
Data-driven analysis of a mechanistic model of CAR T cell 
signaling predicts effects of cell-to-cell heterogeneity

Colin G. Cessa, Stacey D. Finleya,b,c,*

aDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, 
United States

bMork Family Department of Chemical Engineering and Materials Science, University of Southern 
California, Los Angeles, CA, United States

cDepartment of Biological Sciences, University of Southern California, Los Angeles, CA, United 
States

Abstract

Due to the variability of protein expression, cells of the same population can exhibit different 

responses to stimuli. It is important to understand this heterogeneity at the individual level, as 

population averages mask these underlying differences. Using computational modeling, we can 

interrogate a system much more precisely than by using experiments alone, in order to learn how 

the expression of each protein affects a biological system. Here, we examine a mechanistic model 

of CAR T cell signaling, which connects receptor-antigen binding to MAPK activation, to 

determine intracellular modulations that can increase cellular response. CAR T cell cancer therapy 

involves removing a patient’s T cells, modifying them to express engineered receptors that can 

bind to tumor-associated antigens to promote tumor cell killing, and then injecting the cells back 

into the patient. This population of cells, like all cell populations, would have heterogeneous 

protein expression, which could affect the efficacy of treatment. Thus, it is important to examine 

the effects of cell-to-cell heterogeneity. We first generated a dataset of simulated cell responses via 

Monte Carlo simulations of the mechanistic model, where the initial protein concentrations were 

randomly sampled. We analyzed the dataset using partial least-squares modeling to determine the 

relationships between protein expression and ERK phosphorylation, the output of the mechanistic 

model. Using this data-driven analysis, we found that only the expressions of proteins relating 

directly to the receptor and the MAPK cascade, the beginning and end of the network, 

respectively, are relevant to the cells’ response. We also found, surprisingly, that increasing the 

amount of receptor present can actually inhibit the cell’s ability to respond due to increasing the 

strength of negative feedback from phosphatases. Overall, we have combined data-driven and 

mechanistic modeling to generate detailed insight into CAR T cell signaling.
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1. Introduction

Even among cells of the same type, phenotypic differences can arise due to variations in 

protein abundance, which are caused by the stochastic nature of gene expression (Fraser and 

Kaern, 2009; Mantzaris, 2007; Niepel et al., 2009). While the response of a signaling 

network may be robust to variations in the expressions of some proteins, the expressions of 

other proteins may be highly influential, causing variances that compound into significant 

differences at the cellular level (Altschuler and Wu, 2010). Although methods such as flow 

cytometry can measure protein expression in individual cells, it is still difficult to examine 

experimentally all of the proteins in a network and how they relate to network response. 

Using computational modeling, it is possible to determine how variations in protein 

expression affect phenotypic outcome by precisely controlling protein amounts and 

simulating their effects.

Computational mechanistic models comprised of ordinary differential equations can be 

analyzed using various approaches. Some methods of analyzing these models, such as 

sensitivity analysis, require a large computational cost to be performed in all dimensions. 

The computational resources required to analyze such models can be prohibitive, especially 

as model size and complexity increases. As an alternative, data-driven methods can be used 

as a way of analyzing a model in all possible dimensions at once. While data-driven methods 

are unable to model actual biological interactions, they are able to generalize the 

relationships between model inputs and outputs, providing information on how each input 

acts across all dimensions. For example, Hua et al. used a decision tree to analyze the effects 

of differences in protein expression in a model of Fas mediated caspase-3 activation. This 

allowed the authors to see how individual proteins worked together to influence the response 

of the system (Hua et al., 2006). However, a major drawback to this approach is that as the 

number of proteins in the network increases, the decision tree must expand as well, 

containing many more nodes and branches until it becomes very difficult to analyze. We 

propose here to use partial least-squares (PLS) as an alternative way to analyze a 

mechanistic model.

PLS provides information on how the inputs of a system, in this case the initial protein 

expressions, relate to the system’s outputs (Wold et al., 2001; Kreeger 2013). Although PLS 

does not give information about specific relationships between proteins, it does tell how the 

expression of each protein generally affects the response, providing information on the 

population as a whole. It is also easy to analyze, with multiple quantitative metrics providing 

information on the influence of the inputs.

In this study, we apply PLS to a mechanistic model of chimeric antigen receptor (CAR) T 

cell signaling. The model connects receptor-antigen binding to the MAPK cascade, resulting 

in the phosphorylation of ERK, which is one characteristic of T cell activation. CAR T cells 

are a type of cell-based immunotherapy in which T cells that have been taken from a cancer 
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patient are modified to express the CAR on the cell surface, such that the cells can directly 

bind to the tumor-associated antigen that the CAR recognizes. Once put back into the 

patient, these engineered T cells can be directly activated by tumor cells, allowing the CAR 

T cells to kill the diseased cells without targeting other cells in the body (Androulla and 

Lefkothea, 2018; Cho et al., 2018). However, this therapeutic approach has some limitations; 

for example, there are many instances of no response from the patient. Many different types 

of CARs have been developed to try to increase tumor killing. Most of those modifications 

focus on the CAR itself (i.e., creating a new receptor with different signaling domains) and 

not the downstream signaling network. Using PLS, we focus on intracellular variations of 

proteins involved in a signaling network that influences how a CAR T cell responds to 

stimulation. We use Monte Carlo simulations to generate a dataset with protein expressions 

as the inputs and ability to respond to stimulation, based on ERK phosphorylation, as the 

output. We find that only a small subset of proteins in the network, those relating to the 

receptor and to the MAPK cascade, have expressions that significantly influence the 

network’s response.

2. Methods

2.1. Mechanistic model of T cell signaling

This study employed the use of a mechanistic model of CAR T cell signaling that was 

previously developed (Rohrs et al., 2019). This model was constructed using a modular 

approach with smaller models that account for lymphocyte-specific protein tyrosine kinase 

(LCK) regulation, CAR phosphorylation, LAT signalo some formation, CD45 phosphatase 

activity, mitogen-activated protein kinase (MAPK) activation, and feedback from the 

phosphatase SHP1. The model structure is shown in Fig. 1. In our model, the kinase LCK 

initiates signaling once the antigen CD19 is bound. LCK can undergo autophosphorylation. 

It can also catalyze phosphorylation of various sites on the CAR, which consists of the CD3 

ζ domain and the CD28 co-stimulatory domain. The CD3 ζ domain is comprised of three 

immunoreceptor tyrosine-based activation motifs (ITAMs), each having two phosphorylation 

sites. These six sites on CD3 ζ are phosphorylated by LCK independently, in a random 

order, and with distinct kinetics (Rohrs et al., 2018). Once two sites on an ITAM are 

phosphorylated, ZAP70 can bind. ZAP70 can also be phosphorylated by LCK to become 

catalytically active. Active ZAP70 promotes the formation of the multi-protein complex 

called the “LAT signalosome”, including LAT, SLP76, ITK, SOS, and other proteins. The 

LAT signalosome promotes signaling through the MAPK pathway, a three-layer cascade of 

phosphorylation reactions involving Ras, Raf, MEK, and ERK.

Using this model, we are able to simulate T cell signaling initiated by antigen binding to the 

extracellular domain of the CAR and culminating with activation of the MAPK pathway to 

produce doubly phosphorylated ERK (ppERK). Here, we consider the concentration of 

ppERK as the primary model prediction, and it is the focus of all model simulations.

In total, the model consists of 245 total species, 23 of which have non-zero initial conditions, 

and 159 parameters. The species in the model represent molecular biochemical species that 

can interact with one another through binding and catalyzing phosphorylation and 

dephosphorylation reactions. Thus, the set of species consists of unphosphorylated proteins 
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(such as ERK), proteins with varying levels of phosphorylation (for example, singly and 

doubly phosphorylated ERK), free proteins (such as unbound ZAP70) and various protein 

complexes (such as ZAP70 bound to a CAR where ITAM A is doubly phosphorylated). The 

parameters characterize the rates of phosphorylation and dephosphorylation, protein binding 

rates, and enzyme catalytic activities.

The model was constructed using BioNetGen (Harris et al., 2016). BioNetGen is a rule-

based approach for model construction that produces the set of nonlinear, coupled ordinary 

differential equations (ODEs) to describe how the molecular species’ concentrations evolve 

over time. The parameters of the model were previously fit to quantitative membrane 

reconstitution experiments (Hui et al., 2017; Hui and Vale, 2014; Rohrs et al., 2018) and 

validated using in vitro cellular experiments (Rohrs et al., 2019). The initial protein 

concentrations were taken from previous literature (Rohrs et al., 2019). Here, we simulated 

the model using MATLAB (MathWorks, Inc.).

2.2. Simulating cell-to-cell heterogeneity

In order to explore how heterogeneity in protein expression impacts CAR T cell activation, 

we performed Monte Carlo simulations to create a population of 10 0,0 0 0 cells. This 

population size was deemed large enough for the data-driven analysis described in the 

following sections to infer the relationships between model inputs and outputs. For each of 

the simulated cells, the initial protein concentrations were sampled from a log-uniform 

distribution over a range of 10-fold above and below the baseline protein expression used in 

the original model. Such a range was chosen to encompass high and low values of protein 

expression to determine how cells would behave at more extreme values away from the 

mean. Each cell was then simulated (i.e., the model was run with each combination of the 

initial protein concentrations), given the same amount of antigen. The antigen concentration 

was set to be high enough so that it would always saturate the amount of receptor. The 

reason for this is that here, we examine the intracellular components of the network. Varying 

the antigen concentration would inevitably affect the model output, which is not the focus of 

the present analysis.

The model was simulated for a duration of 15 min. This duration was chosen because we are 

interested in factors affecting a rapid response to stimulation. We repeated the simulations 

and subsequent analysis for longer durations, 30 and 60 min, to see if the influential proteins 

change with longer stimulation.

2.3. Characterizing cellular response

We used the concentration of double phosphorylated ERK (ppERK) as a way to characterize 

the cells’ response to antigen stimulation. Once the time course for ppERK was simulated 

for each cell, the final value was compared to the initial total amount of ERK in the cell. If 

the relative amount of ppERK reached 50% or greater, the cell was considered to have 

responded to stimulation and was placed into a group called “high ERK response.” Cells that 

failed to reach 50% of ERK phosphorylation were considered to be “low ERK response.” 

This threshold was chosen based on its usage in previous experimental studies (Altan-

Bonnet and Germain, 2005). This classification is the primary output of the model.
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2.4. Partial least squares analysis

In brief, partial least-squares (PLS) allows for the formation of a predictive model of a 

system’s outputs given any number of inputs. However, unlike a mechanistic model, which 

describes a system based on its biological interactions, the parameters found by a PLS model 

do not correspond to actual biological functions. Rather, the parameters are chosen based on 

their ability to relate the inputs to the outputs. A PLS model can be used generalize the 

relationship between the inputs and the outputs, providing valuable multivariate information 

that would be more difficult to get out of a mechanistic model.

A PLS model is a type of multivariate regression that relates input variables to output 

variables by maximizing the correlation between the variables. In PLS, both the inputs and 

the outputs are transformed into a new dimensional space comprised of principal 

components (linear combinations of the inputs), and a linear regression is performed 

between these new variables before transforming them back to the original dimensions. 

When transforming the inputs into the principal components space, the dimensionality of the 

inputs is reduced. This allows PLS to handle noisy data and collinear inputs. Additionally, 

this analysis calculates how much each input contributes to the transformed variables, 

indicated by the weight of each input. The weights can then be examined to learn general 

relationships between the inputs and the outputs, and determine which inputs are most 

influential. For these reasons, PLS is an attractive tool for multivariate analysis of large 

networks (Cosgrove et al., 2010; Loiben et al., 2017; Wold et al., 2001; Wu et al., 2008).

In this study, the initial protein concentrations were used as inputs to predict which group, 

“high ERK response” or “low ERK response”, the cell would belong to. For this analysis, 

the nonlinear iterative partial least-squares (NIPALS) algorithm (Geladi and Kowalski, 

1986) was used for fitting the PLS model. For a detailed description of the process, see 

Geladi and Kowalski (1986). The inputs were taken as the log-value of the initial 

concentrations of the 23 proteins that have a non-zero starting value. Prior to performing the 

analysis, these input values were scaled by subtracting the mean of the training set and then 

dividing by its standard deviation. The result of this is that each input had a mean of zero 

and a standard deviation of one. Such scaling is important so as to eliminate the effects of 

highly varying input ranges on the model.

The model was trained on simulations from two-thirds of the cells, with the remaining one-

third left for validating the PLS model. To determine the robustness of the PLS model, 

training and validation was performed 100 times, randomly splitting the population that was 

created in Section 2.2 into training and validation sets each time. This was performed for 

each possible number of principal components that the model could have. The final number 

of principal components was chosen as the lowest number of components where the addition 

of more components failed to improve the accuracy of the model.

2.5. Identification of influential proteins

The primary way of identifying the most influential inputs to a PLS model is by calculating 

the variable importance of projection (VIP) scores. VIP scores are also used in variable 

selection in order to determine which variables to keep for model reduction when dealing 
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with large numbers of inputs. VIP scores are calculated using the weights from the inputs to 

each component, along with the amount of output variance explained by each component. A 

higher VIP score indicates that the input is more influential to the outputs. Traditionally, an 

input is considered to be highly influential and chosen during variable selection if its VIP 

score is greater than one (Akarachantachote et al., 2014).

To further determine how each protein’s expression influences the response, the components 

of the PLS model and their relations to each protein were examined. First, looking at the 

components of the PLS model, we can see if high or low values of the component are 

associated with a particular group (“high ERK response” or “low ERK response”). Second, 

the absolute value of the weight for each input that makes up the component indicates how 

much influence that input has on a group. Finally, the sign of the weight indicates in which 

direction each input influences the value of the component. As an example, if high values of 

a component correspond to the “high ERK response” group, then inputs (initial protein 

concentrations) with positive weights in that component are positively associated with that 

“high ERK response” group. This means that increasing the values of those proteins’ initial 

concentrations will increase the number of cells with high ppERK levels. This examination 

of the PLS components and the weights of the inputs that make up the components provides 

a straightforward method for determining how protein expressions influence the system at 

the population level.

3. Results

3.1. Mechanistic model predicts heterogeneous response in ERK activation

The simulations for the population of 10 0,0 0 0 cells with the mechanistic model show that 

there is a large range of responses within the population. This is not unexpected, as the 

signaling responses of cells directly depend on the initial protein levels, which we explicitly 

varied. Both the time at which ERK activation occurs and amount of activation vary widely. 

Fig. 2 shows the time courses for 100 randomly selected cells as a representation of the 

population. Approximately half of the cells in the population (42.3%) reached a level of 

ERK activation high enough to be classified as “high ERK response”. While there were 

some cells that achieved intermediate levels of ERK activation, most of the cells were at the 

extremes, with either almost complete activation or almost no activation. In total, 

approximately 91% of the cells experienced ERK activation in which ppERK was either 

greater than 90% or less than 10% of the cell’s initial amount of ERK. The distributions of 

the final relative ppERK values for all 10 0,0 0 0 cells are shown in Figure S1A. From this, 

the clear “all-or-nothing” phosphorylation of ERK that is characteristic of T cells can be 

seen (Altan-Bonnet and Germain, 2005; Birtwistle et al., 2012). The relative ppERK 

response resembles a biomodal distribution, with two very sharp peaks at either end. Due to 

this, we concluded that grouping the cells into “high” and “low” response (that is, a discrete 

classification) was most appropriate for our analysis. We did attempt to use a continuous 

output (data not shown); however, this was largely unsuccessful due to the extreme grouping 

of ppERK responses. Figure S1B shows the initial concentrations of ERK that lead to “high 

ERK response” and “low ERK response.” From this, it is clear that the initial expression of 

ERK has little influence on its phosphorylation.
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3.2. PLS model identifies influential proteins

A PLS model was developed to determine how variations in protein expression influence the 

ability of a CAR T cell to respond to stimulation. The inputs to the PLS model were the 

initial protein concentrations for each cell (see Methods), and the output was the cell’s 

classification as a “high ERK response” or “low ERK response.” We considered different 

PLS models where the number of components ranged from two to 23, which was the 

maximum number of components possible (the total number of inputs). The final model 

consisted of two components, as adding more components failed to improve accuracy in 

predicting the classification of the cells and unnecessary components increases the chance of 

overfitting. Using 100 randomized sets of training and validation data, the model was able to 

achieve an average accuracy of 86.9% in predicting which group a simulated cell with 

particular initial concentrations would belong to. Here, the training set was two-thirds of the 

10 0,0 0 0 simulated cells, and the validation set was the remainder of the simulated data. 

Considering “high ERK response” to be positive, the true positive prediction accuracy was 

85.1%. The true negative prediction accuracy was 88.2%. These values are close to each 

other and to the overall prediction accuracy, meaning that the PLS model is not biased 

towards either group. This is high accuracy, considering that PLS is a linear method, while 

the mechanistic model that was used to produce the data is very complex and inevitably has 

many nonlinearities. To see how the number of training samples affected the ability of the 

PLS model to fit the mechanistic model, we trained the model on smaller sets of samples. 

Even using only 1% of the simulated population as the training set yielded similar accuracy. 

However, with fewer training samples, the VIP scores were less consistent between 

randomized batches, and the results heavily depended on which samples were used for 

training. Because of these differences, we used a large amount of training data when 

calculating the final VIP scores to make sure that there was no bias based on which samples 

were chosen for training. While it is possible to overfit a PLS model, we have avoided 

overfitting given the low number of components that we used and because training 

performed using a much smaller number of samples still provided similar accuracy as 

training with large amounts of samples. Overall, we established a PLS model that is able to 

predict which CAR-engineered T cells respond to antigen stimulation, given the initial 

concentrations of the intracellular signaling proteins.

Next, we used the predictive PLS model to evaluate the importance of each protein on ERK 

activation in the simulated CAR T cells. In order to determine which proteins hold the most 

influence over the response, the VIP score for each protein was calculated (Fig. 3). Out of 

the 23 proteins in the network whose initial concentrations were varied, six achieved a VIP 

score of greater than one and were thus identified as being highly influential: LCK, CD3 ζ, 

Ras, Raf, MEK, and SHP1. These proteins were then examined in detail to determine how 

they are influential to the system. In some instances, when training with fewer numbers of 

samples, the VIP score for CD3 ζ would drop below one, and the score for ZAP70 would 

rise above one. Although ZAP70 does not meet the VIP score cutoff for being influential 

with the full training set, we still discuss it in the following section due to it being identified 

as an influential input when training with small amounts of data.
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As a way of validating these proteins as being influential, we investigated how the initial 

concentration of the 23 proteins that have non-zero starting amounts influences the 

percentage of “high ERK responses”. We utilized the mechanistic model to simulate a new 

population consisting of 10 0 0 cells. In these simulated cells, we set the initial concentration 

of a single protein to be constant across the population, with the initial amounts of the other 

22 proteins with non-zero starting values randomly sampled from their log-uniform 

distribution as before. We simulated the population to determine the percentage of cells that 

achieved a “high ERK response” at that protein level. We ran simulations in which the initial 

concentration of one of the proteins with a non-zero starting value was varied from 10-fold 

below the baseline level to 10-fold above its baseline value. In total, we performed 230,0 0 0 

simulations: varying the initial concentration of each of the 23 proteins with non-zero 

starting values, at 10 different levels, 10 0 0 times for each protein level.

We found that as we increased the initial amount of a protein, the percentage of “high ERK 

responses” monotonically increased, monotonically decreased, or remained constant. Figure 

S2 shows the absolute values of the change in the percentage of cells with “high ERK 

responses” for the lowest concentration (10 times below the baseline value) of each protein 

compared to the highest concentration (10 times above the baseline value). We see that the 

greatest difference is for the proteins identified as being influential by the PLS model, 

further confirming the importance of those proteins.

3.3. PLS model characterizes the role of the influential proteins

The VIP score for each input indicates whether that input significantly influences the model 

output. However, it does not tell whether varying the input increases or decreases the output. 

In order to determine how each of the six proteins with a VIP score greater than one 

influenced activation, the values of transformed inputs for the full model were examined. 

Since the optimal PLS model consisted of two components, and thus each original set of 

inputs was condensed into two variables, the values of the transformed inputs were viewed 

as a scatter plot in two dimensions (Fig. 4). Each transformed input was colored based on 

whether it corresponded to a cell with high or low ERK response. This plot allowed for 

determining visually how the value of each component corresponded to the response of the 

cell. As shown, while there is some overlap between the two groups, there is a clear 

separation of “high ERK response” and “low ERK response” when considering the first 

component. The second component, however, provides little additional information for 

classifying the cells. From the PLS model, we found that the first component captures more 

than half (53.3%) of the variance in the output, while the second component captures very 

little of the variance (0.01%). Therefore, we only used the first component to determine 

which groups the inputs relate to. High values for the first component were associated with 

“low ERK response” while low values were associated with “high ERK response”. 

Therefore, if a protein had a positive weight for transformation into the first component, 

increased expression of that protein would make the cell less likely to have high levels of 

ppERK. The opposite is true for proteins that had negative weights. If the value of a weight 

was large in magnitude, then changes in the expression of its corresponding protein would 

have a larger effect compared to a protein whose weight for the first component is smaller in 

magnitude.
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With this insight, the weights of the first component (Fig. 5) show how each of the 

influential proteins affects cell activation. The analysis indicates that increasing the initial 

amount of LCK, Ras, Raf, or MEK positively influences the cell and promotes 

phosphorylation of ERK. Conversely, increasing CD3 ζ or SHP1 negatively influences the 

system, inhibiting ERK phosphorylation. We further examined the network to understand 

where these points of control are placed in the signaling pathway. CD3 ζ, LCK, and SHP1 

can all be grouped as proteins involved in the initiation of the signal, while Ras, Raf, and 

MEK, which make up the MAPK pathway, are all involved in conversion of the signal to a 

digital output. It must be noted that together, these proteins are positioned at the beginning 

and end of the signaling pathway.

To determine the biological reason for the influence of these six proteins, we looked into the 

roles that have been established in the literature. Upon binding to the antigen, specific 

tyrosine residues in the ITAMs on the CD3 ζ chain, which is part of the CAR, are 

phosphorylated by LCK. These phosphorylated ITAMs can then proceed to activate 

downstream signaling proteins, initiating signal transduction via ZAP-70 (Simeoni, 2017). 

ZAP70 serves as a bridge between the receptor and downstream signaling by 

phosphorylating LAT and SLP-76, which then recruit other signaling proteins (Wang et al., 

2010). Logically, it makes sense that increasing levels of LCK increases the cell’s ability to 

induce intracellular signaling, since more phosphorylation of CD3 ζ would lead to a 

stronger signal transduction. Similarly, increasing ZAP70 leads to an increase in ppERK. On 

the other hand, upon receptor stimulation, SHP1 can bind to CD3 ζ, become activated by 

LCK, and then proceed to dephosphorylate CD3 ζ, LCK, and ZAP-70. This provides a form 

of negative feedback to prevent noise from accidentally leading to ERK activation (Altan-

Bonnet and Germain, 2005). Therefore, increasing levels of SHP1 increases the strength of 

the negative feedback and prevents the signal from the receptor from being transmitted 

downstream. Finally, our analysis reveals that increasing CD3 ζ, the last protein involved in 

signal initiation, inhibits cell activation. This result is discussed in detail in the following 

section as the conclusion drawn from the PLS model is particularly interesting and 

unexpected.

Ras, Raf, and MEK are three proteins at the end of the CARmediated signaling network and 

comprise the MAPK pathway, and their activation is important for the digital interpretation 

of a signal (Das et al., 2009). MAPK signaling leads to the rapid phosphorylation of ERK in 

an all-or-nothing fashion (Birtwistle et al., 2012). These actions allow the cell to make 

important decisions based on signals from the external environment (Shaul and Seger, 2007). 

As expected, analysis of the weights in the PLS model show that having increased amounts 

of the proteins that make up this pathway leads to more phosphorylation of ERK.

3.4. High levels of CD3 ζ can increase the ERK response time

Of interest is the fact that the PLS model found that increasing the expression of CD3 ζ 
would negatively influence the cell, causing it to not respond to stimulation. At first, this 

seems counterintuitive, since CD3 ζ binds to the antigen, becomes phosphorylated, and 

initiates downstream signaling. Logically, having more CD3 ζ should lead to a greater 

ability to initiate signaling. To determine the cause for this result, we performed a series of 
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simulations with the mechanistic model in which the initial concentrations of all of the 

proteins were set to their average (baseline) values, except for CD3 ζ, which was varied 10-

fold above and below its mean value. These simulations showed that the time of ERK 

activation was delayed as CD3 ζ concentration increased (Fig. 6 A). Upon studying the 

predicted time courses for other proteins, we found that activated SHP1 reached higher 

levels when CD3 ζ concentration was increased (Fig. 6 B). Examining the interactions 

involving CD3 ζ and SHP1 provided an explanation for these results. Inactive SHP1 binds to 

CD3 ζ, where it becomes activated by LCK and is then able to inactivate other molecules in 

the pathway. Thus, increased levels of CD3 ζ allow SHP1 to become activated faster, which 

then inhibits downstream signaling. This analysis reveals that together, the PLS model and 

the details of the signaling network produce relevant insight into the cells’ response.

3.5. Fewer proteins are influential as simulation time increases

Finally, we aimed to determine whether the influential proteins change when the system is 

simulated for longer times. We repeated our analysis after simulating the system for 30 min 

and 60 min. As simulation duration increases, more cells eventually reach a “high ERK 

response”, with 54.1% at 30 min and 62.4% at 60 min. We also found that as simulation 

duration increased, the number of influential proteins decreased, with their VIP scores 

dropping below one. At 30 min, CD3 ζ ceased being influential, while the other five proteins 

retained their influence. At 60 min, LCK, RAF, and MEK were the only proteins found to 

still be influential. These results indicate that the key modulators of the ppERK level vary 

with time, and that certain proteins are only influential in mediating a rapid response to 

antigen stimulation.

4. Discussion

In this work, we applied partial least-squares to analyze predictions from a detailed 

mechanistic model of CAR T cell signaling. In particular, we study how heterogeneity in 

protein expression affects cell behavior characterized by MAPK signaling and 

phosphorylation of ERK. Through this analysis, we determined the influence of the levels of 

individual proteins on the ability of CAR T cells to respond to stimulation. Although the 

network that mediates signal transduction is fairly large and complex, we found that the 

expressions of only a handful of proteins play an influential role in the response. The 

influential proteins are positioned at the beginning and the end of the signaling pathway. The 

analysis was able to determine how each protein influenced the response, and while the 

effects of most of these proteins made sense based on their known functions, the influence of 

CD3 ζ was found to go against what might be intuitively assumed.

Previous modeling work has also explored the role of heterogeneous protein expression on 

influencing cellular signaling. A study by Birtwistle et al. examined the response of the 

MAPK cascade (Birtwistle et al., 2012). They compared the result of stochastic simulation 

using the Gillespie algorithm to the effect of randomly sampling initial protein 

concentrations and found that the latter matched their experimental measurements much 

better than the former. This provides support to our analysis presented here. Our work 

expands on the general conclusion that initial protein concentrations affect cellular response 
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and uses analysis of the mechanistic model to identify which proteins cause the observed 

heterogeneity. As such, our computational analysis provides novel insight that would be 

much more difficult to obtain experimentally.

An earlier study by Feinerman et al. also examined heterogeneity in T cell activation using 

flow cytometry to explore the influence of the expressions of CD8, ERK, and SHP1 

(Feinerman et al., 2008). Similar to the results we present here, they found that increasing 

the initial ERK has little effect on the ability of the population to become activated, while 

increasing expression of SHP1 lowered the percent of the population that could respond. 

With our analysis, we were also able to identify additional proteins in the system that 

influence the response.

By gaining an understanding of which proteins in the network contribute heavily to the 

response to an input we can determine how an intracellular signaling network can be 

modulated to induce a desired response. Ideally, one would be able to modulate each cell 

individually to achieve optimal response; however, that is not likely feasible. The analysis 

done here is useful as the VIP scores, which determine how influential a protein is, and the 

weights of the inputs, which determine the direction in which an input influences the output, 

are calculated based on all of the sets of inputs. This means that the PLS model tells how the 

population in general would respond to an increase or decrease of a specific protein and 

provides information on which proteins could be modulated at the population level to attain 

a desired response. Moreover, by performing the data-driven analysis for different durations 

in the mechanistic model, it is possible identify time-based strategies for altering the cells’ 

responses.

There are a few limitations to using PLS for the analysis done here. The primary issue is that 

PLS assumes linear relationships between the inputs and outputs. It is unlikely that a system 

of this size is perfectly linear. However, as shown by the high accuracy of the PLS model we 

developed, linear relationships can be a reasonable approximation. The use of nonlinear 

methods, such as neural networks, would provide a higher prediction accuracy, but at the 

cost of being more difficult to analyze. Another limitation is that all of the initial protein 

concentrations were sampled from the same range. Due to the variety of different methods of 

gene regulation, some proteins could have wider or narrower distributions. It is possible that 

changing the distribution could influence the predicted numbers of each cell phenotype (i.e., 

high or low ERK response). However, we do not believe that this significantly impacts our 

analysis as we are interested in determining the effects of each protein even at higher or 

lower levels compared to the mean value. As more quantitative measurements for the single-

cell concentrations and distributions of proteins become available, we can incorporate that 

information into our model.

Encoding the outputs of a mechanistic model as a data-driven model, which reduces the 

computational time, has multiple uses. As described in this work, the data-driven model can 

then be used as an analysis tool. Here, the data-driven model enabled a better understanding 

of the important relationships between model variables and cellular response. Those 

relationships can inform how to engineer the cell for a desired purpose. Another potential 

application is using the data-driven model inside of an agent-based model (ABM). While 
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some ABMs do use simple ODE models as a way of making cellular decisions (Hendrata 

and Sudiono, 2016; Wang et al., 2007; Zhang et al., 2009), most use discrete or probabilistic 

rules to govern how each cell behaves, as that is much more computationally efficient. Using 

a data-driven model, ODE networks could potentially be simplified, allowing ABMs to 

become more biologically detailed without a significant increase in computational cost.

The results from this study show that data-driven analyses provide insight into large 

mechanistic models. Using a relatively fast analysis, we were able to determine which 

proteins were the most influential in determining the response of the system, and whether 

each protein had a positive or a negative influence. Using PLS provides information on how 

to push the population as a whole towards a specific response. In the context of CAR T cell 

signaling, we found that the system was most sensitive to proteins at the very beginning or 

very end of the network. While most of the proteins (LCK, SHP1, Ras, RAF, and MEK) 

influenced the system in a way that is expected based on their biological functions, we found 

that CD3 ζ can actually influence the system towards no response, despite being part of the 

receptor that initiates signaling. This result was explained by examining the specific 

interactions in the mechanistic model. Overall, we find that data-driven methods are capable 

of analyzing detailed signaling networks, rather than just being used in cases where forming 

a mechanistic model is not feasible.

5. Conclusion

Here we used a data-driven analysis of a mechanistic model to study how variations in 

protein expression influence the ability of a CAR T cell to respond to stimulation and 

promote ERK phosphorylation. We identified six proteins relating to either the receptor or 

the MAPK cascade that strongly influenced the output of the system. We also found the 

counterintuitive result that increasing the amount of receptor in the system can actually 

hinder ERK phosphorylation, as it increases the level of active phosphatase in the system. 

By combining data-driven and mechanistic modeling, we gain useful insight into cell 

signaling.
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Fig. 1. 
Schematic of the mechanistic model. Module I: LCK regulation, autophosphorylation, and 

phosphorylation. Module II: Phosphatase activity of CD45 and SHP1. Module III: 

Formation of the LAT signalosome and its downstream signaling. Module IV: MAPK 

signaling and ERK-mediated negative feedback. Arrows and bars indicate activating and 

inhibitory interactions, respectively. Dashed lines denote the same species in multiple 

Modules. Reprinted with permission from Rohrs et al. (2019).
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Fig. 2. 
Relative ppERK time courses for a representative set of 100 cells. The red line at 50% shows 

the level of phosphorylation needed to be considered as a “high ERK response” following 

stimulation. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 3. 
VIP scores when grouping “high ERK response” and “low ERK response”. Proteins that 

achieved a VIP score greater than one are colored orange, indicating that they significantly 

influence the PLS model’s classification of a cell being a “high ERK response” or “low ERK 

response”. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 4. 
Transformed input values for each PLS model component. Blue points correspond to cells 

classified as “high ERK response” based on the model inputs. Red points correspond cells 

classified as “low ERK response” based on the model inputs. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 5. 
Weights from the inputs to the first component of the PLS model. Blue bars represent 

proteins that lower the value of the first component, thus influencing the cell to have “high 

ERK response”. Red bars represent proteins that increase the value of the first component, 

thus influencing the cell to have “low ERK response”. The proteins found to be influential 

have darker bars. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 6. 
Predicted dynamics of signaling species. Time courses for phosphorylated ERK (A) and 

SHP1 (B) for different initial values of CD3 ζ.
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