dataset, the authors also experience a topic related to the imaging
modality, OCT. They mention that image noise and artifacts in OCT imaging provide a
considerable problem, but deep learning helps to avoid these issues. Further, consecutive
studies should embrace genetic data from enough patients to represent the enormous
phenotypic and genetic variability of STGD to aid in phenotype-genotype connection.

In [36], a technique utilizing ensemble classifiers is employed, namely random forest
for the prediction and segmentation problem regarding Blue Cone Monochromacy (BCM)
subtype patients’ foveal vision performance measurement in a clinical study of intravitreally
provided vector-gene from cross-sectional retinal composition images from OCT. They point
out that this procedure only focuses on foveal cones and not extra central disrupted cones in
these retinas. Patient distribution here is 26 to 16 for IRD and BCM, respectively. The dataset
includes one eye examination from each patient, so there are 42 OCT scans considered. Two
regression analysis methods are used for visual outcome prediction for the machine learning
application. First, the machine learning-based approach used was the random forest (RF),
which predicts the link between foveal function and retinal anatomy (FS-VA). There were
two groups for the segmentation analysis based on the input parameter. The first group
was related to foveal sensitivity measures, whereas the second group was for visual acuity
measures. The second method uses non-linear regression analysis, curve fitting for the
correlation between photopigment and thresholds of the visual-retinal structure obtained
from psychophysics or electrophysiology. For all techniques, the root-mean-square error
(RMSE) was employed as a metric of model performance. RSMEs for segmentation Model
I-FS and I-VA of Random Forest techniques depicted prediction vs. evaluated values of
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2.91 and 0.159, respectively. The visual acuity segmentation with the ML method is closer
to the real values than the foveal sensitivity ML-based segmentation method, making it
the best performance. Again, for the curve fitting technique, similar results were obtained:
2.91 for FS whereas 0.174 for VA. Like in the other studies, the small dataset seems to be the
issue of the difficulty of the foveal ONL calculation manually. These can be resolved with
machine learning techniques. Authors mention that diseases with vision and structures of
rod-mediation residue should be focused on and investigated for further studies.

Unlike the studies above, the authors of [37] utilized color fundus photographs of 1670,
of which 1153 are Retinitis Pigmentosa images, and 517 of them are images from healthy
subjects to detect RP occurrence. Three different pre-trained CNN models (Inception V3,
Inception Resnet V2, and Xception) were applied for classification problems with an Adam
optimizer, and fine-tuning was used to enhance the robustness of the method. They found
out that the Xception model performed the best, with an AUROC score of 99.46%, accuracy
of 0.960, sensitivity of 0.9571, specificity of 0.9853, and F3 score of 0.9599. Compared
to a general ophthalmologist and retinal specialist classification, the method proposed
achieved the best results amongst all performance metrics. Grad-CAM was produced in
this study using the model weights and the feature map to show the critical region in the
photographs. Authors emphasize that the more the redness of the part, the more significant
the AI model finds the area to relate to RP qualities. This technique is essential to aid
ophthalmologists or retinal specialists when making clinical decisions. One major problem
in these studies mentioned by the authors is that the system can grade images differently if
they are obtained from different sources. All the pictures in this study are obtained with
the same camera to avoid this. This can help immensely. However, it can also create a
homogeneity issue when tested with other datasets, which leads to overfitting, as pointed
out by the authors.

In [38], the focus is on the identification of retinal atrophies, especially three types
such as Geographic Atrophy (GA), Stargardt Disease (STGD1), and Pseudo-Stargardt
patterns Dystrophy (PSPD) from FAF images with the use of deep learning techniques.
Their dataset includes 314 FAF images, of which 204 of them are jointly from STGD1 and
PSPD, and the remaining 104 are from GA patients. They use DCNN based architecture
with a ResNet101 pre-trained model for this classification problem. For the first method,
they divide the dataset into training, validation, and testing with a 70:10:20 ratio. Later,
they use the augmentation technique since the dataset is small on the training set. They
utilize Adam optimizer and validate in real-time. The model’s performance measures an
accuracy score of 0.921 and AUC-ROC of 0.990. For the second method, they apply K-fold
cross-validation, which divides the dataset randomly into k mutually exclusive groups
of equal size with a 70:30 training vs. test ratio. The test set was then divided into ten
equal-sized subgroups for ten-fold cross-validation. Here, they achieve an accuracy score
of 0.873 and AUC-ROC of 0.958.

In that sense, the first method slightly outperforms the second. Nevertheless, the field
benefits from these applications as they can effectively classify both etiologies of atrophy.
Similar to [37], this research uses integrated gradient visualization to help clinicians view
why the model makes such predictions. This study investigates the distinction between
STGD and PSPD posing as GA. It reveals that aside from these diseases, Cone Dystrophy,
Adult Vitelliform Dystrophy, North Carolina Macular Dystrophy, Doyne Honeycomb
Dystrophy, Sorsby Macular Dystrophy, X-linked Retinoschisis, and Maternally Inherited
Diabetes and Deafness (MIDD) may also present as GA and create complications. Thus,
further research should concentrate on a more extensive range of IRDs for GA diagnostic
processes to avoid this issue. Moreover, disease prognosis is eminent when dealing with
STGD, PSPD, and GA, which makes phenotyping refining vital in these cases to make
an efficient assessment of the RPE atrophy and consideration of patient history ERG, and
testing genetics.

In summary, by thoroughly examining the 20,906 reports about inclusion and exclusion
criteria, 11 were selected for the meta-analysis according to the article’s purpose. The chosen



Medicina 2022, 58, 504 12 of 18

articles use AI or its subtype methodologies and apply them to the management of IRD.
Out of the selected articles, although few, the most common diseases investigated in this
regard were Retinitis Pigmentosa and Stargardt Disease. The most common algorithms
used for AI purposes are CNNs. The patient distribution, type of AI models used, and
purpose of the studies varied immensely. Thus, it is hard to determine the most common
types of these. All the studies achieved outstanding results depending on the metrics
chosen. The most common metric used was Accuracy. The accuracy results are all above
84% and, in some cases, even achieve 100%. However, when looking at the dataset size,
they were primarily small, accounting for most of them with 0–100 images. In that sense,
accuracy should not be considered the only evaluation metric.

Findings from the study suggest that AI in IRD management is fundamentally associ-
ated with detecting the disease or its subtypes. For detecting the disease, Ellipsoid Zones
segmentation or classification is highly beneficial. Phenotyping, as well as genotyping, is
strictly crucial for the identification of the IRD disease, and AI methods can aid by reducing
the person-hours on this matter. Specifically, cone structure localization or specific gene
markers are easier to find using AI methodologies. This is both beneficial for the detection
and treatment of specific IRD types. That is to say that there are still issues regarding the
use of such technologies, mostly related to imaging such as image noise and movement
artifacts. Some problems are also associated with the data and its distribution as data
availability is scarce, and the absence of rare IRD types in the data should be considered. It
is also possible that the disease can present itself as another in the imaging data. Thus, it is
essential to refer to genotyping results and patient history.

4. Discussion

In this study, Artificial Intelligence and its subfields were examined by applying
images from IRD patients. Meta-analyses were performed on 11 studies reflecting the
inclusion and exclusion criteria. Using an NLP-based systematic review, it was possible
to identify the most general keywords and their relevance graphs to each other, which
can be seen in the following Figure 2. The words with the most occurrences are shown
in darker red, whereas the least occurrences are shown in yellow. However, we have
removed the review papers and surveys to focus on specific studies in the later elimination
stages. According to this graph shown in Figure 2, these keywords were: Inherited Retinal
Disorder, Stargardt Disease, Retinitis Pigmentosa, Dystrophy, Retina and Review, and
Explainability. It can also be understood that the most co-occurrence happened between
Inherited Retinal Disorder and Prediction and between Dystrophy and Prediction and
Inherited Retinal Disorder and Macula.

The analyses recorded that besides the general topic, Inherited Retinal Disorder,
Stargardt Disease and Retinitis Pigmentosa were the two most prominent types of inherited
retinal dystrophies with 25% and 23% occurrence rates between 2010 and 2021, respectively.
The distribution of all studies according to their years and diseases can be seen below
in Figure 3.

Several different AI problems and application methods were used for disease manage-
ment purposes. The following graph, seen in Figure 4, depicts the distribution of AI/ML
problem types in all the articles. This graph shows that the most prevalent AI problem
type used for Inherited Retinal Disease is the Segmentation method, with a percentage of
33%. Regarding the meta-analysis results shown in Table 1, most studies included classi-
fication with a 50% rate. There are many definitions of these AI problems, and to clarify,
the following applies. Here, classification refers to image classification, which identifies
and labels groupings of pixels or vectors inside an image based on specific criteria that
can be supervised or unsupervised [41]. As for a prediction, or forecasting, we refer to
prediction models as part of machine learning, which projects the specific outcome values
of a given input [42]. Recognition, in other words, identification, in this context, refers to
object recognition which is a computer vision technology used to recognize items in photos
or movies [43]. The objective is to train a computer to do what people do naturally: to
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comprehend (recognize) what is contained in a picture by identifying individuals, objects,
settings, and visual characteristics [43].
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On the other hand, regression in the context of AI enables the identification of intricate
relationships involving input data and the automated recognition of correlations with
inputs and outputs [44]. A DL technique that links a label or category with each pixel in an
image is known as semantic segmentation. The segmentation AI problem refers to this and
is used to identify a group of pixels that fall into separate categories [45].

In this study, the affected eye parts were also considered and identified as the following:
blind spots, cones, macula, pupil, retina, and rods. The resulting distribution can be seen in
the following Figure 5. The majority was related to the retina with a 40% occurrence rate,
followed by cones with a 32% occurrence rate.
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5. Conclusions

This systematic review examined artificial intelligence strategies used in managing
Inherited Retinal Diseases, from diagnosis through therapy. In total, 11 articles were further
analyzed with meta-analyses. Given the inclusion and exclusion criteria, it can be reported
that the number of studies focusing on the use of artificial intelligence methods in the field
of IRD is scarce. Further development is needed in the area to aid physicians and perform
informed medical decisions. We have identified the following five answers to the critical
research questions that were explored in this study:

1. Which artificial intelligence, machine learning, and deep learning methods are used
for IRD management? (RQ1)

• Several techniques are used in IRD management, most of them relating to detect-
ing the disease using retinal imaging modalities. These methods refer to one or
more AI/ML/DL tasks such as classification, prediction, recognition, regression,
and segmentation.

2. In which way can these methods improve IRD detection? (RQ2)

• These methods can improve IRD detection in several ways. They help segment
and classify Ellipsoid Zones to facilitate the detection of IRD types as the change
in these can signify different diseases. For the cone structure, localization and
detection are possible with AI’s help and can be used as markers for disease
types such as Stargardt Disease or Blue Cone Monochromacy. AI methods also
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aid researchers to identify genetic markers for Macular Dystrophy induced by
ABCA4 and RP1L1 gene mutations and Retinitis Pigmentosa caused by the
EYS gene. These methods also can classify effectively between IRD types and
improve the outcome of targeted therapies. With the use of gradient visualization
techniques, the ways can also explain the decision of such classifications. This
can aid physicians in differentiating between false predictions.

3. Which algorithms/architectures are most used in IRD management? (RQ3)

• Various algorithms were employed for the AI/ML/DL tasks, including CNNs,
MDRNNs, Ensemble Classifiers, DNNs, Feature Extraction, SVMs, and DCNNs.
As per the models used, 12 distinct models were identified: MatConvNet, MDL-
STM blocks, Random Forest, Inception V-3, ResNet-UNet, Linear SVM, RBF,
ResNet101 VGG19, LeNet, Inception Resnet V2, and Xception.

4. What are the complications of using these methods for IRD detection? (RQ4)

• The main issues identified with the application of AI methods for IRD detec-
tion were the scarcity of data, lack of exploitation of representative populations
including rare IRD types, image noise, movement artifacts, lack of specified char-
acteristics in the selection of images, shadows created by the image acquisition
technique or diseases presenting themselves as another.

5. What imaging modalities are used along with these methods for different types of
IRD identification? (RQ5)

• The different imaging modalities used for IRD detection are Optical Coherence
Tomography, Adaptive Optics Scanning Light Ophthalmoscope, Spectral Domain
Optical Coherence Tomography, Fundus Autofluorescence, Pupillometer, and
Fundus Photography. They vary from the application to a specific disease type
and applied algorithms.

The study has identified that AI in IRD management can be highly beneficial to the
field. It can help ophthalmologists make informed decisions regarding the specific IRD
disease type identification and assist with selecting patient specialized medical treatments
by effectively identifying the genotypes of IRD diseases. It can significantly reduce false
predictions and false treatment options. With gradient mapping techniques, it is also
possible to present the result of the decision process of AI and the contributors of the
last categorization or segmentation methods. Ophthalmologists can benefit highly from
these visualization results, and they should be accessible to them so they can make better-
informed decisions rather than solely relying on the classification result. Combined with
the emerging telemedicine approaches, such as handheld-fundus cameras, or other smart-
phone based applications, it might even be possible to detect and classify the subtype of the
IRD via the Internet of Things devices and analyze it remotely. This can change the course
of access to medical practice and include more people worldwide, including in rural areas.
It might even contribute to the distribution of the collected IRD database and possibly
improve rare IRD types of representation. Thus, leading to better classification results.

Overall, it can significantly save a vast amount of time and effort and create a less
chaotic working environment for healthcare workers. Thus, providing better patient care.
The use of AI can also aid researchers in visualizing such diseases. The segmentation and
localization methods assist the phenotyping process and better understand the disease’s
development. When further investigated, the underlying cause of the disease progression
can be correlated with other factors and may help prevent the disease or the progression.
Although the adaptation of AI to the clinical field has presented valuable outcomes by
reducing the amount of workload on healthcare workers, as well as improving patient care
by providing patient-specific therapeutic solutions and overall lowering costs, it should
be still considered not the only method of analysis but rather a consultation to the search
for better care. There still exist ethical and safety concerns regarding the use of AI in such
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medical circumstances. More unified policies should be provided by the policymakers and
respective guidelines.

All in all, there are various techniques discovered in the systematic review. The benefits
and challenges of using such methods are identified, and their possible results. For the
future direction, the utilization of more enormous datasets incorporating comprehensive
IRD populations with even rare disease types is advised. The field can benefit highly from
the collaboration of institutions and researchers to gather uniform datasets and test the
latest applications of artificial intelligence techniques.
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