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Abstract

Identification of 3D cephalometric landmarks that serve as proxy to the shape of human

skull is the fundamental step in cephalometric analysis. Since manual landmarking from

3D computed tomography (CT) images is a cumbersome task even for the trained

experts, automatic 3D landmark detection system is in a great need. Recently, automatic

landmarking of 2D cephalograms using deep learning (DL) has achieved great success,

but 3D landmarking for more than 80 landmarks has not yet reached a satisfactory level,

because of the factors hindering machine learning such as the high dimensionality of the

input data and limited amount of training data due to the ethical restrictions on the use of

medical data. This paper presents a semi-supervised DL method for 3D landmarking that

takes advantage of anonymized landmark dataset with paired CT data being removed.

The proposed method first detects a small number of easy-to-find reference landmarks,

then uses them to provide a rough estimation of the all landmarks by utilizing the low

dimensional representation learned by variational autoencoder (VAE). The anonymized

landmark dataset is used for training the VAE. Finally, coarse-to-fine detection is applied

to the small bounding box provided by rough estimation, using separate strategies suit-

able for the mandible and the cranium. For mandibular landmarks, patch-based 3D CNN

is applied to the segmented image of the mandible (separated from the maxilla), in order

to capture 3D morphological features of mandible associated with the landmarks. We

detect 6 landmarks around the condyle all at once rather than one by one, because they

are closely related to each other. For cranial landmarks, we again use the VAE-based

latent representation for more accurate annotation. In our experiment, the proposed

method achieved a mean detection error of 2.88 mm for 90 landmarks using only 15

paired training data.
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1 Introduction

Cephalometric analysis is commonly used by dentists, orthodontists, and oral and maxillofa-

cial surgeons to provide morphometrical guidelines for diagnosis, surgical planning, growth

analysis, and treatment planning by analyzing dental and skeletal relationships in the craniofa-

cial complex [1]. It is based on cephalometric landmarks, which serve as proxy to the skull

morphological data pertaining to craniofacial characteristics [2]. Conventional cephalometric

analysis uses two-dimensional (2D) cephalometric radiographs (lateral and frontal radio-

graphs), which have drawbacks including geometric distortions, superimpositions, and the

dependence on correct head positioning [3]. Due to recent advances in image processing tech-

niques and the need for accurate craniofacial analysis, a three-dimensional (3D) approach to

the cephalometric landmarks obtaining 3D computerized tomography (CT) images is gaining

preference over the conventional 2D techniques [4–6].

Recently, there have been many studies conducted on automated cephalometric landmark

identification that aims to find the landmarks and enable immediate cephalometric analysis,

because manual landmarking and cephalometric analysis are labor-intensive and cumbersome

tasks even for the trained experts. Due to recent advances in deep learning techniques, the

automated annotation of 2D cephalometric landmarks may now be used for clinical applica-

tion [7, 8]. Conversely, automated 3D cephalometric tracing (for 90 landmarks) may not yet

be utilized in clinical applications, wherein the required average error is commonly designated

to be less than 2 mm [9–13]. The high dimensionality of the input data (e.g., 512 × 512 × 512)

and limited number of training data are the main factors that hinder the training of deep learn-

ing networks for learning the 3D landmark positional vectors from 3D CT data. Moreover,

due to the current legal and ethical restrictions on medical data, it is very difficult to utilize CT

data from patients.

To overcome the above-mentioned learning problems caused by the high input dimensions

and training data deficiencies, the method proposed in this study utilizes semi-supervised

learning that takes advantage of a large number of anonymized landmark dataset (without

using the corresponding CT dataset) which have been used in surgical planning and treatment

evaluation. We use these landmark dataset to obtain their low dimensional representations,

reducing the dimensions of the total landmark vectors (270 = 90 × 3 dimension) to only 9

latent variables via a variational autoencoder (VAE) [14]. For training the VAE, a normalized

landmark dataset is used to efficiently learn skull shape variations while ignoring unnecessary

scaling factors. With this dimensionality reduction technique, the positions of all 90 landmarks

can be roughly estimated by identifying a small number of easy-to-find reference landmarks

(10 landmarks), which can be accurately and reliably identified via a simple deep learning

method [11].

The rough estimation of all landmarks is used to provide a small 3D bounding box for each

landmark in the 3D CT images. Following this, we apply convolutional neural networks

(CNNs) to these small bounding boxes to enable the accurate placement of landmarks. Our

fine detection strategy is divided into two parts; mandible and cranium. It is desirable to accu-

rately capture the morphological variability of the mandible because the shape of the mandible

can be affected by a variety of factors, including the masticatory occlusal force, muscular force,

functional activity such as breathing and swallowing, and age [15]. Noting that landmarks on

the mandible represent morphological features of a 3D mandibular surface geometry, we apply

3D CNN to a segmented image of the mandible (separated from the cranium). We follow a

recent study [16] for a segmentation method to separate the mandible from the cranium.

Because several landmarks around the condyle are closely related to each other, it is better

to detect these landmarks all at once. For the landmarks on the midsagittal plane, it is better to
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further reduce the dimensionality of the input by using a partially integrated 2D image of the

midsagittal plane. For the remaining landmarks lying on the cranium, we again use the anon-

ymized landmark dataset to obtain a more accurate latent representation of all landmarks on

the cranium, due to its rigidity. The proposed approach achieved a mean detection error of

2.88 mm for 90 landmarks, which nearly meets the clinically acceptable precision standard. It

should be emphasized that this accuracy has been achieved using a very small amount of train-

ing data.

2 Method

We begin by introducing the following notations. Five easy-to-find reference landmarks

(CFM, Bregma, Na, and Po (L/R)) are used as the basis for constructing a coordinate system to

determine the midsagittal and axial planes, and they are utilized for data normalization (meth-

ods for obtaining these five reference landmarks will be described in Section 2.1).

• x denotes a 3D CT image, which is defined on a voxel grid O≔ {v = (v1, v2, v3):vj = 1, � � �,

512 for j = 1, 2, 3}. Here, we set v1 as the normal direction of the midsagittal plane.

• xb denotes a binarized CT image of x (i.e., skull segmentation from the CT image), defined

by

xb ¼

( xbðv1; v2; v3Þ ¼ 1 if xðv1; v2; v3Þ � r

xbðv1; v2; v3Þ ¼ 0 otherwise
ð1Þ

where ρ is a thresholding value. In our experiment, the value of ρ was consistently chosen as

ρ = 500HU, which is known as an effective choice for thresholding-based bone segmentation

[17].

• xmid denotes a partially integrated 2D image of xb in the normal direction of the midsagittal

plane, defined by

xmid ¼
Xb

v1¼a

xbðv1; v2; v3Þ ð2Þ

where [a, b] determines the truncated volume of xb.

• Rcr
2 R138ð¼46�3Þ

andRmd
2 R132ð¼44�3Þ

denote the concatenated vectors of 46 cranial and 44

mandibular 3D landmarks, respectively. The entirety of the landmarksR 2 R270ð¼90�3Þ
is

defined byR≔ ½Rcr
;Rmd

�. See S1 Table for more detailed information of the landmarks.

• Rcr
]
2 R24ð¼8�3Þ

denotes a concatenated vector of the landmarks (Bregma, CFM, Na, ANS, Or

(L/R), and Po (L/R)) in the cranium andRmd
]
2 R6ð¼2�3Þ

denotes a concatenated vector of

the landmarks (MF (L/R)) in the mandible. A reference landmark vectorR] 2 R
30ð¼10�3Þ

is

defined byR] ¼ ½R
cr
]
;Rmd

]
�.

We mention here details of reference landmarks; Bregma is the point of junction of the cor-

onal and sagittal sutures of the skull. (i) CFM, (ii) Na, (iii) ANS, (iv) Or, (v) Po, and (vi) MF

are the abbrevations of (i) the center of foramen magnum, (ii) nasion, (iii) anterior nasal spine,

(iv) orbitale, (v) porion, and (vi) mental foramen, which are defined by (i) the center of an

opening for spinal cord, (ii) the center of the midline bony depression between the eyes, where

the frontal and two nasal bones meet, just below the glabella, (iii) the projection formed by the

fusion of the two maxillary bones at the intermaxillary suture, (iv) lower most point on the
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lower margin of the left or right orbit, (v) the most superior point of the upper margin of each

ear canal, and (vi) a bilateral opening in the vestibular portion of the mandible through which

nerve endings, such as the mental nerve, emerge. See Fig 1.

The 3D cephalometric landmarking aims to develop a function f : x 7!R that maps a 3D

CT image x to all landmarksR. To learn the landmark detection map f, deep learning tech-

niques can be used. Unfortunately, due to the legal and ethical restrictions on medical data, a

few paired data are available. This severe shortage of paired data makes it difficult to obtain an

accurate and reliable map f : x 7!R in the following supervised learning framework:

f ¼ argmin
f2Net

1

Np

XNp

i¼1

kf ðxðiÞÞ � RðiÞk2

2
; ð3Þ

where Np is the small number of paired training data, fðxðiÞ;RðiÞÞ : i ¼ 1; � � � ;Npg is a paired

dataset, Net is a deep learning network, and k � k is the standard Euclidean norm. In our study,

only 15 paired data are available (i.e., Np = 15). Even with a certain amount of paired data, the

learning process (3) of the direct detection map f can be difficult because the dimension of the

input image is very large (greater than 108).

The proposed method attempts to address this problem by taking advantage of a semi-

supervised learning framework that permits the utilization of the Nl number of anonymized

landmark data fRðNpþiÞg
Nl
i¼1

whose corresponding CT data are not provided. In this research,

specifically, 229 anonymized data (i.e., Nl = 229) are utilized.

As shown in Fig 2, the proposed method comprises the following three main steps: (i) To

obtain easy-to-find reference landmarksR], we apply CNN with 2D illuminated images gener-

ated from a binarized CT image xb and normalize the output with respect to the cranial vol-

ume. (ii) A rough estimation of entire landmarksR is obtained using the partial knowledgeR]

and a VAE-based low dimensional representation ofR. (iii) Using this estimation, coarse-to-

fine detection forR is conducted, wherein separate strategies are utilized for the mandibular

and cranial landmarks. For the mandibular landmarks, the landmarks are accurately identified

Fig 1. Reference landmarks. These are easy-to-find through CNN with input of the illuminated images because they have strong geometric cues that can

be revealed in illuminated 2D images.

https://doi.org/10.1371/journal.pone.0275114.g001
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by applying 3D patch-based CNNs to capture the morphological features on a 3D surface

geometry associated with the landmarks, wherein an input patch is extracted based on the

coarse estimation. For cranial landmarks, we first detect three landmarks lying on the midsag-

ittal plane by applying a 2D CNN whose input is an extracted 2D patch from a partially inte-

grated image xmid in basis of the coarse estimation. By utilizing the three finely-detected

landmarks and cranial reference landmarksRcr
]

as the partial information ofRcr
, the remain-

ing cranial landmarks are finely annotated via a VAE-based local-to-global estimation utilizing

the same method in the previous step.

Each of these steps is described in detail as follows.

2.1 Detection of easy-to-find reference landmarks and uniform scaling for

skull normalization with respect to the cranial volume

The first step of the proposed method is to find 10 reference landmarksR] from a given x. Ini-

tially, a CT image x is converted into a binarized image xb by (1). From xb, 2D illuminated

images are generated by manipulating various lighting and viewing directions (see Fig 1). By

applying VGGNet [18] to these illuminated images, the reference landmarksR] are accurately

and automatically identified. This detection method is based on that presented in the recent

study [11].

Using these identified reference landmarks, data normalization is conducted for efficient

feature learning of skull shape variations in further steps. By applying a uniform scaling with

respect to the cranial volume, the landmark vectorR] is normalized, wherein the cranial vol-

ume is defined via a product of the distance between the v1-coordinate of Po (L) and Po (R)

(cranial length), the distance between the v2-coordinate of Po (L) and Na (depth), and the dis-

tance between the v3-coordinate of CFM and Bregma (height). This data normalization mini-

mizes the positional dependencies of the landmarks on the translation, rotation, and overall

size of the skull; therefore, shape information of the skull (regarding facial deformities) can be

effectively learned in further VAE-based steps. From here on, we will denote all landmark

Fig 2. Schematic diagram of the proposed method for the 3D landmark annotation system.

https://doi.org/10.1371/journal.pone.0275114.g002
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vectors as normalized vectors (e.g.,R andR] are normalized vectors for total landmarks and

reference landmarks).

2.2 Rough estimation of all landmarks from reference landmarks using

VAE-based low dimensional representation

This subsection provides a method for roughly estimating all landmarksR from the reference

landmarksR] that are accurately annotated in the previous step. Based on the method in [13],

we build a bridge that connectsR] andR by taking advantage of a low-dimensional represen-

tation ofR learned by the variational autoencoder (VAE) [14].

The rough estimation obtained fromR], denoted byR�, is given by

R� ¼ D � FðR]Þ ð4Þ

where D � F : R] 7!R� is a local-to-global landmark estimation map as described in Fig 3.

The map is constructed as follows: First, we train VAE that consists of an encoder (E) and a

decoder (D), to learn low dimensional representation ofR. Afterwards, we train the nonlinear

map F that provides FðR]Þ � EðRÞ so that D � FðR]Þ � R.

Specifically, the VAE learns an encoder E : R 7! z and a decoder D : z 7!R, where z 2 Rd

is a d-dimensional latent variable (d� 270). The maps E and D learn landmark patterns by

Fig 3. Initial estimation of all 90 landmarksR using the knowledge of 10 reference landmarksR]. This is possible because all landmarksR can be

roughly represented by only 9 latent variables.

https://doi.org/10.1371/journal.pone.0275114.g003
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leveraging dataset fRðiÞg
Nt
i¼1

that consists of the unpaired landmark dataset as well as the paired

dataset. The training is achieved via the following energy minimization sense:

ðE;DÞ ¼ argmin
ðE;DÞ2VAE

XNt

i¼1

ðkD � Eð<ðiÞÞ � <ðiÞk2

2
þ DKLðN ðm

ðiÞ;SðiÞÞkN ð0; IÞÞÞ ð5Þ

where Nt = Np + Nl is the total number of training landmark data, VAE is a class of functions

in the form of a given VAE network, N ðmðiÞ;SðiÞÞ is a d-dimensional normal distribution with

a mean μ(i) and a diagonal covariance matrix S(i) = diag((σ(i)(1))2, � � �, (σ(i)(d))2), N ð0; IÞ is a

standard normal distribution, and the last term in the loss function is the Kullback-Leibler

(KL) divergence defined by

DKLðN ðmðiÞ;S
ðiÞÞkN ð0; IÞÞ

¼
1

2

Xd

l¼1

ðmðiÞðlÞ2 þ sðiÞðlÞ2 � logsðiÞðlÞ � 1Þ
ð6Þ

Here, μ(i) = (μ(i)(1), � � �, μ(i)(d)) and σ(i) = (σ(i)(1), � � �, σ(i)(d)) are the mean and standard devia-

tion vectors obtained in the interim of the encoding process of an i-th training dataRðiÞ (i.e.,

EðRðiÞÞ).
The encoder E can be expressed in the following nondeterministic form:

EðRÞ ¼ z≔ mþ s� hnoise ð7Þ

where hnoise is a noise sampled from N ð0; IÞ,� is the Hadamard product (i.e., element-wise

product), and vectors μ and σ are given by

m ¼ Em
4
h; s ¼ Es

4
h

h ¼ ReLUðE3ReLUðE2ReLUðE1RÞÞÞ
ð8Þ

Here, the matrices fE1;E2;E3;E
m

4
;Es

4
g represent fully-connected layers and ReLU is an ele-

ment-wise activation function defined by ReLU(t) = max(t, 0). The decoder D is the reverse

process of the encoder E, which can be represented by

DðzÞ ¼ D1ReLUðD2ReLUðD3ReLUðD4zÞÞÞ ð9Þ

where the matrices {D1, D2, D3, D4} represent fully-connected layers. The detailed network

architecture is described in the red box of Fig 3.

After pretraining the VAE, the nonlinear map F : R] ! z is learned, which connects refer-

ence landmarksR] with a latent variable z ¼ EðRÞ. The architecture of the map F is a fully-

connected neural network as described in Fig 3. The training is achieved by the following min-

imization sense:

F ¼ argmin
F

X

i

kFðR
ðiÞ
] Þ � zðiÞk2

2 ð10Þ

Here, we remark thatF relies on the pretrained VAE, whose encoder (E) is used only for train-

ing and decoder (D) is the component of the local-to-global detection map.

The resultant map D � F estimates all landmarksR from the partial knowledgeR], based

on the learned patterns of landmarks by VAE.
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2.3 Coarse-to-fine detection

This subsection explains coarse-to-fine detection obtained using the initial estimationR�. We

put a final touch onR� by utilizing CT image data. The coarse-to-fine detection is based on

suitable strategies that rely on the landmark locations (i.e. on the mandible or cranium). The

details are explained in the following subsections.

2.3.1 Mandible-cranium segmentation. In the binarized skull image xb, we segment the

mandible and cranium separately using the connected component labeling (CCL) technique

[19]. Among all connected components generated from the CCL method, the largest compo-

nent and the second largest are the cranium and the mandible respectively. The segmented

cranium and mandible images are denoted as xcrb and xmd
b (as shown in Fig 2). Using these

images and the rough estimationR�, the following fine detection processes are conducted.

2.3.2 Detection of mandibular landmarks. For the landmarks on the mandible being

articulated to the skull, a patch-based 3D CNN is applied to capture the morphological vari-

ability of the 3D mandibular surface geometry associated with the landmarks.

LetRj
�
2 R3 be a roughly estimated position of a landmark with index j inR�. See S1 Table

for the details of the landmark index. For each mandibular landmark (i.e., j 2 {49, � � �, 90}), we

extract a 3D image patch ðxmd
b ÞðZ;Rj

�Þ
that is defined by a cube with edge length of η and center

ofRj
�
. By using 3D CNN, we obtain a map f md

j : ðxmd
b ÞðZ;Rj

�Þ
7!fR�

j, where fR�
j is an accurate

positional estimation for the landmark with index j (i.e., fR�
j � Rj

).

To learn the fine detection map f md
j , we generate training dataset by using the paired dataset

fððxmd
b Þ

ðiÞ
;RðiÞÞg

Np
i¼1: For a given landmark index j, we generate

fððxmd
b Þ

ðiÞ

ðZ;ðR
ðiÞ
� Þ

jÞ
; ðRðiÞÞ

j
Þ : i ¼ 1; � � � ;Npg ð11Þ

The 3D CNN is trained by the dataset in the following sense:

f md
j ¼ argmin

fmd
j

X

i

kf md
j ððx

md
b Þ

ðiÞ

ðZ;ðR
ðiÞ
� Þ

jÞ
Þ � ðRðiÞÞ

j
k

2

‘2 ð12Þ

In practice, data augmentation using translation and horizontal flip is applied. The architec-

ture of the 3D CNN is a modified version of VGGNet [18], which is described in Fig 4.

In practice, several landmarks are identified in a group at once. We simultaneously identify

six landmarks on the condyle (COR, MCP, LCP, Cp, Ct-in, and Ct-out) that are positionally

related to one another, as well as landmarks with bilaterality (e.g. left/right mandibular

Fig 4. Mandibular landmarks detection. Patch-based 3D CNN is applied to the segmented image of the mandible (separated from the maxilla), in order to

capture 3D morphological features of mandible associated with the landmarks. For six landmarks on condyle, we detect them all at once, instead of one by

one, because they are positionally related to each other.

https://doi.org/10.1371/journal.pone.0275114.g004
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foramen) that are associated with the symmetric structure of the mandible. For this group

detection, we construct a 3D CNN to produce a concatenated vector of all landmark positions

on the same group from one 3D image patch. Here, COR is the abbreviation of coronoid

point, defined by the anterior process of the superior border of the ramus of the mandible.

(i) MCP, (ii) LCP, (iii) Cp, (iv) Ct-in, and (v) Ct-out are the abbreviations of (i) medial condy-

lar point, (ii) lateral condylar point, (iii) posterior condylar point, (iv) medial temporal condy-

lar point, and (v) lateral temporal condylar point.

2.3.3 Detection of cranial landmarks. Landmarks on the cranium that demonstrates

rigidity have less variability between subjects. According to [13], cranial landmarks have

smaller variance compared to mandibular landmarks with the normalization presented in Sec-

tion 2.1. Moreover, our empirical experiment shown in Fig 7 demonstrates that the rough

local-to-global estimation achieved using the VAE-based low dimensional representation pro-

vides more accurate annotations for cranial landmarks. Therefore, we again utilize a VAE-

based low dimensional representation in the same manner as in Section 2.2 by using only the

cranial landmarksRcr
. To increase the detection accuracy, we enrich the partial knowledge of

Rcr
by accurately detecting three additional cranial landmarks lying near the midsagittal plane

(MxDML, Od, and PNS). Here, (i) MxDML, (ii) Od, (iii) PNS are the abbrevation of (i) maxil-

lary dental midline, (ii) odontoid process, and (iii) posterior nasal spine, which are defined by

(i) the midsagittal line and point of the maxillary central incisors, usually defined by the junc-

tional line and point of right and left incisal edge and medial surface on maxillary central inci-

sors, (ii) a protuberance (process or projection) of the axis (second cervical vertebra), and (iii)

a part of the horizontal plate of the palatine bone of the skull. The overall process is illustrated

in Fig 5.

First, we compute a partially integrated image xmid from xcrb using (2) so that the center of

the truncated volume of xcrb lies on the midsagittal plane. Next, a 2D patch ðxmidÞ
ðZ;R

j
�jv2 ;v3

Þ
is

extracted, which is defined by a square with edge length of η and center ofRj
�
jv2 ;v3

. Here,

Fig 5. 3D cranial landmark detection using VAE-based low dimensional representation combined with easy-to-find landmarks. Here, the entire

cranial landmarksRcr
are estimated directly from the knowledge of the reference landmarksRcr

]
and three landmarksRmid

]
on midsagittal plane that are

obtained by 2D CNN.

https://doi.org/10.1371/journal.pone.0275114.g005
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Rj
�
jv2 ;v3

is a vector eliminating the v1 component in theRj
�

and j 2 {24, 25, 26}. Using a 2D

CNN, we learn a function f crj that infers an accurate position of a landmarkRj
in v2- and

v3-coordinates (Rj
jv2 ;v3

) from the 2D image patch ðxmidÞ
ðZ;R

j
�jv2 ;v3

Þ
. The landmark position in the

v1-coordinate is determined by the location of the midsagittal plane.

In the similar manner as in (11), the following training dataset is generated:

fððxmidÞ
ðiÞ

ðZ;ðR
ðiÞ
� Þ

j jv2 ;v3
Þ
; ðRðiÞÞ

j
jv2 ;v3
Þ : i ¼ 1; � � � ;Npg ð13Þ

With the training dataset, the 2D CNN is trained as follows:

f crj ¼ argmin
f crj

X

i

kf crj ððx
midÞ

ðiÞ

ðZ;ðR
ðiÞ
� Þ

jjv2 ;v3
Þ
Þ � ðRðiÞÞ

j
jv2 ;v3
k

2

‘2 ð14Þ

Here, data augmentation using translation is applied. The architecture of the 2D CNN is modi-

fied from VGGNet [18], as illustrated in Fig 4.

LetRmid
]

be a concatenated positional vector with cranial reference landmarksRcr
]

and three

finely detected landmarks obtained by f crj . Using this partial knowledgeRmid
]

, we find accurate

cranial landmark positions fRcr
�

via

fRcr
�
¼ Dcr � FcrðRmid

]
Þ ð15Þ

where Fcr : Rmid
]
7! zcr is a nonlinear map and Dcr

: zcr 7!Rcr
is a decoder of VAE. Here, zcr 2

Rdcr is a dcr-dimensional latent variable given by zcr ¼ EðRcrÞ and Ecr
: Rcr 7! zcr is an encoder

of VAE. The maps ðEcr
;Dcr
Þ and Fcr are trained in the same manner of the method presented

in Section 2.2 using cranial landmarksRcr
. The detailed architectures of ðEcr

;Dcr
Þ and Fcr are

illustrated in Fig 5.

3 Result

3.1 Dataset and experimental settings

Our experiment used a dataset containing 24 paired data (multi-detector CT images and land-

mark data) and 229 anonymized landmark data. This dataset was provided by Yonsei Univer-

sity, Seoul, Korea. The paired dataset was obtained from normal Korean adult volunteers (9

males and 15 females; 24.22±2.91 years old) with skeletal class I occlusion and was approved

by the local ethics committee of the Dental College Hospital, Yonsei University (IRB number:

2–2009-0026). All informed consents were obtained from each subject. Among the 24 paired

data, we used 15 data pairs for training (i.e., Np = 15) and 9 data pairs for testing. The anon-

ymized landmark dataset with 3D landmark coordinates was acquired in an excel format from

229 anonymized subjects with dentofacial deformities and malocclusions (i.e., Nl = 229). Man-

ual landmarking for both dataset was performed by one of the authors (S.-H. Lee) who is an

expert in 3D cephalometry with more than 20 years of experience.

Our deep learning method was implemented with Pytorch [20] in a computer system with

4 GPUs (GeForce RTX 1080 Ti), two Intel(R) Xeon(R) CPU E5–2630 v4, and 128GB DDR4

RAM. In the training process, the Adam optimizer [21] was consistently adopted, which is

known as an effective adaptive gradient descent method. In our experiment, optimal values of

all learning parameters (epoch and learning rate) were empirically selected via cross validation.

For image-based methods, 15-fold cross validation was applied, where 15 paired training data

were split into 1-fold for validation and the others for training. For the training of VAE parts,

PLOS ONE A semi-supervised learning approach for automated 3D cephalometric landmark identification using CT

PLOS ONE | https://doi.org/10.1371/journal.pone.0275114 September 28, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0275114


5-fold cross-validation was applied to 244 training data (229 unpaired and 15 paired ones).

Fold values were empirically selected, depending on the amount of available training data.

The nonlinear map F in (10) can be trained by pairs ofR] and z, whereR] is an estimated

vector of 10 reference landmarks in the first step and z is a latent variable obtained by

z ¼ EðRÞ. Here, E is the encoder of the pretrained VAE andR is the corresponding global

landmark. Due to the limited number of CT data, only 15 outputs fR
ðiÞ
] g

15

i¼1
were provided in

the first-step. Hence, an additional dataset fR
ðiÞ
] ; zðiÞg

244

i¼16
was generated from the unpaired

landmark dataset, whereR
ðiÞ
] and z(i) are given byR

ðiÞ
] ¼ SubðR

ðiÞ
Þ and zðiÞ ¼ EðRðiÞÞ. Here,

Sub denotes a subsampling operator of 10 reference landmarks. This dataset was used in our

implementation. Likewise, the map Fcr in (15) was trained as the same manner.

For quantitative evaluation, we used mean detection error (MDE) computed as follows: Let

fRðiÞestg
Neval
i¼1

be a set of Neval landmarks output to be evaluated. The MDE is computed by

MDE ¼
1

Neval

XNeval

i¼1

kRðiÞest � R
ðiÞ
labelk ð16Þ

whereR
ðiÞ
label is the corresponding ground truth forRðiÞest and kRest � Rlabelk is defined by

kRest � Rlabelk ¼
1

Nlmk

XNlmk

j¼1

kRj
est � R

j
labelk ð17Þ

Here,Rj
est is the vector corresponding to j-th landmark inRest, Nlmk is the number of land-

marks contained inRest (e.g., Nlmk = 90 for entire global landmarks), and kRj
est � R

j
labelk is

given by

kRj
est � R

j
labelk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

k¼1

ðRj
estjvk � R

j
labeljvkÞ

2

s

ð18Þ

whereRj
jvk denotes the vi-coordinate ofRj

.

3.2 Results of reference landmark detection

The detection of the 10 reference landmarks (R# ) provided very accurate and robust results

(see Table 1 and Fig 6). These results almost meet clinical requirements, while the intra-

observer repeatability has a precision of less than 1 mm and the overall median inter-observer

precision is approximately 2 mm in the 3D landmarking system [22].

By using reference landmarks, we normalized the landmark data via uniform scaling by fix-

ing the cranial volume of each subject as the average value of the cranial volume for the train-

ing dataset.

Table 1. Mean detection error for 10 reference landmarks. Most of the landmarks are annotated almost within clini-

cal requirements.

Landmark Mean (mm) Landmark Mean (mm)

ANS 1.2 Na 1.7

Bregma 1.9 Or (R) 1.3

CFM 2.32 Po (R) 1.63

Or (L) 1.6 MF (L) 1.96

Po (L) 2.21 MF (R) 1.72

https://doi.org/10.1371/journal.pone.0275114.t001
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3.3 Results of VAE

For the local-to-global detection, the VAE was trained using 45000 epochs, a full batch-size,

and a learning rate of 0.001. Here, the full batch-size indicates that our dataset was not divided

into several batches in the training process. These learning parameters were empirically chosen

by comparing validation errors, which were obtained by varying parameters when training

VAEs.

To investigate the effect on the dimension of the latent space, we trained VAE with varying

the latent space size. The latent dimension is preferred to be as small as possible compared to

that of the vector of reference landmarks (R30
) as well as global landmarks (R270

). Taking this

into account, the latent dimension (9) and epochs (45000) were chosen as empirical optimal

values based on the validation error. Table 2 shows the variation of the averaged test error for

the epoch and latent space dimension. The error tendency for the test set was almost the same

as that for the validation set.

Fig 6. Final localization errors (mm) of 90 cephalometric landmarks after coarse-to-find detection over 9 test data. Blue and brown dots denote errors

for cranial and mandibular landmarks, respectively. Red, blue, and brown lines represent average error over all, cranial, and mandibular landmarks.

https://doi.org/10.1371/journal.pone.0275114.g006

Table 2. Mean detector error (mm) of VAE over 9 test data. This is obtained by varying the number of epochs and latent space dimension.

dim/epoch 35000 40000 45000 50000 55000

3 4.93 5.11 5.20 5.19 5.23

5 4.18 4.29 4.26 4.41 4.51

7 3.23 3.32 3.35 3.41 3.36

9 3.04 3.27 3.06 3.21 3.18

11 3.55 3.34 3.30 3.23 3.27

13 3.09 3.19 3.19 3.10 3.15

15 3.12 3.16 3.14 3.00 3.08

https://doi.org/10.1371/journal.pone.0275114.t002
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The averaged representation errors of VAE for 9 test data were 2.89 mm, 3.11 mm, and 3.06

mm for the cranial, mandibular, and all landmarks.

3.4 Results of the initial local-to-global detection

The nonlinear map F was trained with 5400 epochs, a full batch-size, and a learning rate of

0.0001. For each landmark, Fig 7 shows the performance evaluation achieved using 9 test data

with respect to the averaged error in the sense of (17). The mean detection error was 3.27 mm

for the cranial landmarks, 3.90 mm for the mandibular landmarks, and 3.59 mm for all land-

marks. The error of the cranial landmark estimation was much smaller than that of the man-

dibular landmark estimation.

The reference landmark detection outputs were selected as the estimation results instead of

VAE outputs. This is because the 2D CNN is specially designed to detect the reference land-

marks that are placed on a point with a morphologically distinct feature, whereas the VAE-

based estimation focuses on capturing global landmark patterns within acceptable tolerance

rather than on accurately detecting the specific landmarks. This also applied for the 2D CNN-

based cranial landmark detection (in Section 2.3.3).

3.5 Result for coarse-to-fine detection

3.5.1 Mandibular landmark detection. For fine detection of the mandibular landmarks,

3D image patches were extracted with size of 80 × 80 × 80 voxels (� 4 × 4 × 4 cm3). To gener-

ate the training data in (11), the center location of patch was varied to cover 2 times the

Fig 7. VAE-based local-to-global estimation errors (mm) of 90 landmarks over 9 test data. From 10 reference landmarks obtained in the first step, 90

landmarks are roughly estimated. Blue and brown dots denote errors for the cranial and mandibular landmarks, respectively. Red, blue, and brown lines

represent average error over all, cranial, and mandibular landmarks.

https://doi.org/10.1371/journal.pone.0275114.g007
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maximum error of the initial estimation ofR� for the training data. Using the parameters of

20000 epochs, a full batch size, and a learning rate of 0.0005, nine 3D CNNs were trained.

Figs 6 and 8(b) show the quantitative and qualitative results of the 3D CNNs. The mean dis-

tance error decreased to 2.68 mm from the initial detection error of 3.90 mm. The proposed

method achieved an error range of 1 to 4 mm for the detection of most landmarks. In addition,

as shown in Fig 10(b), the proposed method significantly reduced the mean and variance of

error for the test subjects, compared to the initial detection.

3.5.2 Cranial landmark detection. To generate the partially integrated image xmid, we set

the interval for the truncated volume as ± 7.5 mm v1-directionally from the midsagittal plane.

Next, 2D image patches were cropped into sizes of 80 × 80 pixels (� 4 × 4 cm2). For training

the 2D CNNs, we used the learning parameters of 5000 epochs, a full batch-size, and a learning

rate of 0.0001.

In Fig 9 and Table 3, qualitative and quantitative evaluations of the 2D CNN-based detec-

tion of three cranial landmarks on the midsagittal plane are provided. The detection achieved

relatively accurate annotation on the three target landmarks.

For the estimation of all cranial landmarks, VAE ðEcr
;DcrÞ was trained with 80000 epochs, a

full batch, and a learning rate of 0.001. The map Fcr was trained with 23000 epochs, a full

batch-size, and a learning rate of 0.0001. The latent dimension was empirically set to 15.

Figs 6 and 8(a) show the final cranial landmark estimation results in quantitative and quali-

tative formats, respectively. The mean detection error for all cranial landmarks was 3.08 mm,

decreasing from the initial estimation error of 3.27 mm (Fig 10(a)). The error for most cranial

landmarks fell within the range of 1 to 4 mm.

In terms of all landmarks, as described in Fig 10(c), our proposed method achieved an error

of 2.88 mm (Fig 6), which is much lower than the initial detection error of 3.59 mm (Fig 7).

4 Discussion and conclusion

This article proposes a fully automatic landmarking system for 3D cephalometry in 3D CT.

The proposed method provides the accurate and reliable identification of cephalometric

Fig 8. Qualitative evaluation of detection for (a) cranial landmarks and (b) mandibular landmarks. The red and green dots denote the ground truth

and detected output landmarks respectively.

https://doi.org/10.1371/journal.pone.0275114.g008
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landmarks that can be used in subsequent clinical studies, such as in the development of mor-

phometrical guidelines for diagnosis, surgical planning, and the treatment of craniofacial dis-

eases. The proposed semi-supervised method is designed to use many anonymized landmark

dataset to address the severe shortage of training CT data. Currently, only 24 CT data pairs are

available due to the legal and ethical restrictions on medical data, while approximately 200

anonymized landmark data are available.

The proposed method is based on the benchmark model [13], which provides 3.63 mm

error for annotation of 90 landmarks. This model motivated the backbone structure of the

coarse estimation step. The proposed method reduces the average detection error from 3.63

mm to 2.88 mm by employing the coarse-to-fine detection, where appropriate strategies for

mandibular and cranial landmarks were considered for their different properties. We expect

Fig 9. Results of coarse-to-fine landmark detection on 2D patch. Yellow dot is the output of the coarsely detected VAE. Green dot is the output of

detection using patch-based CNN. Red dot is the ground truth.

https://doi.org/10.1371/journal.pone.0275114.g009

Table 3. Error evaluation of the landmarks on the midsagittal plane. Initial error and 2D CNN error are presented

in the table. The errors are reduced after the 2D CNN is applied.

Landmark name Error before 2D CNN (mm) Error after 2D CNN (mm)

MxDML 2.81 1.18

Od 3.85 2.65

PNS 2.70 1.49

https://doi.org/10.1371/journal.pone.0275114.t003
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the detection accuracy to be further improved with increasing amount of available training

data.

While it may be possible to directly learn the map from the partial knowledge to the global

landmarks, the use of VAE is an effective approach for obtaining a meaningful latent represen-

tation in terms of skull morphology while learning the local-to-global estimation map. Human

skull morphology follows certain patterns and the positions of landmarks are closely interre-

lated. A previous study [13] provided empirical evidence that VAE can learn a low-dimen-

sional representation that is strongly associated with the factors determining facial skeletal

morphology. It is also a well-known advantage of VAE that the learned latent space is dense

and smooth [13, 14, 23]. Hence, it is expected that the VAE-based local-to-global estimation

map not only provides the connection between partial and global landmarks but also follows

the merits of VAE for latent representation.

Landmarks on the cranium have smaller variability between subjects compared to those on

mandible due to the rigid property of the cranium; therefore, cranial landmarks are relatively

suitable for the effective estimation in the sense of finding certain common patterns over the

training dataset. Moreover, the use of 3D CNN-based fine annotation for all landmarks

requires high computational memory consumption and power budget due to the increased

use of 3D networks. Hence, the VAE-based approach can be regarded as an effective strategy

to finely detect cranial landmarks with a sufficient level of accuracy. Meanwhile, the positional

estimation of the summit position of the cranium (SC) obtained from the relation learned via

VAE exhibited the lowest accuracy (see Fig 6). This appears to have occurred because the SC

may weakly depend on the positions of other landmarks. A rigorous factor analysis using VAE

may be undertaken in future research.

The proposed method has the potential to alleviate the experts’ hectic workflow by intro-

ducing an automated cephalometric landmarking with high accuracy. In clinical practice, our

method allows all 3D landmarks to be estimated from partial information obtained via 3D CT

data. Although the error level of some landmarks does not meet the requirement of clinical

applications (less than 2 mm), the proposed method may still aid in decisions of clinicians in

determining landmark positions, thereby improving their working processes.

Recently, as concerns about the radiation doses have increased, there have been attempts to

use dental cone-beam CT for cephalometric analysis instead of the conventional multi-detec-

tor CT because cone-beam CT utilizes a much lower radiation dose than multi-detector CT.

The investigation of an automated 3D landmarking system for cone-beam CT will therefore be

a topic of our future research.

Fig 10. The mean detection error of the cranial, mandibular, and all landmarks for each of the 9 test data. Blue bars represent the error from the initial

estimation, red bars represent the error from the final estimation, and the lines represent the averaged error over test subjects. (a) Cranial Landmarks. (b)

Mandibular Landmarks. (c) Entire Landmarks.

https://doi.org/10.1371/journal.pone.0275114.g010
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