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Abstract

AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellu-
lar ATP-consuming processes and activating catabolic, ATP-producing pathways such as
fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated recep-
tor & (PPARDJ) also affects fatty acid metabolism, stimulating the expression of genes
involved in FAO. To question the interplay of AMPK and PPARS in human macrophages we
transduced primary human macrophages with lentiviral particles encoding for the constitu-
tively active AMPKa1 catalytic subunit, followed by microarray expression analysis after
treatment with the PPARS agonist GW501516. Microarray analysis showed that co-
activation of AMPK and PPARGJ increased expression of FAO genes, which were validated
by quantitative PCR. Induction of these FAO-associated genes was also observed upon
infecting macrophages with an adenovirus coding for AMPKy1 regulatory subunit carrying
an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased
expression of several FAO genes in a PPARS- and AMPK-dependent manner. Although
GW501516 significantly increased FAO and reduced the triglyceride amount in very low
density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this
effect, suggesting that increased expression of fatty acid catabolic genes alone may be not
sufficient to prevent macrophage lipid overload.

Introduction

The number of people with diabetes is expected to rise to 366 million in 2030 worldwide [1].
Patients with the metabolic syndrome—symptoms of which include abdominal obesity,
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dyslipidemia, glucose intolerance, and hypertension—have a five-fold increased risk of devel-
oping type 2 diabetes mellitus and usually show a decreased capacity for exercise [2-6]. The
connection between metabolism and immune responses is increasingly being appreciated in
the context of metabolic diseases, including atherosclerosis and obesity-driven diabetes [7, 8].
Particularly, lipid metabolism in macrophages undergoing foam cell formation is crucial to reg-
ulate inflammatory processes in developing atherosclerotic plaques and expanding adipose tis-
sue [9, 10]. During foam cell formation macrophages take up considerable amounts of lipids
and adapt to lipid loading by activating transcriptional programmes aimed at preventing exces-
sive lipid overload and limiting inflammation.

Transcription factors of the peroxisome proliferator-activated receptor (PPAR) family
(PPARG, -8 and -v) are critical for adaptation to lipid overload [11]. PPARS acts as a heterodi-
mer with the retinoid X receptor (RXR), binding to PPAR response element (PPRE) DNA
sequences [12]. There are three different types of target gene regulation by PPARS: agonist-
independent repression (type I); agonist-sensitive repression (type II), and agonist-indepen-
dent activation (type III) [13]. In case of type II regulation, PPARS induces a repressive state by
executing a transcriptional co-repressor function in the absence of agonists. Once activated by
a ligand, the heterodimer PPARS-RXR recruits co-activators promoting initiation of gene tran-
scription [14]. Among the different PPARs PPARGS is most ubiquitously expressed and may be
particularly relevant for macrophages handling triglyceride-rich lipoproteins [15]. Recently, we
and others found that PPARGS is activated in triglyceride-rich foam cells following the uptake of
phospholipolyzed lipoproteins or very low density lipoproteins (VLDL). Subsequently, acti-
vated PPARGS attenuates inflammatory responses in macrophages [16, 17]. This is consistent
with the anti-atherogenic effects of PPARS in animal models [18-20]. Transcriptional repro-
gramming of macrophage lipid metabolism by PPARGS is primarily characterized by increased
mitochondrial and peroxisomal fatty acid oxidation (FAO) [21, 22], similar to the effects of
PPARS activation in metabolically active tissues such as skeletal muscle [23]. Induction of FAO
was linked to anti-obesity and insulin-sensitizing in vivo phenotypes following PPARS activa-
tion [22, 23].

In addition to transcriptional regulators, AMP-activated protein kinase (AMPK) plays a key
role to connect metabolism and inflammation [8]. AMPK senses metabolic stresses via its acti-
vation by increased AMP/ATP and ADP/ATP ratios. Activated AMPK shuts off energy-
consuming processes, while inducing protein, carbohydrate, and fat catabolism. AMPK acti-
vates FAO through phosphorylation and inactivation of acetyl-CoA carboxylase (ACC) thus,
reducing levels of malonyl-CoA, an allosteric inhibitor of carnitine palmitoyltransferase
(CPT1a) [8]. AMPK also inactivates glycerol-3-phosphate acyltransferase, channeling acyl-
CoA towards B-oxidation [24]. This may underlie insulin-sensitizing effects of AMPK activa-
tion, and contribute to anti-inflammatory functions of AMPK in adipose tissue macrophages
[25]. An allosteric AMPK activator A-769662 has been described to act independently of the
upstream AMPK kinases, inhibiting AMPK dephosphorylation [26] and to decrease plasma
glucose and triglyceride levels in a mouse diabetes model ob/ob mice [27].

As both, AMPK and PPARGS provide beneficial metabolic effects, at least in part by targeting
FAOQ, it is of interest how these regulators cooperate. Previous studies in skeletal muscle
explored the interaction of AMPK and PPARS and showed that combined pharmacological
activation of AMPK and PPARS in mice created an unique phenotype associated with
increased running endurance through enhanced muscle fatty acid metabolism [28]. It was pro-
posed that the combined activation of AMPK and PPARS may provide additional metabolic
benefits compared to single treatments. In our study we explored the transcriptome of human
macrophages under conditions of single and combined activation of AMPK and PPARS. We
found enhanced activation of FAO-associated genes by combined AMPK/PPARS agonism.
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However, these transcriptional changes were not accompanied by enhanced macrophage FAO
or protection against lipid overload.

Materials and Methods
Cell Culture

Human peripheral blood monocytes were isolated from buffy coats provided by anonymous
donors (DRK-Blutspendedienst Baden-Wiirttemberg-Hessen, Institut fiir Transfusionsmedi-
zin und Immunhimatologie, Frankfurt, Germany, URL:http://www.blutspende.de/en/
institutes-affiliates/frankfurt-am-main/frankfurt-am-main.php) using Ficoll gradient (LSM
1077, GE Healthcare) centrifugation according to the manufacturer’s protocol and CD14
microbead selection (Miltenyi Biotec). Monocytes were seeded for differentiation in serum-free
medium (Macrophage-SFM, Life Technologies), supplemented with 50 ng/ml human recombi-
nant macrophage colony-stimulating factor (M-CSF, Immunotools) and maintained for 6
days. For treatments, cells were incubated in RPMI 1640 medium (GE Healthcare) supple-
mented with 10% fetal calf serum (FCS), 2 mM glutamine, 100 U/ml penicillin, and 100 pg/ml
streptomycin. Stimulation with GW501516 (Axxora), salicylate (Sigma-Aldrich) and A-
769662 (LC Laboratories) was for 24 or 48 hours. This investigation conforms to the ethical
principles outlined in the Declaration of Helsinki and was approved by the university ethics
committee (Ethik-Kommission des Fachbereichs Medizin der Goethe-Universitit Frankfurt
am Main). The ethics committee waived the need for consent when using the blood of anony-
mous donors.

THP-1 human acute monocytic leukemia cells (ATCC) were maintained in RPMI 1640
medium, supplemented with FCS, glutamine, penicillin, and streptomycin.

Plasmid constructs

Cloning of the human truncated AMPKa1 subunit was performed using SBI System Biosciences,
Clone-it Enzyme free Lentivectors according to the manufacturer’s protocol. Lentivector
LF521A-1 containing a puromycin resistance was used. Briefly, isolated total DNA of human pri-
mary macrophages served as a template in PCR using High Fidelity DNA Polymerase (Roche).
The following primers were used: AMPK1-for- 5’ —atgcgcagactcagttcctg-3';
AMPK2-rev- 5 —ggcaactgccaaaggatcc—-3' ; AMPK2-for- 5 —~GAGGCAGCAGAGACCG
atgcgcagactcagttcctg-3" ; AMPKl-rev- 5 ~CGAACAGAGAGAGA-CCGggcaactgc
caaaggatcc-3’ . PCR products were cleaned by QIAquick PCR Purification Kit (Qiagen)
and annealed by heating the mix at 95°C and slowly cooling down. Following transformation
resulting clones were verified by sequencing. For lentiviral production the lentiviral packaging
vector pCMV-dR8 and the viral envelope plasmid pMD2G were used. Adenoviruses coding for
AMPKYy1 regulatory subunit carrying an activating R70Q substitution were kindly provided by
Dr Jason Dyck, Cardiovascular Research Centre, University of Alberta, Canada. Control adeno-
viruses (AdTrack) were from Addgene.

Site-directed mutagenesis

Threonine-172 to aspartic acid mutation (T172A) of AMPKal was performed by Quick-
Change II XL Site-directed Mutagenesis Kit (Agilent Technologies) using PfuUltra HF DNA
polymerase (Stratagene). Following mutagenesis primers were used: mutAMPK-for—5" -
cagatggtgaatttttaagagatagttgtggctcacccaactatgc-3’ ; mutAMPK-rev-
5" —-gcatagttgggtgagcc-acaactatctcttaaaaattcaccatctg-3". The inserts
were sequenced in their entirety in order to confirm the authenticity of the mutation and to
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ensure no other mutations occurred. Mutation creates a constitutively active AMPKo.1 subunit
consisting of 312 amino acids. This truncated form of AMPKo.1 was used in the microarray
analysis.

Lentiviral production

2.5*10° 293T HEK cells were seeded in 10 cm dishes and transfected by pCMV-dR8 and
pMD2G plasmids (proportion 5.25:1) together with a control vector pPCDH-EF1-T2A-puro or
LF521A-1-puro-AMPKoal using JetPRIME transfection reagent (Polyplus) followed by
medium exchange 24 hours post-transfection. Supernatants containing lentiviral particles were
collected 72 hours post-transfection and concentrated using Lenti-X concentrator (Clontech)
according to manufacturer’s protocol.

Microarray analysis

Primary human macrophages were transduced with control (CV) or lentiviral particles encod-
ing the constitutively active AMPKal (AMPK OE) for 48 hours and treated with 100 nM
GW501516 for additional 24 hours. Total RNA isolation was performed by phenol-chloroform
extraction. RNA was further purified by RNeasy total RNA Cleanup Kit (Qiagen) and eluted in
RNase-free water. RNA quality was analyzed by the Agilent RNA 6000 analyzer. Whole
genome microarray analysis was performed using the Illumina Sentrix Human HT-12 v4 chip.
Raw microarray data were normalized using the VSN method and assigned to human gene
symbols using R/Bioconductor [29] and the bead array package [30]. Triplicates were con-
trasted using Limma [31] and differentially expressed genes were selected based on a 1.5-fold
change and a Benjamini-Hochberg adjusted p-value smaller than 0.1. Functional annotation
was performed using Gene Set Enrichment Analysis [32] against gene sets derived from the
molecular signature database version 3.1, datasets c2, c3 and ¢6 [32], from Pathway Commons
[33] and from Genome Ontology via Ensembl, revision 70 [34].

RNA extraction, reverse transcription, and real-time quantitative PCR

Total RNA of 1*10° cells was isolated using peqGOLD RNAPure (PeqLab) according to manu-
facturer s protocol. 1 pg of total RNA was reverse transcribed using the Maxima First Strand
cDNA Synthesis Kit (Thermo Scientific). Real-time quantitative PCR assays were performed
with the iQ Custom SYBR Green Supermix (Bio-Rad) using the CFX96 system from Bio-Rad.
Each amplification sample contained 20 ng of cDNA, 250 nM each of forward and reverse prim-
ersand 5 yl of 2x iQ SYBR Green Supermix. The mRNA expression was normalized to
GAPDH. Following primers were used for quantitative PCR: PDK4-forward—5’ —cctttgg
ctggttttggtta-3" ; PDK4-reverse- 5’ —cctgcttgggatacaccagt-3’ ; CPTla-for-
ward- 5’ -tcgtcacctcttctgecttt-3’ ; CPTla-reverse- 5’ —acacaccatagccgtc
atca-3’ ; PLIN2-forward- 5’ —aagaaaaatggcatccgttg-3’ ; PLIN2-reverse- 5’ —caa
tttgcggctctagettce—-3' ; PPARS-forward- 5 —-tcacacagtggcttctgecte-3';
PPARS-reverse- 5’ —tctacagggtggttcccatc-3" ; Angptl4-forward- 5’ —gcctatagec
tgcagctcac-3' ; Angptl4-reverse- 5’ —agtactggccgttgaggttg-3’ ; GAPDH-for-
ward- 5’ -tgcaccaccaactgcttagc-3’ ; GAPDH-reverse- 5’ —~ggcatggactgtggtc
atgag-3'.

Western analysis

Cell pellets were harvested in lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 5 mM EDTA,
10 mM NaF, 1 mM Na,VOy, 0.5% NP-40, 1 mM PMSF, protease inhibitor cocktail (Roche)).
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Nuclei were isolated using nuclear lysis buffer A (20 mM Tris-HCl pH 8.0, 10 mM NaCl, 5
mM EDTA, 0.5% NP-40, 1 mM PMSEF, protease inhibitor cocktail) followed by centrifugation
at 16000g for 20s. Nuclear pellets were sonicated in lysis buffer B (20 mM Tris-HCl pH 8.0, 400
mM NaCl, 5 mM EDTA, 0.5% NP-40, 1 mM PMSF, protease inhibitor cocktail). 50-100 pg of
protein extracts were separated using 8% polyacrylamide gels, transferred to nitrocellulose
membrane, blocked in 5% nonfat milk in TBS-Tween buffer (0.1% Tween 20, pH 7.4) and
incubated with a desired primary antibody overnight at 4°C. Primary antibodies directed
against PDK4 (Abcam, ab38242 and Proteintech Europe, 12949-1-AP), CPT1a (Proteintech
Europe, 15184-1-AP), phospho-AMPK (#2531), AMPKa. (#2532), AMPKR (#4150), phospho-
ACC (#3661), ACC (#8578), phospho-S6 (#4856), S6 (#2317) (all Cell Signaling Technology),
PPARGS (Santa Cruz Biotechnology, sc-74517 and Abcam, ab58137) and nucleolin (Santa Cruz
Biotechnology, sc-13057) were used followed by IRDye 680 or IRDye 800-coupled secondary
antibodies (LICOR Biosciences). Nucleolin was used for normalizing the amount of protein
loaded onto each lane.

Oxygen consumption measurements

Macrophages were plated in Seahorse cell culture plates and treated as indicated. For oxygen
consumption measurements the medium was changed to Krebs-Henseleit buffer (111 mM
NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 2 mM MgSO4, 1.2 mM NaH2PO4) supplemented with
0.5 mM carnitine, 5 mM HEPES and 100 pM palmitate-BSA conjugate, adjusted to pH 7.4 at
37°C, prior to the assay. FAO was measured using Seahorse 96 extracellular flux analyzer (Sea-
horse Bioscience) as the difference in oxygen consumption rates before and after the addition
of 25 uM CPT1a inhibitor etomoxir and was normalized to the protein amounts in the wells.

Triglyceride measurement

Human VLDL was isolated from the plasma samples of healthy volunteers by sequential ultra-
centrifugation. Primary macrophages were pretreated with 100 nM GW501516 and/or 250 uM
A-769662 for 48 hours. After medium changes cells were loaded by 20 pg/ml VLDL for addi-
tional 24 hours. Triglyceride (TG) content was determined using TG determination kit
(Roche) according to the manufacturer’s instructions and normalized to protein content.

siBRNA-mediated RNA interference

siRNAs (ON-Target plus SMARTpool, Dharmacon) targeting human PPARS, AMPKoa.1 or
scrambled control RNA oligonucleotides were transfected into primary macrophages at a final
concentration of 50 nM for 72 hours using Hiperfect transfection reagent (Qiagen) according
to the manufacturer’s instructions. Stimulation with 250 uM A-769662 or 100 nM GW501516
for additional 24 hours followed.

Statistical analysis

The significance of the differences in mean values among two groups was evaluated by one-
way ANOVA test. Differences were considered statistically significant for p<0.05 (*/#/$) and
p<0.01 (**/##). Data are presented as averages + 95% Confidence Interval of at least three
independent experiments.

Results

Previous studies revealed interactions of AMPK and PPARS in muscle cells, causing a tran-
scriptional reprogramming to increase fatty acid oxidative metabolism [28]. We questioned
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functional interactions of AMPK and PPARS in primary human macrophages by analyzing
alterations of the macrophage transcriptome following single and combined treatments to acti-
vate AMPK and PPARGS. To avoid off-target effects associated with pharmacological AMPK
activation we overexpressed a lentiviral construct coding for a truncated, constitutively active
human AMPKol subunit (AMPK OE) in primary human macrophages, followed by 24 hour-
treatments with 100 nM of the selective PPARS agonist GW501516. Genome-wide mRNA
expression profiling was then performed using Illumina HT12v4 bead arrays (EMBL-EBI
Array Express accession number E-MTAB-2524). As illustrated by the Venn diagram (Fig 1A),
238 genes were regulated by AMPK overexpression (107 up, 131 down, log,(fold change)>
0.58), while 79 genes changed their expression in response to GW501516 (46 up, 33 down)
with an overlap of 8 genes (3 up, 5 down). Combined AMPK/PPARS activation altered the
expression of 322 genes (128 up, 194 down). Testing the cooperativity of gene regulation by
AMPK and PPARS we did not find any probe showing >50% difference in intensity after co-
activation of AMPK and PPARS compared with single stimulations, indicating no synergistic
effects.

Gene Set Enrichment Analysis (GSEA) is a method to interpret gene expression data focus-
ing on gene sets [32]. Comparing combined AMPK/PPARS activation with untreated samples
revealed fatty acid oxidative metabolism dominating the list of 20 mostly enriched pathways
(Table 1). Among the 20 strongest induced genes upon GW501516-treatment and AMPK OE
shown in Table 2, 7 referred to fatty acid metabolism, including FAO-associated genes pyru-
vate dehydrogenase kinase 4 (PDK4), CPT1a, acetyl-CoA acyltransferase 2 (ACAA2), and very
long chain acyl-CoA dehydrogenase (ACADVL). Perilipin 2 (PLIN2), a common PPARS target
gene, was also present in this list.

We then confirmed that FAO is the major pathway undergoing transcriptional activation
after AMPK and PPARS co-activation. Validation by quantitative PCR analysis showed
enhanced induction of FAO-associated genes PDK4 and CPT1a, as well as PLIN2 after a
single treatment with GW501516 or after AMPK overexpression (Fig 1B). Besides, we observed
a significantly increased PDK4, CPT1a, and PLIN2 mRNA expression in PPARS/AMPK-
coactivated macrophages compared to individual activation.

The truncated AMPK construct used here lacks the interaction with regulatory subunits,
which may be important for AMPK substrate targeting. Indeed, we failed to detect increased
phosphorylation of the AMPK substrate ACC in macrophages with AMPK OE (data not
shown), similar to previous observations in rat cardiomyocytes [35]. Therefore, to validate our
observations we infected macrophages with adenoviruses coding for a regulatory AMPKy1
subunit having a R70Q substitution. This mutation was reported to increase the activity of
AMPK heterotrimers [36]. Transduction of macrophages with AMPKy1 R70Q adenovirus rep-
licated effects of the truncated AMPK OE construct on PPARS target mRNA expression with
the exception of CPT1a (Fig 1C). Fig 1D shows that this construct also caused modest, but sig-
nificant elevations of ACC phosphorylation.

Next, we questioned whether pharmacological AMPK activation similarly enhanced PPARS
target gene mRNA expression as AMPK overexpression. In these experiments we used the allo-
steric AMPK activator A-769662. Analysis of the phosphorylation status of AMPK, its sub-
strate ACC and ribosomal protein S6, which served as readout of mTOR (mechanistic target of
rapamycin) activity, revealed that significant ACC phosphorylation was already observed at
50 uM A-769662, and continued to increase up to 500 uM A-769662 (Fig 2A). In contrast, sig-
nificant down-regulation of phospho-S6 and up-regulation of phospho-AMPK was achieved
only at 250 uM and 500 uM A-769662, respectively. Therefore, we used 500 pM of the drug in
subsequent experiments. Measuring intracellular ATP did not show changes after exposure to
these concentrations of A-769662, ruling out a loss of viability (data not shown). As shown in
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Fig 1. Analysis of AMPK and PPARS interactions in primary human macrophages with overexpression of AMPK catalytic or regulatory subunits.
Primary human macrophages were transduced with control lentivirus (CV) or lentiviral particles coding for a constitutively active AMPKa1 (AMPK OE) for 48
hours and treated with 100 nM GW501516 for additional 24 hours. A Venn diagram showing numbers of genes regulated by AMPK OE, GW501516, or their
combination. B Validation of microarray analysis by quantitative PCR. C mRNA expression of PDK4, CPT1a, and PLIN2 in macrophages infected with
control adenovirus (AdTrack) or AMPKy1 R70Q adenovirus for 48 hours prior to 24 hour-treatment with 100 nM GW 501516. D Western blot showing ACC
phosphorylation and its quantification in macrophages infected with control adenovirus (AdTrack) or AMPKy1 R70Q adenovirus for 48 hours. Values
represent averages + 95% Confidence Interval. *, p<0.05; **, p<0.01 (n = 3).

doi:10.1371/journal.pone.0130893.g001
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Table 1. Major regulated pathways by Gene Set Enrichment Analysis.

Gene set Size NES
Fatty acid beta oxidation 38 217
Kinesin binding 20 2.16
ATP biosynthetic process 32 2.15
Pyruvate metabolism and TCA cycle 38 2.13
TCA cycle and respiratory electron transport 110 2.08
lon transport by P-type ATPases 31 2.07
FFA oxidation 22 2.00
STATS targets 46 1.99
TCA cycle 18 1.97
Pyruvate metabolic process 24 1.96
Oxidative stress response 33 1.96
Pyruvate metabolism 17 1.96
Endoplasmic reticulum organization 16 1.95
Cellular aromatic compound metabolic process 7 1.95
PPAR signaling pathway 68 1.93
Hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of 41 1.91
substances

Estrogen metabolic process 12 1.91
Positive regulation of fatty acid beta oxidation 8 1.90

NES, normalized enrichment score

doi:10.1371/journal.pone.0130893.t001

Table 2. 20 strongest induced genes upon combined AMPK/PPARS activation.

Gene symbol Name log, (fold change), GW+AMPK OE vs. CV
PDK4 pyruvate dehydrogenase kinase, isozyme 4 211
CPT1A carnitine palmitoyltransferase 1A (liver) 1.48
FABP4 fatty acid binding protein 4, adipocyte 1.30
PLIN2 perilipin 2 1.08
ACAA2 acetyl-CoA acyltransferase 2 1.03
UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) 0.96
RNF128 ring finger protein 128, E3 ubiquitin protein ligase 0.96
DHRS9 dehydrogenase/reductase (SDR family) member 9 0.95
ELOVL6 ELOVL fatty acid elongase 6 0.91
FAM160B1 family with sequence similarity 160, member B1 0.91
IMPA2 inositol (myo)-1 (or 4)-monophosphatase 2 0.87
ANKDD1A ankyrin repeat and death domain containing 1A 0.84
SPINK1 serine peptidase inhibitor, Kazal type 1 0.83
ACADVL acyl-CoA dehydrogenase, very long chain 0.82
ZNF366 zinc finger protein 366 0.81
HPSE heparanase 0.81
SEMA3E semaphorin 3E 0.79
CDH23 cadherin-related 23 0.79
NBL1 neuroblastoma, suppression of tumorigenicity 1 0.79
CD36 CD36 molecule (thrombospondin receptor) 0.76

doi:10.1371/journal.pone.0130893.1002
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Fig 2B, treatment of primary human macrophages with A-769662 induced mRNA expression
of the PPARGS target genes PDK4, CPT1a, and PLIN2 to a similar extent as the exposure of cells
to the PPARS ligand GW501516. Importantly, A-769662 significantly augmented PPARS tar-
get gene expression in GW501516-treated cells. Similar results were obtained when analyzing
mRNA expression of PPARS target genes following macrophage treatment with GW501516
and salicylate, which has recently been recognized as another direct allosteric AMPK activator
[37] (S1 Fig). Analysis of PPARS target gene expression also revealed cell type-specific differ-
ences. Whereas the well-known PPARS target gene angiopoietin-like 4 (Angptl4), which is a
lipoprotein lipase inhibitor, was robustly induced in the THP-1 macrophage cell line, it was
not induced in primary macrophages (S2 Fig).

To confirm the mRNA results of additively regulated genes affecting B-oxidation we per-
formed Western analysis of FAO-associated targets PDK4 and CPT1a to test the effects of
AMPK and/or PPARS activation. Fig 2C shows that both PDK4 and CPT1a were elevated in
response to GW501516, A-769662, or their combination as compared to untreated cells. How-
ever, the magnitude of the responses was less pronounced compared to mRNA expression
changes. Assessment of FAO, measured as etomoxir-sensitive oxygen consumption in the pres-
ence of palmitate, revealed that although GW501516 induced moderate increases of FAO, A-
769662 at concentration of 100 uM failed to do so (Fig 2D). Higher concentrations of A-
769662 inhibited respiration (data not shown).

It has been shown that macrophage triglyceride (TG) accumulation induced by VLDL is sig-
nificantly reduced by PPARS activation [16]. To evaluate the effect of AMPK/PPARS co-
activation on VLDL-triggered foam cell formation, we treated primary macrophages with
100 nM GW501516 or 250 UM A-769662 for 48 hours and then stimulated cells with VLDL
(20 pg/ml) for additional 24 hours (Fig 2E). VLDL-stimulation increased triglyceride accumu-
lation in macrophages. Pre-treatment with A-769662 did not reduce the triglyceride amount,
whereas the PPARS agonist GW501516 significantly decreased triglycerides. No evidence for a
stronger reduction in combined stimulation was observed.

To further dissect the roles of AMPK and PPARGS in regulating FAO-related gene expres-
sion, we silenced AMPK a1 catalytic subunit (the predominant isoform in human macro-
phages) and PPARS and followed mRNA and protein expression of PPARS target genes in
macrophages treated with A-769662, GW501516 and their combination. Silencing of PPARS
achieved over 90% knockdown (KD) at the mRNA level (Fig 3A) and diminished the expres-
sion of PPARS protein (Fig 3C). It also increased the basal expression of PPARS target genes
PDK4, CPT1a, but not PLIN2, consistent with the known repressor function of ligand-free
PPARGS (Fig 3B) [38]. Cells with a PPARS KD had also a blunted response to A-769662 and
GW501516; PLIN2 mRNA expression was unaltered whereas PDK4 was significantly increased
only in response to A-769662 and CPT1a was significantly increased only after co-treatment
with A-769662 and GW501516. AMPKa1 KD achieved more than 90% reduction of AMPKoal
mRNA levels and over 65% reduction of AMPKal protein (Fig 3A and 3C). Accordingly, basal
and A-769662-stimulated phosphorylation of the AMPK substrate ACC was significantly
attenuated in AMPKol-silenced cells (Fig 3C). Interestingly, AMPKol KD also reduced
mRNA and protein levels of PPARS and increased mRNA expression of PPARS target genes
thus, mimicking the PPARS target gene mRNA expression changes in PPARS KD cells (Fig
3A-3C). Similarly increased mRNA expression of PPARGS target genes after AMPKol knock-
down was observed using unrelated siControl siRNA as well as in THP-1 macrophages stably
transduced with unrelated AMPKol shRNA lentivirus (data not shown). AMPKol KD macro-
phages also did not show significantly increased mRNA expression of PPARS target genes
after A-769662 treatment. Still, AMPKal KD cells responded to PPARS activation by
GW501516 or combined GW501516/A-769662 treatment with increased expression of PLIN2,
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doi:10.1371/journal.pone.0130893.g003
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PDK4 or CPT1a. However, we did not observe any effect of A-769662 on PPARS mRNA (data
not shown). We also did not notice an effect of A-769662 treatment on nuclear PPARS levels
(S3 Fig).

Interestingly, Western analysis revealed only small changes of CPT1a or PDK4 protein
expression under these experimental settings. Whereas we observed small, but significant
increases of CPT1a protein after A-769 or GW501516-treatment in siControl-transfected mac-
rophages, no differences were observed in AMPKal or PPARS knockdown cells (Fig 3C), and
siPPARS-transfected cells also showed increased basal expression of CPT1a protein, reflecting,
at least in part, mRNA data. For PDK4 similar tendencies were observed, but the changes did
not reach statistical significance.

Collectively, these observations indicate that PPARS mediates the effect of A-769662 and
FAO-related target gene expression. Furthermore, AMPK may be involved in maintaining
PPARS expression through regulation of PPARS mRNA. Surprisingly, changes in mRNA
expression accompanying AMPKo or PPARS knock-down are much less pronounced at the
protein level for the PPARS targets CPT1a and PDK4, indicating the discordance of mRNA
and protein regulation of FAO genes in our experimental system.

Discussion

Studies in mice have shown that simultaneous AMPK and PPARGS activation increased running
endurance due to cooperative induction of oxidative and fatty acid metabolism in skeletal mus-
cle [28]. As AMPK senses energy levels of the whole body we asked, if AMPK overexpression
or activation can cooperate with the lipid metabolism regulator PPARS and alter the expression
of genes associated with fatty acid metabolism in human macrophages. Increased fatty acid
catabolism might be beneficial under conditions of fatty acid oversupply associated with the
metabolic syndrome [39]. Our results indicate that AMPK and PPARS additively induce
mRNA expression of a subset of fatty acid metabolism-related genes in primary human macro-
phages. We also show that the effect of AMPK on these genes is PPARS-dependent. Despite
robust changes of mRNA expression, the expression of proteins associated with FAO was only
modestly enhanced by PPARS/AMPK co-activation, and AMPK activation failed to further
increase FAO or to prevent VLDL-induced TG accumulation in macrophages with activated
PPARGS. Apparently, changes of the transcriptome alone may not be sufficient or are not pro-
nounced enough to alter macrophage metabolic phenotype towards enhanced lipid catabolism.

For an unbiased approach to search for AMPK- and PPARS-dependent genes, we per-
formed microarray and quantitative PCR analyses of human primary macrophages. Cells were
lentivirally transduced with a constitutively active construct coding for a truncated human
AMPKoul carrying mutation of Thr172 to an aspartic acid residue (T172D), treated with the
PPARGS agonist GW501516, or the combination of both stimuli. Previous studies have shown
that the T172D substitution in AMPKa resulted in about 50% increased activity of the kinase
complex in comparison with the wild-type enzyme [40].

Our microarray analysis revealed FAO, pyruvate metabolism, TCA cycle, processes regulat-
ing kinesin binding, oxidative stress response, and ATP biosynthesis as the most affected path-
ways after combined PPARS and AMPK activation. Addressing genes showing highest
regulation in the FAO pathway we confirmed increased expression of PDK4, CPT1a, and
PLIN2 mRNAs. Similar results were obtained when overexpressing the regulatory AMPKy1
subunit with activating R70Q mutation. Furthermore, we observed that the same transcripts
were up-regulated after pharmacological activation of AMPK using the direct allosteric activa-
tors A-769662 or salicylate [26, 37]. PDK4 is a mitochondrial kinase, which phosphorylates
and inactivates pyruvate dehydrogenase, inhibiting the formation of glucose-derived acetyl-
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CoA. In tissues with high metabolic flexibility, such as skeletal muscle, increased PDK4 expres-
sion is a major regulatory switch, reducing glucose oxidation in favor of increased B-oxidation
[41, 42]. CPT1ais a rate-limiting enzyme of FAO transferring long-chain acyl-CoA into mito-
chondria and serves as a key regulatory enzyme of B-oxidation [39]. In addition, PLIN2, a typi-
cal PPARGS target protein associated with cytosolic lipid droplet stabilization [43], was
additively induced by AMPK and PPARGS.

Although we observed robustly increased mRNA levels of PDK4 and CPT1a (Figs 1B and
2B), only small differences appeared at the protein level (Figs 2C and 3C). This may reflect the
known ability of AMPK to generally suppress protein synthesis by interfering with the mTOR
pathway, which we confirmed in our system (Fig 2A) [8]. Furthermore, while PPARS activa-
tion induced a moderate increase of FAO, this was not seen with AMPK activation (Fig 2D).
Similarly, suppressing triglyceride accumulation by GW501516 is not significantly enhanced
by AMPK activation (Fig 2E). Apparently, the small increase of CPT1a and PDK4 protein
expression observed after combined AMPK/PPARS activation does not translate to the
enhancement of FAO or triglyceride lowering achieved by activation of PPARS alone. It should
be noted that FAO is governed not only by amounts of the corresponding enzymes or sub-
strates, but also to a major extent by the ATP demand. This may explain our observations that
dramatic increases of CPT1a protein expression were accompanied by only a 2-fold increase in
FAO in CPT1a-overexpressing THP-1 macrophages [39]. Since the major outcome of pharma-
cological AMPK activation in the absence of falling ATP levels is the suppression of ATP-
consuming processes, this may decrease ATP demand and negatively affect ATP generation,
including that provided by FAO. The complexity of FAO regulation has been recently illus-
trated by a study of mutated ACC double knock-in mice where changes of a major allosteric
FAO modulator malonyl-CoA had no impact on cardiac FAO rate [44]. The insensitivity of
FAO to malonyl-CoA levels may also apply to our system. While observing robust changes of
phospho-ACC after AMPK activation, we fail to observe a significant impact on FAQ. It can be
envisioned that strategies aiming at increasing ATP demand, such as increasing energy dissipa-
tion through mitochondrial uncoupling [45], may be needed to translate enhanced expression
of fatty acid catabolic genes into increased FAO in this setting. Mechanistically, suppression of
VLDL-induced TG accumulation in macrophages treated with PPARS ligands was attributed
to both, enhanced FAO and increased expression of the lipoprotein lipase inhibitor Angptl4
[16, 46]. Although we observed a robust induction of Angptl4 mRNA by GW501516 in THP-1
cells, the same PPARS ligand failed to induce Angptl4 in primary human macrophages (52
Fig), indicating that FAO is the primary pathway for TG reduction in the human system.

FAO has been suggested to promote an anti-inflammatory phenotype of macrophages
polarized by IL-4 [47, 48]. Both PPARS and AMPK can contribute to anti-inflammatory mac-
rophage polarization [49, 50], however whether increased FAOQ is critical for anti-inflammatory
effects of activated PPARS or AMPK is unclear. Our recent observations indicate that FAO is
dispensable for IL-4-induced human macrophage polarization [51], suggesting important dif-
ferences between human and mouse macrophages regarding the impact of metabolism on
macrophage phenotype. Thus, FAO may play more important roles to specifically attenuate
saturated fatty acid-induced inflammation [25, 39].

Previous data in skeletal muscle suggested that AMPK may directly activate PPARS tran-
scriptional activity [28], although mechanistic details remain obscure. Our approach to silence
PPARS confirmed that the increased mRNA expression of PPARS target genes in cells co-
activated with AMPK is indeed PPARS-mediated (Fig 3). Consistent with previous observa-
tions PDK4, CPT1a, and PLIN?2 are actively repressed by ligand-free PPARS in human macro-
phages, reflected by their mRNA increase in PPARS-depleted cells [38, 52, 53]. Accordingly,
AMPK or PPARS activation does not influence the expression of these genes after a KD of
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PPARSY, indicating an AMPK impact on FAO-associated genes through PPARS. In accordance
to our data, recent study showed that reduction of ER stress in vascular cells by AMPK activa-
tor metformin was dependent on PPARS activity [54]. Interestingly, AMPKol KD data
revealed a role for AMPK in control of PPARS mRNA and protein expression, although
AMPK activation did not affect PPARS mRNA, suggesting that the impact of AMPK on
PPARGS expression may be independent of AMPK catalytic activity. However, we do not see the
reduction of PPARGS target gene induction by GW501516 in AMPKoa1 knockdown cells, and
we noticed no activation of AMPK substrate phosphorylation by GW501516, indicating that
AMPK is not downstream of PPARS in our system. Although AMPK-mediated reduction of
ER stress in muscle cells by GW501516 has been recently reported [55], this study used high
concentration of GW501516 (10 uM), which changed the cellular AMP/ATP ratio. We also
noticed that expression of some PPARGS target genes, such as ACAA2, ACADVL or FABP4,
was not affected by AMPK activation (data not shown), suggesting that modulation of PPARS
activity may be gene-specific and not through direct PPARS activation. Accordingly, no
changes of PPARS nuclear levels were noticed by us. Similarly, no evidence of direct post-
translational modification of PPARS by AMPK was found in a previous study investigating the
interaction of these proteins in muscle cells [28]. Instead, several alternative mechanisms link-
ing AMPK to altered genes expression may be envisioned, such as modification of histone dea-
cetylases [56].

In summary, our data indicate that activated AMPK increases PPARS-dependent expres-
sion of a subset of genes involved in fatty acid metabolism, which requires the transcriptional
activity of PPARS. Potentiation of gene expression on its own is unable to increase FAO and
prevent VLDL-induced lipid accumulation, suggesting that additional interventions to increase
fatty acid catabolism are needed to therapeutically exploit AMPK/PPARS interaction in the
macrophages.

Supporting Information

S1 Fig. Effects of salicylate on mRNA expression of PPARS target genes. Primary macro-
phages were stimulated by 100 nM GW501516 and 3 mM salicylate for 24 hours. mRNA
expression was analyzed by quantitative PCR. Values represent averages + 95% Confidence
Interval. *, p<0.05 (n = 5).

(TTF)

S2 Fig. Gene expression of Angptl4 in human macrophages. THP-1 (A) or primary macro-
phages (B) were stimulated by 100 nM GW501516 for 24 hours. mRNA expression of Angptl4
was analyzed by quantitative PCR. Values represent averages + 95% Confidence Interval. *,
p<0.05 (n =4).

(TIF)

S3 Fig. Effect of A-769662 on nuclear PPARS levels. Western blotting of PPARS in nuclear
extracts of primary macrophages stimulated with 500 pM A-769662 for 24 hours. Values repre-

sent averages + 95% Confidence Interval.
(TTF)
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