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Abstract
Although bladder cancer (BLCA) is the 10th most common tumor worldwide, particularly practical markers and 
prognostic models that might guide therapy are needed. We used a non-negative matrix factorization algorithm 
to classify PI3K pathway-related genes into molecular subtypes. A weighted gene co-expression network analysis 
(WGCNA) was generated to identify co-expression modules. Univariate Cox regression, least absolute shrinkage sum 
selection operator-Cox regression, and multivariate Cox regression were utilized to develop a prognostic score model. 
Kaplan–Meier analysis and receiver operating characteristics were utilized to measure the model’s effectiveness. 
A nomogram was constructed to improve the predictive ability of the model based on clinical parameters and risk. 
Decision curve analysis (DCA) was used to evaluate the nomogram. To evaluate the immune microenvironment, an 
estimate algorithm was used. Drug sensitivity was identified using the R package “pRRophetic.” UM-UC-3 cell line 
was used to measure the effect of CDK6 in Western blotting, proliferation assay, and 5-ethynyl-20-deoxyuridine 
assay. Based on PI3K pathway-related genes, The Cancer Genome Atlas (TCGA)-BLCA and GSE32894 patients 
were divided into two subtypes. Twenty-five co-expression modules were established using the WGCNA algorithm. 
A seven-gene signature (CDK6, EGFR, IGF1, ITGB7, PDGFRA, RPS6, and VWF) demonstrated robustness in 
TCGA and GSE32894 datasets. Expression levels of CDK6 and risk positively correlated with M2 macrophages and 
IgG. Cisplatin, gemcitabine, methotrexate, mitomycin C, paclitaxel, and vinblastine are sensitive to different groups 
based on the expression of CDK6 and risk. Functional experiments suggested that CDK6 promotes the proliferation 
of UM-UC-3 cells. We constructed a seven-gene prognostic signature as an effective marker to predict the outcomes 
of BLCA patients and guide individual treatment.

Keywords  Bladder urothelial cancer · PI3K pathway · Prognostic marker · CDK6

Introduction

The world’s 10th leading cause of tumor-related mortality 
and morbidity is bladder cancer (BLCA) (Shinde-Jadhav 
et al. 2021), divided into muscle and non-muscle-invasive 
BLCA. Despite treatment advances, the diagnostic yield, 
outcomes, and 5-year survival rate have hardly changed 
(Berdik 2017). BLCA carries the highest recurrence rate, 

50–70% of patients with incomplete cystectomy relapse 
within 5 years of treatment (Ainsworth 2017). Therefore, 
it is critical to identify markers to improve the diagnostic 
yield and outcome.

The PI3K signaling pathway is associated with the 
proliferative capacity of tumor cells (Pollak 2018). PI3K 
pathway-related genes were found to be significantly 
altered in many cancers, and these altered genes can 
promote cancer growth, apoptosis, and metastasis in 
pancreatic cancer (Banh et al. 2020), breast cancer (Garcia-
Martinez et al. 2021), melanoma (Hamm et al. 2021), and 
BLCA (Hsieh et al. 2011). Studies focused on how the 
PI3K pathway affects the proliferation ability of BLCA 
cells as a downstream pathway regulated or modified by 
upstream molecules. However, there is no study on the 
effects of the PI3K pathway on treatment and outcome. 
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The rapid development of gene sequencing and the 
widespread availability of public databases have enabled 
the collection of gene expression data and the identification 
of biomarkers.

In the current study, TCGA (https://​cance​rgeno​me.​nih.​
gov/) and the Gene Expression Omnibus (GEO, http://​
www.​ncbi.​nlm.​nih.​gov/​geo/) databases were used to obtain 
gene expression data and clinical information from BLCA 
patients. Using a univariate Cox proportional hazard regres-
sion model, genes that predict outcome were selected, and 
a prognostic model for BLCA was established using a 
least absolute shrinkage and selection operator (LASSO) 
regression. This model was subsequently validated in four 
cohorts.

Methods

PI3K pathway‑related genes

The list of genes associated with the human PI3K path-
way was downloaded from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa and Goto 2000), 
and 275 genes were included.

Obtaining and processing TCGA and GEO data

The BLCA cohort downloaded from TCGA included 430 
samples: 411 tumor samples and 19 normal tissues. The 
gene expression matrix (TPM) and clinical information 
for each sample were applied for subsequent analysis. All 
samples in the TCGA-BLCA cohort served as a train-
ing set to construct the prognostic model. RNA expres-
sion profiles were normalized by log2(exp + 1). The 
GSE32894 (Sjödahl et al. 2012) cohort with 224 samples 
was obtained from the GPL6947 platform from GEO. Data 
from TCGA and GEO cohorts were normalized together 
by the “Combat” function, using the R package “sva.” 
All clinical information for patients in the TCGA and 
GSE32894 cohorts was presented in Table 1.

Molecular typing based on PI3K pathway‑related 
genes

Fifty-eight genes were not found when extracting the 
expression of 275 PI3K pathway-related genes from 
the TCGA cohort and GSE32894 cohort; therefore, the 
expression of 217 genes was used for subsequent studies. 
To conduct a univariate Cox analysis, the coxph function 
was utilized. The “brunet” criterion and the non-negative 

matrix factorization (NMF) algorithm with 50 iterations 
were used to cluster BLCA samples. The clusters’ k num-
ber was between two and 10. To determine the average 
profile width of the common membership for each sub-
class with a minimum membership of 10, the R package 
NMF was utilized. The clusters’ optimal numbers were 
determined using comprehensive consideration of disper-
sion, cophenetic, and silhouette.

WGCNA

Using the R package “WGCNA,” a co-expression algorithm 
was employed to identify co-expressed genes and divide 
the genes into multiple co-expression modules based on the 
protein-coding genes’ expression in the TCGA-BLCA (Lang-
felder and Horvath 2008). We constructed a scale-free co-
expression network with the soft threshold = 5 and R2 = 0.87. 
The minimum module’s number of genes was set to 30.

Functional analysis

To identify pathways and biological functions enriched by co-
expression module genes, KEGG (https://​www.​genome.​jp/​
kegg/) (Kanehisa and Sato 2020) and Gene Ontology (GO) 

Table 1   Basic clinical information for the two cohorts

Clinical factors TCGA_BLCA GSE32894

n = 430 % n = 224 %

Stage
  I-II 137 31.86 — —
  III-IV 291 67.67 — —

T
  Ta–T2 — — 216 96.43
  T3–T4 — — 8 3.57

Age
  ≤ 60 113 26.28 46 20.54
  > 60 317 73.72 178 79.46

Gender
  Male 314 73.02 163 72.77
  Female 116 26.98 61 27.23

Grade
  Low 21 4.88 —
  High 406 94.42 —

Vital status
  Alive 237 55.12 199 88.84
  Dead 193 44.88 25 11.16

Follow-up (mean ± SD)
  (year) 2.16 ± 2.24 3.28 ± 2.10
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(http://​geneo​ntolo​gy.​org/) (Ashburner et al. 2000) analysis was 
utilized. The R packages “KEGG” and “GO” were used.

Establishment and verification of the prognostic 
score model

The R package “survival” was used to perform a univari-
ate Cox regression to identify genes linked with outcome in 
TCGA-BLCA. The genes’ numbers in the model were then 
reduced using the LASSO-Cox algorithm (Tibshirani 1997) 
using the R package “glmnet.” Multivariate Cox regression 
was used to establish a prognostic score model, using the 
R package “survival.” We divided TCGA-BLCA patients 
into high- or low-risk subgroup based on the median of risk 
values. Based on the median of the risk values obtained from 
the TCGA-BLCA cohort, we divided GSE32894 patients 
into high- or low-risk subgroup. The predictive ability of 
our model was validated using Sangerbox (http://​sange​rbox.​
com/), a tool for bioinformatic data analysis based on the R 
language.

Establishment of nomogram and DCA

The R package “rms” and “regplot” (Zhang and Kattan 
2017) was used to establish a nomogram combined with 
clinical data and risk score. The nomogram can predict 
BLCA patients’ 1-, 3-, and 5-year survival rates and 
improve the predictive ability of the constructed model. 
The predictive ability of the nomogram was evaluated 
by calibration and DCA, using the R package “ggDCA.”

Immune microenvironment analysis

The ESTIMATE algorithm (Yoshihara et al. 2013) is used 
to transform gene expression data from each patient into the 
fractions of stromal and immune cells, thereby obtaining 
stromal and immune scores. To determine the correlation 
of risk score and gene expression with tumor purity, stro-
mal score, immune score, and various inflammatory factors, 
the R package “heatmap” was used. Correlations between 
immune cells and risk score or gene expression were calcu-
lated using the R package “pheatmap.”

Drug sensitivity analysis

Gene expression data were transformed into drug sensitivity 
data. Then, using the R package “pRRophetic,” relationships 
were determined between risk score and gene expression or 
drug sensitivity. The R package “ggpubr” was used to draw 
boxplots to display results.

Cell culture and transfection

The Chinese Academy of Sciences Cell Bank (China) pro-
vided the UM-UC-3 human bladder cell line. UM-UC-3 cells 
were cultured in high-glucose DMEM (Hyclone) with 10% 
fetal bovine serum (Gibco), at 37 ℃ and 5% CO2. The small 
interfering RNAs (siRNA) that reduce CDK6 expression 
were acquired from JTSBIO Co. (China). The sequences 
of Si1-CDK6 were as follows: sense: AGU​UAG​UUU​GGU​
UUC​UCU​GUC; anti-sense: CAG​AGA​AAC​CAA​ACU​AAC​
UUU. The sequences of Si2-CDK6 were as follows: sense: 
AAC​ACU​AAA​GUU​AGU​UUG​GUU; anti-sense: CCA​AAC​
UAA​CUU​UAG​UGU​UUG.

Western blotting

Radioimmunoprecipitation assay (RIPA) buffer was used 
to take protein from cells. A bicinchoninic acid assay kit 
measured the concentrations of protein. Different pro-
tein bands were separated by 10% sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis, then transferred 
to polyvinylidene fluoride membranes. After blocking 
the membranes, they were incubated overnight with pri-
mary antibodies. The membranes were washed and then 
incubated with secondary antibodies for 1 h. Finally, 
membranes were rewashed, and the enhanced chemilu-
minescence detected the protein expression. ImageJ ana-
lyzed the results of pictures.

Cell proliferation assay

UM-UC-3 cells were plated in 96-well plates. Cell Counting 
Kit‐8 assay reagent (Bimake, USA) was added to each pore 
to be measured according to the manufacturer’s instructions. 
Absorbance was measured on an automated reader (Bio-
Rad) at 450 nm.

EdU assay

UM-UC-3 cells were plated in 24-well plates. EdU assay 
reagent (Beyotime Biotechnology, China) was added to 
each pre according to the manufacturer’s instructions. A 
fluorescent microscope (Olympus Corporation, Japan) 
was used to obtain images, and the number of proliferat-
ing cells was counted using ImageJ software.

Statistical analysis

All significance tests of differences were performed using 
R software (Rx64 4.1.2). All R packages were obtained 
From BioConductor (http://​www.​bioco​nduct​or.​org) or 
CRAN (https://​cran.r-​proje​ct.​org). P < 0.05 was considered 
significant.
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Results

Molecular subtype identification using the NMF 
algorithm

The “survival” R package was used to conduct a single-factor 
Cox analysis. The 55 genes with P < 0.01 associated with BLCA 
outcome were obtained. The “Brunet” criterion and the NMF 
algorithm with 50 iterations were used to cluster BLCA samples. 
The clusters’ k numbers were between two and 10. The average 
profile width of the common membership matrix was determined 
using the R package NMF, with a minimum membership of 10 
for each subclass. The cluster groups’ optimal number (k = 2) was 

determined using cophenetic dispersion and silhouette (Fig. 1a, 
b). The expression levels of PI3K pathway-related genes for sam-
ples in each group are shown in Fig. 1c. The outcome was worse 
in the C2 group than in the C1 group (Fig. 1d). The NMF algo-
rithm was validated in the GSE32894 cohort. In the GSE32894 
cohort, the cluster groups’ optimal number was 2 (Fig. S1a), and 
the C2 group had a worse outcome than the C1 group (Fig. S1b).

WGCNA and functional analysis of co‑expression 
modules

The samples were clustered using hierarchical cluster-
ing based on the protein-coding genes’ expressions in 

Fig. 1    Non-negative matrix factorization (NMF) analysis. a NMF clustering (K = 2) consensus map. b The dispersion, RSS, and cophenetic dis-
tributions when rank = 2–10. c Cluster heat map of 217 PI3K pathway-related genes. d The two subtypes overall survival
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TCGA-BLCA (Fig. 2a), and a topological overlap matrix 
was established (β = 5) (Fig. 2b). The co-expressed genes 
were grouped into a module using dynamic tree shearing; 
25 co-expression modules were established (Fig. 2c). 
The correlation between each module and futime, fus-
tat, stage, gender, age, cluster 1 and cluster 2 is shown 
in Fig. 2d. The highest correlations were between the 
brown and green modules and clusters. R software was 

used to perform KEGG pathway enrichment analysis and 
GO analysis on the genes of brown and green modules. 
Cellular component (CC), biological process (BP), and 
molecular function (BF) were included in GO terms. The 
top 10 GO terms of the brown module in each part of the 
GO analysis and the top 30 in the KEGG pathway enrich-
ment analysis are displayed in Fig. 2e, f. The results of 
the green module are presented in Fig. 2g, h.

Fig. 2   Weighted co-expression network and enrichment analysis. 
a Samples’ cluster analysis. b Network topology for various soft-
thresholding power analysis. c Genes were divided into modules 
using the dynamic hybrid cutting method, and 25 co-expression mod-
ules were identified. d The correlation coefficients between modules 

and different phenotypes. e The brown module’s top 10 GO enrich-
ment analyses (BP, CC, BF). f The brown module’s top 10 KEGG 
enrichment analyses. g The green module’s top 10 GO enrichment 
analyses (BP, CC, BF). h The green module’s top 10 KEGG enrich-
ment analyses
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Establishment of a prognostic risk model

Genes associated with the TCGA-BLCA outcomes among 
PI3K pathway-related genes were selected using uni-
variate Cox regression, and we identified 55 genes with 
P < 0.01. The LASSO-Cox algorithm was performed on 55 
genes to reduce the number of the constructed risk score 
prognostic model (Fig. 3a, b); 11 genes (CDK6, CRTC2, 

EGFR, IGF1, IKBKB, IL7, ITGB7, LAMA2, NGF, PDG-
FRA, PPP2R3A, RPS6, and VWF) was screened. Finally, 
a risk model was constructed using multivariate Cox 
regression from seven genes. The signature formula for 
the seven mRNAs was as follows: RiskScore = 0.210687 
307280298 × expCDK6 + 0.25722712750568  × e
x p E G F R  +  0 . 1 6 2 2 3 0 2 9 9 6 4 6 6 3 5  ×  e  x p I G F 1 
– 0.436384884423358 × expITGB7 + 0.14593082164

Fig. 3   Establishment and effect of seven-gene signature in TCGA. a 
The coefficients of the LASSO-Cox regression analysis shrinkage. b 
Ten-fold cross-validation of the LASSO-Cox regression analysis. c 
Kaplan–Meier survival curves of high- and low-risk groups in TCGA 

(P < 0.001). d Receiver operating characteristic curves of the seven-
gene model for predicting 1-, 3-, and 5-year survival in TCGA. e The 
distribution of the risk score, survival status, and expression of seven 
genes for each sample in TCGA​
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4015 × expP DGFRA-0.294385373540532 × expRPS6  
+ 0.193651081566216 × expVWF.

The patients were divided into two risk groups. Survival 
curves were drawn to compare survival. Outcomes were 
worse in the high-risk group than in the low-risk group 
(P < 0.001) in Fig. 3c. Receiver operating characteristic 
(ROC) curves were drawn to determine the model’s appli-
cability. Its 1-, 3-, and 5-year areas under the curve (AUCs) 
were 0.74, 0.76, and 0.75, respectively (Fig. 3d). Survival 

status, risk score, and expression of the seven genes for each 
sample are shown in Fig. 3e.

The seven factors were separately analyzed for 
Kaplan–Meier (KM) analysis to determine whether they 
could be independent factors to determine the BLCA 
outcome. CDK6 (P < 0.05), EGFR (P < 0.05), IGF1 
(P < 0.05), ITGB7 (P < 0.05), PDGFRA (P < 0.05), 
RPS6 (P < 0.05), and VWF (P < 0.05) were identified 
(Fig.  4a–g); in GSE32894, CDK6 (P < 0.05), EGFR 

Fig. 4   a–g Kaplan–Meier survival curves of high and low-expression groups based on the expression of seven genes in the model in TCGA​
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(P > 0.05), IGF1 (P > 0.05), ITGB7 (P < 0.05), PDGFRA 
(P < 0.05), RPS6 (P < 0.05), and VWF (P < 0.05) were 
identified (Fig. S2a-g).

Robust verification of the risk signature

To assess the model’s applicability, risk scores of 
GSE32894 were calculated based on the risk model. The 
patients were divided into high- and low-risk groups. The 
survival curve of the external cohort was drawn to deter-
mine the model’s efficiency. Outcomes were worse in 
the high-risk group than in the low-risk group (P < 0.05) 
(Fig. 5a). In the GSE32894, the 1-, 3-, and 5-year AUCs 
were 0.74, 0.74, and 0.76, respectively (Fig. 5b). The risk, 
survival status distribution, and patients’ gene expression 
in the external cohort are shown in Fig. 5c. Univariable 
and multivariable Cox regression analysis showed that age, 
stage and risk score could independently predict the prog-
noses of BLCA patients (Table 2).

Analysis between risk models and clinical 
characteristics

Patients were grouped according to their stage, age, and 
gender. To determine the model applicability, KM curves 
were drawn. TCGA findings demonstrated that the model 
predicted outcomes with stage I + II, stage III + IV, age ≤ 60, 
age > 60, male and female in Fig. 6a–f (P < 0.05 for all). 
The analysis of the GSE32894 cohort demonstrated that the 
model could predict outcomes with Ta-T2 (P < 0.05) and 
female (P < 0.05) (Fig. S3a–f).

Construction and predictive ability of nomogram

Combining clinical parameters (grade, gender, age, and stage) 
and risk score, a prognostic nomogram was constructed with 
BLCA patients’ survival probability (Fig. 7a). The 1-, 3-, and 
5-year calibration were used to evaluate the predictive discrimina-
tion of the nomogram, and the result showed that the nomogram 

Fig. 5   Validation of the seven-gene signature in GSE32894. 
a Kaplan–Meier survival curves of high- and low-risk groups 
(P < 0.001). b The seven-gene model’s ROC curves for predicting 1-, 

3-, and 5-year survival. c The risk score distribution, survival status, 
and expression of seven genes for each sample

Table 2   Univariable and multivariable Cox regression analysis of clinical characteristics and risk score with overall survival in TCGA-BLCA

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age 1.03 1.02 1.05 4.74E − 05 1.02 1.01 1.04 0.0062
Gender 0.86 0.62 1.19 0.3489 0.90 0.65 1.25 0.5327
Grade 2.89 0.72 11.69 0.1361 1.16 0.28 4.82 0.8369
Stage 1.74 1.44 2.11 1.71E − 08 1.57 1.28 1.92 1.05E − 05
RiskScore 1.61 1.46 1.77 5.51E − 22 1.50 1.35 1.66 1.24E − 14
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had the best predictive discrimination for 1-year overall survival 
(Fig. 7b). The AUC value (0.751) of the nomogram was better 
than the constructed model (0.727), age (0.667), gender (0.476), 
grade (0.531), and stage (0.640), as shown in Fig. 7c. The DCA 
result showed that the net benefit of the nomogram was greater 
than the single independent clinical feature (Fig. 7d).

Immune environment evaluation

The heat map showed that increased CDK6 expression and 
risk score were associated with survival status, higher grade, 

estimate, stromal and immune scores, and inflammatory fac-
tor expression (Fig. 8a, b). The R package “pheatmap” was 
used to determine the relationship between immune cells 
and CDK6 expression and risk score. The number of M2 
macrophages increased with higher CDK6 expression and 
risk score (Fig. 8c, d).

Identification of sensitive drugs

After converting gene expression into drug sensitivity data 
using the R package, patients were divided into high- or 

Fig. 6   Kaplan–Meier (KM) 
survival analysis in different 
subgroups based on stage, age, 
and gender in TCGA. a KM 
survival curves of patients in 
stage I + II (P < 0.05). b KM 
survival curves of patients in 
stage III + IV (P < 0.001). c 
KM survival curves of patients 
aged ≤ 60 (P < 0.001). d KM 
survival curves of patients with 
aged > 60 (P < 0.001). e KM 
survival curves of male patients 
(P < 0.001). f KM survival 
curves of female patients 
(P < 0.001)
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low-expression levels or high- or low-risk according to 
CDK6 and risk score. Then sensitive therapeutic agents were 
sought. The high-CDK6 expression group’s sensitivities 
to cisplatin (Fig. 9a), gemcitabine (Fig. 9b), mitomycin C 
(Fig. 9d), paclitaxel (Fig. 9e), and vinblastine (Fig. 9f) were 
higher than those of the low-expression group (P < 0.001 for 
all). There is no different sensitivity to methotrexate between 
the high- and low-CDK6 expression group (Fig. 9c). The 
high-risk group’s sensitivities to cisplatin (Fig. 9g), gem-
citabine (Fig. 9h), and paclitaxel (Fig. 9k) were higher than 
those of the low-risk group (P < 0.001 for all). For metho-
trexate (Fig. 9i), the low-risk group was more sensitive 
(P < 0.001). The high- and low-risk groups have no different 
sensitivity to mitomycin C (Fig. 9j) and vinblastine (Fig. 9l).

CDK6 functional experiments

For validation of the bioinformatics results in vitro, we 
selected the risk factor CDK6. Changes in BLCA cell 

proliferation were observed by decreasing CDK6 expres-
sion using siRNA (Fig. 10a). In the CCK8 assay, the pro-
liferation of cells from the CDK6 knockdown group was 
lower than the normal group (Fig. 10b). The results in the 
EdU experiment were consistent with those of the CCK8 
experiment (Fig. 10c).

Discussion

Bladder urothelial cancer is a heterogeneous malignancy 
with a high likelihood of incidence and recurrence (Robert-
son et al. 2017; Lindskrog et al. 2021). Despite developing 
comprehensive treatment strategies for BLCA, there is still 
a lack of markers that can effectively diagnose it and guid-
ance for molecular targeted therapy and individualized treat-
ment. Based on PI3K pathway-related genes in this study, 
we divided BLCA patients into two subtypes using the NMF 
algorithm. Twenty-five co-expression modules were then 

Fig. 7   Construction and evaluation of nomogram. a Nomogram. b The nomogram calibration curves of 1-, 3-, and 5-year survival probabilities. 
c ROC curves. d DCA
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identified with WGCNA analysis, with the brown and green 
modules having the highest correlation with clusters 1 and 2. 
The biological functions and pathways that could be affected 
by the two modules were then analyzed.

We developed a prognostic score model from transcrip-
tome data using TCGA-BLCA and validated its stability in 
an external cohort using univariate Cox, LASSO-Co, and 
multivariate Cox analyses. This model included seven prog-
nostic factors (CDK6, EGFR, IGF1, ITGB7, PDGFRA, 
RPS6, and VWF). The patients were divided into subgroups 
according to their stage, age, and sex to test whether the 
model would determine the outcome. The nomogram based 
on clinical parameters and risk had better predictive abil-
ity than risk and independent clinical parameters. We found 
that M2 macrophages highly correlated with CDK6 and risk, 
and CDK6 and risk were associated with status, T-stage, 
estimate score, immune score, stromal score, and various 
inflammatory factors. A prognostic model of five lncRNAs 
was established using univariate and multivariate Cox pro-
portional hazard regression and has an excellent predictive 
ability (Liu et al. 2022). After screening prognostic factors 

using univariate regression analysis, an eight-m5C-related 
LncRNA risk model was constructed using the LASSO-Cox 
regression method to predict outcomes (Yuan et al. 2021). 
Univariate and LASSO-Cox regression analyses were used 
to establish an 11-lncRNA signature for predicting outcomes, 
and then, the signature was validated in all tests (Gao et al. 
2021). A novel immune-related lncRNA signature was also 
constructed using the univariate and LASSO-Cox regression 
method. The AUCs of the signature were high, demonstrating 
the excellent ability to predict outcomes (Liu et al. 2021). The 
method of our constructed model was similar to the methods 
mentioned above. Our model was established using multivar-
iate Cox regression analysis after screening genes associated 
with outcomes using univariate and LASSO-Cox regression 
analysis. A series of evaluations of the model showed that it 
also has an excellent ability to predict patients’ prognoses.

CDK6 overexpression has been found in several cancers, 
and tumor drug resistance increases when CDK6 expression is 
elevated (Tadesse et al. 2015; Yang et al. 2017; Li et al. 2018; 
Cornell et al. 2019). Upregulation of ODK6 promotes the pro-
liferation of colon cancer (Liu et al. 2020), breast cancer (Leung 

Fig. 8   Immune microenvironment analysis. a, b Correlation of CDK6 expression or risk with status, stage, and various inflammatory factors. c, 
d Correlation of CDK6 expression or risk with the number of various immune cells
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and Potter 1987; Sherr 1996), and human hepatocellular car-
cinoma (Guo et al. 2018). Lanaya et al. suggested that EGFR 
can promote hepatocellular carcinoma (Lanaya et al. 2014), 
and Feng et al. suggested that EGFR can promote renal cell 
carcinoma (Feng et al. 2017). ITGB7 is involved in regulating 

adhesion (Ohguchi et al. 2016) and proliferation and glucose 
metabolism in cervical cancer (Chai et al. 2019).

IGF1 affects the incidence and mortality of tumors (Lev-
ine et al. 2014) and survival from breast tumors (Zhang 
et al. 2009). PDGFRA may be an anti-cancer drug target in 

Fig. 9   Drug sensitivity analysis. a–f Different CDK6 expression 
patients’ sensitivity to cisplatin (P < 0.001), gemcitabine (P < 0.001), 
methotrexate (P > 0.05), mitomycin C (P < 0.001), paclitaxel 
(P < 0.001), and vinblastine (P < 0.001). g–l Different risk patients’ 

sensitivity to cisplatin (P < 0.001), gemcitabine (P < 0.001), metho-
trexate (P > 0.05), mitomycin C (P > 0.05), paclitaxel (P < 0.01), and 
vinblastine (P > 0.05)
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gastrointestinal cancer (Yin et al. 2020). RPS6 may be an 
independent prognostic marker for metastatic renal cell carci-
noma (Fang et al. 2017). Aryal et al. suggested that VWF may 
be an independent predictor of early hepatocellular carcinoma 
recurrence (Aryal et al. 2019) and be negatively related to 
ovarian, bladder, and colon cancers (Wang et al. 2005).

Immune cell expression analysis indicated that CDK6 expres-
sion level and risk positively correlated with M2 macrophages, 
which promote tumor development, progression (Zhao et al. 

2020), and poor outcome (e.g., in colon cancer (Cheng et al. 
2018)). The inflammatory response can accelerate cancer pro-
gression (Colaprico et al. 2020). IgG mediates inflammatory 
responses, promoting tumor metastasis (Stamatiades et al. 2016) 
(e.g., in pancreatic cancer (Chen et al. 2019)). Excessive release 
of pro-inflammatory cytokines promotes the occurrence and 
metastasis of BLCA (Luo and Xu 2020). These findings suggest 
that higher CDK6 expression and risk are associated with higher 
IgG quantity. Our results agree with these findings.

Fig. 10   Functional analysis of CDK6 in BLCA cells. a Relative 
protein level of CDK6 in UMUC3 cells after CDK6 was knock-
down. β-Tubulin served as loading control. b The effect of CDK6 
on the proliferation of UM-UC-3 cells was measured using a CCK-8 

assay. c The effect of CDK6 on the proliferation of UM-UC-3 cells 
was observed using an EdU assay. To determine whether there was 
a significant difference between groups, the t test was used and was 
expressed as the mean ± standard deviation
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Cisplatin and gemcitabine are first-line chemotherapeutic 
agents for BLCA and improve overall survival (Moufarij et al. 
2003; Boulikas and Vougiouka 2004; Crabb and Douglas 2018; 
Hayashi et al. 2020). Methotrexate, vinblastine, and cisplatin are 
safe and effective adjuvant therapeutic agents for muscle-inva-
sive BLCA (Plimack et al. 2014). Mitomycin C treats superficial 
BLCA and prevents recurrence and progression (Ayyildiz et al. 
2007). Paclitaxel is used to treat patients with metastatic BLCA 
(Jacobs et al. 2010). Cisplatin, gemcitabine, mitomycin C, pacli-
taxel, and vinblastine may be more effective for patients with 
high-CDK6 expression. Cisplatin, gemcitabine, and paclitaxel 
may be more effective for high-risk BLCA, while methotrexate 
may be effective for low-risk BLCA.

Although this study relied on transcriptome data from 
many samples and experimental validation, it has limita-
tions. Previous researchers provided the data, and compre-
hensive, in-depth clinical studies are needed before clinical 
application. In addition, more cohorts are needed to validate 
the model’s stability.

Conclusions

We constructed a robust seven-gene prognostic risk model and 
validated it using an external dataset. The biological impact 
of genes on BLCA was identified. The number of M2 mac-
rophages and IgG levels positively correlated with the expres-
sion of CDK6 and risk. BLCA patients were grouped based on 
the expression of CDK6 and risk, and drugs that may be more 
sensitive in different groups were identified. The proliferation 
ability of BLCA cells was reduced when the expression of 
CDK6 was reduced. CDK6 is a potential biomarker that is 
involved in the proliferation of BLCA. To predict outcomes 
in BLCA, we recommend this seven-gene signature.
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