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Abstract: Polysaccharide matrices formed via thermoinduced sol–gel phase transition are promising
systems used as drug carriers and minimally invasiveness scaffolds in tissue engineering. The strong
shear field generated during injection may lead to changes in the conformation of polymer molecules
and, consequently, affect the gelation conditions that have not been studied so far. Chitosan (CS)
and hydroxypropyl cellulose (HPC) sols were injected through injection needles (14 G–25 G) or
sheared directly in the rheometer measuring system. Then the sol–gel phase transition conditions
were determined at 37 ◦C using rheometric, turbidimetric, and rheo-optical techniques. It was found
that the use of low, respecting injection, shear rates accelerate the gelation, its increase extends the
gelation time; applying the highest shear rates may significantly slow down (HPC) or accelerate
gelation (CS) depending on thixotropic properties. From a practical point of view, the conducted
research indicates that the use of thin needles without preliminary tests may lead to an extension of
the gelation time and consequently the spilling of the polymeric carrier before gelation. Finally, an
interpretation of the influence of an intensive shear field on the conformation of the molecules on a
molecular scale was proposed.

Keywords: injectable hydrogels; thermoinduced gelation; HPC; chitosan; orthokinetic aggregation;
perikinetic aggregation; shear-induced molecules deformation

1. Introduction

Recently, in the biomedical engineering field, a growing interest in innovative methods
of treatment and regeneration has been observed [1]. Injectable hydrogels [2–4] obtained
from natural and synthetic polymers may provide a very promising solution. Interest
in these systems results from their lower invasiveness compared to implantation scaf-
folds, reduced risk of infection and scarring, as well as better filling of difficult, irregular
defects [5]. Moreover, due to their similarity to the extracellular matrix [6,7], polymer
hydrogels are an excellent scaffold for cell adhesion and transport of active substances such
as growth factors.

Depending on the form of the formulation before and after administration, as well
as the mechanism of creating an unlimited polymer structure, three groups of materials
are distinguished: shear thinning injectable gels, self-assembling suspensions of solid
particles, and in situ gelling liquids [8]. The latter creates a three-dimensional polymer
matrix directly in the body as a result of the sol–gel phase transition induced by one or a
combination of different stimuli [9,10], the most common temperature changes [11–13]. Be-
fore and during the application, such systems remain in a liquid sol form, which, according
to most researchers, should ensure the possibility of their injection [4]. However, there is
no instrumental research confirming this thesis. Additionally, thermosensitive injectable
hydrogels should be characterized by a lower critical solution temperature (LCST) [14,15]
which would ensure the formation of a lattice upon heating. The most frequently discussed
materials in the literature that fulfill this requirement are systems made of polysaccharides
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like chitosan [16–18], cellulose derivatives such as HPC [19–21], HPMC [22,23], and syn-
thetic polymers, e.g., PNIPAAM [24] and PLGA [25]. Such systems are often subject to
further modifications leading to the improvement of mechanical properties [18,26,27].

The injection application, although minimally invasive for the patient, involves the
flow of the polymer sol through the capillary under high shear rates conditions [28,29]. Rył
and Owczarz [28] showed that during the flow of Newtonian liquid injected at a typical
manual injection rate of 1 mm/s [30,31], the observed shear rate ranges from approx. 200 to
over 43,000 s−1 (depending on the needle diameter) or even 55,000 s−1 taking into account
the strongly shear-thinned nature of polymer systems. As a consequence, high shear
stresses are generated which may affect the spatial conformation of the polymer molecules
including their arrangement along the streamlines The previous authors’ research [32] has
shown that the spatial conformation of biopolymer molecules will strongly depend on the
applied shear field, its direction and magnitude.

Despite the phenomenon of ordering polymer chains under the influence of the shear
field, which has been repeatedly reported [33–35], the results of studies discussing the
impact of these changes on the possibility of creating an unlimited lattice, gelation condi-
tions, and the mechanism have not been published so far. This discussion is most often
limited to the shear-induced phase separation of polymer systems, the solidification of
which is observed under the influence of the shear field and the production of the necessary
mechanical work [36]. In this case, no other trigger is observed that could lead to phase
separation. In addition, the cited studies on polymer systems mostly use moderate shear
rate values (up to 100 s−1), which do not correspond to the values during the injection.
Dunderdale and co-authors [37] showed that in the case of metastable aqueous PEO solu-
tions, the hydration sheath ruptures under the influence of the shear field. Consequently,
this leads to the formation of hydrophobic interactions and proper crystallization.

The shearing of colloidal systems such as emulsions and silicas can also lead to
aggregation in the orthokinetic regime, which accelerates the formation of the spatial
structure compared to aggregation limited only by stochastic Brownian motion by lowering
the energy barrier. Moreover, under the influence of the velocity gradient, the structures
may be reorganized, including their fragmentation and changing the cluster dimension by
breaking it up [38–42].

Shear effect under injection conditions have been discussed in detail for proteins [43].
It has been proven in numerous studies that flow-induced structural changes [44], in-
cluding aggregation caused by destabilization of the native conformation of proteins,
exposing functional groups leading to the generation of hydrophobic interactions could be
observed [45,46]. Consequently, these changes can lead to the reversible and irreversible
deactivation of enzymes. The former is triggered by the deformation of the molecules
along the shear field, whereas the latter is caused by the destruction of the tertiary protein
structure [47]. Overall, in the case of protein systems, this effect depends on the intensity
of the shear field as well as its duration.

This study aims to investigate the effect of the short-term flow of polysaccharide
sol under high shear rates conditions on the possibility of creating an unlimited polymer
network. It has been hypothesized that shear-induced changes in molecular conforma-
tion, including fragmentation, occurring during an injection would negatively affect the
aggregation kinetics or even completely prevent the lattice formation. Simultaneously, the
mechanical energy generated as a result of shearing may constitute an additional source of
energy supplied to the system to induce an endothermic sol–gel phase transition.

2. Results
2.1. Preliminary Studies of Hydroxypropyl Cellulose Colloidal Suspension

Due to the key requirement of thermosensitive injectable scaffolds forming a three-
dimensional lattice in the human body, the polymer concentration was first optimized,
which strongly determines the LCST value. Based on the obtained results under non-
isothermal conditions, the gelation point was defined at the temperature at which the
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storage modulus G′ and loss modulus G′ ′ reached the same value. Figure 1a shows the
dependence of the gelation temperature on the polymer concentration. A 10% HPC solution
was selected for further research, which reached the phase transition point at a temperature
of approx. 30 ◦C, thus ensuring the appropriate kinetics of forming the spatial structure
and preventing gelation during the application.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 23 
 

 

2. Results 
2.1. Preliminary Studies of Hydroxypropyl Cellulose Colloidal Suspension 

Due to the key requirement of thermosensitive injectable scaffolds forming a three-
dimensional lattice in the human body, the polymer concentration was first optimized, 
which strongly determines the LCST value. Based on the obtained results under non-
isothermal conditions, the gelation point was defined at the temperature at which the 
storage modulus G’ and loss modulus G” reached the same value. Figure 1a shows the 
dependence of the gelation temperature on the polymer concentration. A 10% HPC 
solution was selected for further research, which reached the phase transition point at a 
temperature of approx. 30 °C, thus ensuring the appropriate kinetics of forming the spatial 
structure and preventing gelation during the application. 

 
Figure 1. (a) Dependence of gelation temperature of HPC on polymer concentration. (b) Flow curve of a 10% HPC solution 
at 20 °C. 

Based on the obtained flow curves presented in Figure 1b, it has been shown that the 
10% colloidal HPC suspension exhibits non-Newtonian behavior. The determined degree 
of shear thinning is lower (n = 0.7) than in the case of chitosan systems (n = 0.44) [28]. It is 
worth noting that after exceeding the value of the shear rate equal to 3160 s−1, the values 
of the shear stress decrease, which is inconsistent with the measurement theory. It may 
suggest that permanent structural changes occur in the tested system, and it is impossible 
to unequivocally assess the properties above the indicated shear rate. 

2.2. Instrumental Injectability Tests 
Figure 2 shows the results of instrumental injectability tests. It is evident that, 

regardless of the origin of the chitosan, both tested systems are injectable with 14 G–25 G 
needles, and the higher molecular weight of the polymer causes a slight increase in the 
value of the dynamic glide force DGF. The value recommended for injection is 
significantly exceeded in the case of the use of 23 G and 25 G needles, while not reaching 
the value of 40 N, considered the maximum possible force to be generated based on panel 
tests [48]. In the case of the HPC-based system, using a typical crosshead speed 
corresponding to manual injection equal to 1 mm/s, the value of the recommended 
dynamic force DGF does not exceed 20 N when using needles larger than 20 G. When 
smaller needles are used, this value increases rapidly and reaches the maximum allowable 
force for the 22 G needle. Attempts at instrumental injectability analysis for smaller 
needles were unsuccessful due to the allowable load on the apparatus. Simultaneously, a 
force value of 40 N is considered the maximum force value that can be generated during 
an injection application by medical staff [49]. This means that compared to chitosan 

Figure 1. (a) Dependence of gelation temperature of HPC on polymer concentration. (b) Flow curve
of a 10% HPC solution at 20 ◦C.

Based on the obtained flow curves presented in Figure 1b, it has been shown that the
10% colloidal HPC suspension exhibits non-Newtonian behavior. The determined degree
of shear thinning is lower (n = 0.7) than in the case of chitosan systems (n = 0.44) [28]. It is
worth noting that after exceeding the value of the shear rate equal to 3160 s−1, the values
of the shear stress decrease, which is inconsistent with the measurement theory. It may
suggest that permanent structural changes occur in the tested system, and it is impossible
to unequivocally assess the properties above the indicated shear rate.

2.2. Instrumental Injectability Tests

Figure 2 shows the results of instrumental injectability tests. It is evident that, re-
gardless of the origin of the chitosan, both tested systems are injectable with 14 G–25 G
needles, and the higher molecular weight of the polymer causes a slight increase in the
value of the dynamic glide force DGF. The value recommended for injection is significantly
exceeded in the case of the use of 23 G and 25 G needles, while not reaching the value of
40 N, considered the maximum possible force to be generated based on panel tests [48].
In the case of the HPC-based system, using a typical crosshead speed corresponding to
manual injection equal to 1 mm/s, the value of the recommended dynamic force DGF does
not exceed 20 N when using needles larger than 20 G. When smaller needles are used,
this value increases rapidly and reaches the maximum allowable force for the 22 G needle.
Attempts at instrumental injectability analysis for smaller needles were unsuccessful due
to the allowable load on the apparatus. Simultaneously, a force value of 40 N is considered
the maximum force value that can be generated during an injection application by medical
staff [49]. This means that compared to chitosan systems, the HPC sol is more difficult to
inject due to its less shear thinning nature and higher apparent viscosities. Nevertheless,
with the use of sufficiently large needles (preferably not smaller than 19 G), the injection
should be successful.
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Figure 2. Effect of injection needle size on the value of DGF force for crab-derived chitosan
(CS_CRAB) [28], shrimp-derived chitosan (CS_SHRIMP), and HPC systems.

2.3. Kinetics of the Sol–Gel Phase Transition after Shear

The influence of the injection application on the conditions of aggregation limited
solely by stochastic Brownian motion, the so-called perikinetic aggregation regime, was
determined firstly based on changes in a transmitted signal versus time—Figure 3a. It
can be seen that regardless of the needle used during the injection preceding the actual
sol–gel phase transition, the experimental curves assume the shape typical of progressive
aggregation accompanied by an increase in opacity limiting light transmission. Similar
changes were observed in the case of cellulose derivatives such as HPC [20,21], MC, and
HPMC [23] as well as in the authors’ earlier works on chitosan systems [32,50]. In order to
quantify the phase transition conditions, the experimental data were normalized to obtain
the relative transmission parameter (Figure 3b); the time in which this parameter reached
50% determines the characteristic time of the phase transition [20,21,50].
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The dependence of the T50 time on the shear rate occurring in injection needles is
shown in Figure 3c. Based on the obtained data, it can be seen that regardless of the needles
used, the initial, short-term shearing interval accelerates the aggregation, compared to
the control sample when the characteristic time was 2409 s. In the case of low shear rates,
concerning injection, the gelation time was slightly more than 50% of the control time. With
the use of smaller needles, which increase the shear rate, the critical time increases until
the maximum value for the 21 G needle (approx. 7380 s−1) is reached, and then decreases
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again. The critical value of the shear rate of
.
γ = 5130 s−1, the exceeding of which causes

the observed changes, was determined as the extreme of the function approximating the
experimental data, which, due to the course of the experimental points, took the form of a
second-degree polynomial.

Due to the significant influence of the aggregation regime on the gelation conditions,
which was demonstrated in the previous work of the authors [32], the conditions for
forming a three-dimensional polymer network in the rheometer measurement system were
determined. As in the case of aggregation in the perikinetic regime, injecting chitosan sol
through any needle significantly accelerates the gelation point (Figure 4a), determined at
the point where the values of dynamic modules are equalized. Injection through the largest
of the needles used (14 G) leads to a nearly four-fold reduction in the time after which
the intersection of the storage modulus G′ and the loss modulus G′ ′ curves is observed.
It is again visible that with the increase of the shear rate the gelation time is lengthened
until the critical shear rate value of 4361 s−1 is reached; then the time needed to change the
dominant properties of the chitosan sol (from viscous to elastic) is shortened again.
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pre-shear realized directly in the measuring system of the rheometer for crab-derived chitosan.

It should be noted that due to the use of classic literature methods for determining
the gelation time, it is not possible to directly compare the obtained results for different
aggregation regimes. This is due to the fact that both methods used define points located
in other areas of the generalized dynamics curve of characteristic quantity changes during
the sol–gel phase transition [50].

Despite the best mapping of the actual conditions of forming the polymer matrix after
injection, the application of the above methodology is associated with certain technical
inconveniences and the necessity to use, among others, an infusion pump with precisely
set flow parameters corresponding to manual injection. For this reason, it was decided to
map the shear conditions directly in the rheometer measuring system by using an initial
rotational interval before the proper measurement of the thermoinduced sol–gel phase
transition kinetics. As shown in Figure 4b, the dependence of the gelation time as a function
of the applied shear rate is again a non-monotonic function with clear extremes occurring at
the shear rate equal to

.
γ = 2908 s−1. Despite the satisfactory mapping of the experimental

data and consequently shape of the approximating function, when using the initial shear
interval, slight differences are observed due to the way the sample is sheared. Moreover,
the critical shear rate value determined is significantly lower than the other two obtained
after a conventional injection. This may be due to the inability to apply shear rates above
15,000 s−1 because of rheometer limitations, which consequently prevents obtaining more
measurement data in the range of high shear rates.
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2.4. Comparison of Aggregation Conditions in the Regimes of Perikinetic and Orthokinetic after
Short-Term Shear

As mentioned above, the use of classical methods for determining the gelation time or
the characteristic time of turbidimetric measurements prevents quantitative comparison
of aggregation conditions. It is known that the method commonly used in rheometric
measurements, based on the equalization of the values of the dynamic modules G′ and
G′ ′, only defines the point at which the change of the dominant properties of the medium
from viscous to elastic is observed. This point indicates the beginning of the fast gelation
area, exceeding which is associated with a rapid increase in the value of both dynamic
modules-even by several decades [51]. Whereas the T50 time, i.e., the time when the relative
transmission reaches 50%, will be observed in the half of the fast gelation region. This
means that completely different states of the structure would be compared, and the time T50
itself, by definition, will be longer. Owczarz et al. [50] suggested the possibility of replacing
the relative transmission value by the total destabilization index TSI, the shape of which
takes the form of the letter S, characteristic of dynamic changes of selected rheological or
optical values during the gelation process. The influence of the injection needle used on
the kinetics of changes of the TSI parameter versus time is presented in Figure 5.
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Figure 5. Kinetics of changes of the TSI parameter versus time depending on the needle used for
crab-derived chitosan.

In previous studies, for the quantitative analysis of the sol–gel phase transition con-
dition using TSI curve, the authors proposed a method of determining the characteristic
time in analogy to the one presented by Rwei [20] and Gosecki [21] in which the relative
TSI reaches 50% [50], or a graphical method based on the intersection point of two lines
passing through the induction area and the fast gelation region [32]. In order to take into
account the kinetics of changes in the fast gelation region as well as to avoid one-point
analysis, it was decided to further develop the above methods. For this purpose, the fast
gelation region was described by an exponential function which in most theoretical models
describes the area of rapid changes during progressive aggregation [50,52]. Contrary to the
literature, the initial changes were described by a linear function, not by one averaged value
of the parameter. As shown in Figure 6a, the point of intersection of both approximating
functions determines the characteristic point of the phase transition. Figure 6b shows the
dependence of the characteristic time on the shear rate, which is a non-monotonic function
with a clear extreme occurring at the shear rate equal to

.
γ = 3428 s−1.
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The rheological data was described analogously; the analyzed value was the storage
module G′ representing the formation of the polymer network. Regardless of the aggre-
gation regime and the type of the applied shear field in the initial interval, the course of
the experimental data (Figure 7) is identical to those determined based on classic liter-
ature methods. In all cases, the obtained characteristic times after pre-shear are shorter
than those determined for the control measurements. In the case of aggregation in the
orthokinetic regime, the critical value of the shear rate in the case of injection through the
needle is
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shear rate for perikinetic aggregation (blue), orthokinetics preceded by injection (red), and ortokinetics
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Based on the obtained data, it can be unequivocally stated that the gelation carried
out in the rheometer measuring system proceeds much faster than that induced solely by
stochastic Brownian motion. The determined times in the orthokinetic regime are almost
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three times shorter than those obtained for aggregation in the perikinetic regime. Thus, the
obtained data are in line with literature reports for colloidal systems [38–42].

2.5. Aggregation Conditions of Shrimp Chitosan in the Peri- and Orthokinetic Regimes after
Short-Term Shear

Figure 8 shows the results obtained for chitosan sol characterized by a higher molecular
weight. In the case of studies conducted in the orthokinetic aggregation regime preceded by
the injection of the experimental medium, a non-monotonic dependence of the gelation time
on the shear rate was again observed, and the approximating function of the experimental
data reaches its extreme at a shear rate of 7730 s−1. The longest gelation time equal to 561 s
was obtained using a 21 G needle (

.
γ = 7380 s−1) in which the shear rate values during the

flow are closest to the critical value, while for the control measurement it was the value
of 798 s. Thus, the beneficial effect of injections on the sol–gel phase transition conditions
was again observed. In the case of applying the initial shear interval directly in the
measuring system of the rheometer, slightly different results were obtained. Although the
application of an initial shear interval of any intensity accelerates the phase transition, the
dependence of the determined gelation time on a log-linear scale is a straight line. It turns
out that presenting the obtained results in a classical linear scale enables the interpolation
of the experimental data with a second-degree polynomial, and the experimental data
are arranged along one increasing curvature of the parabola. Based on the determined
coefficients of the polynomial, the critical shear rate at which the extremum is predicted is
.
γ= 19,200 s−1. It should be noted that this value exceeds the measuring range of the device
declared by the manufacturer; therefore, the obtained value must be approached with
caution. Such a significant difference, compared to the results obtained for crab-derived
chitosan, may result from the lower invasiveness of the initial shear interval directly in the
rheometer measuring system, including the deviation from the Poiseuille flow.
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derived chitosan.

The dependence of the characteristic time, determined based on the proprietary
method, on the shear rate in the initial interval, and in particular, the effect of accelerating
the gelation process as well as the course of experimental data, are consistent with the
results obtained using the method of equalizing the values of dynamic modules. Based
on the interpolation of the obtained results, the critical values of the shear rate were
determined during injection through the needle and using the initial shear interval directly
in the rheometer measuring system were 8589 s−1 and 16,375 s−1, respectively. As in the
case of the analysis based on the literature methods of determining the phase transition
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point, the value of the critical shear rate for aggregation in the orthokinetic regime preceded
by the rotational interval in the rheometer must be analyzed with great care due to the
exceeding of the measuring range of the instrument.

Figure 9 shows the results of measurements carried out in the perikinetic aggregation
regime. Compared to the sol obtained from a lower molecular weight polymer, the charac-
teristic decrease in transmission values associated with the phase transition was observed
after a longer period, indicating a slower aggregation process leading to the formation of a
three-dimensional polymer network. Based on the analysis of the change in the relative
transmission parameter, it can be seen that the injection has a much smaller effect on the
time when the T50 parameter reaches the value of 50%. Due to the slight differences of
about 10% with such long characteristic times, it seems unjustified to analyze the depen-
dence of the characteristic time on the shear rate occurring in the injection needle. Small
changes in the experimental curves may result from the limiting effect of slow aggregation
kinetics, which masks the influence of pre-shear.
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As in the case of crab-derived chitosan, the change in the total destabilization index
TSI (Figure 10a) of the system was analyzed to take into account changes in the both signals
values of transmitted as well as those backscattered from colloidal particles. The obtained
data were used for further analysis leading to the determination of the dependence of
the characteristic time on the shear rate (Figure 10b), which again takes the form of a
non-monotonic function with a clear extreme. In the case of the control measurement,
the obtained characteristic time value was 2474 s; about 2.5 times longer than for crab
chitosan and six times longer than for aggregation of shrimp chitosan in the orthokinetic
regime. When the largest 14 G injection needle was used in which the flow takes place
under conditions of low shear rates (

.
γ = 245 s−1), the value of the characteristic time was

914 s. The increase in shear rate due to the use of a smaller injection needle resulted in
longer gelation, characteristic time until the extreme (

.
γ = 8320 s−1) was reached with the

21 G needle. During the flow through this needle, the shear rate was 7380 s−1, and the
characteristic time was 2241 s. The use of needles with a smaller diameter again shortens
the characteristic time.
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2.6. Aggregation Conditions of Hydroxypropyl Cellulose in the Peri- and Orthokinetic Regimes
after Short-Term Shear

Figure 11 shows the results for the hydroxypropyl cellulose sol. It is visible that the use
of large needles (14 G–16 G) accelerates the gelation, but the intensity of this phenomenon
is weaker than in the case of chitosan systems. The use of an 18 G needle results in a
gelation time almost identical to that in the measurements, 461 s and 458 s, respectively.
Injection of the HPC sol through the smaller needles, i.e., 20 G and 21 G, increased the
time needed to reach the damping factor value of tan(δ) = 1. Due to the inability to inject
the medium through needles smaller than 21 G (Figure 2), it was impossible to determine
the effect of applying a shear rate higher than 6200 s−1 on the gelation conditions. When
using the initial rotational interval preceding the aggregation of the polymer system using
a log-linear scale, a linear dependence of the gelation time on the value of the shear rate
is visible. Applying shear below

.
γ = 1560 s−1 shortens the time needed to equalize the

values of the storage G′ and the loss G′ ′ moduli, while the use of higher shear rates slows
down the process significantly; in the extreme case, more than twice-for

.
γ = 10,000 s−1

gelation time was 973 s, while for the control-452 s. As in the case of shrimp chitosan,
the presentation of the obtained data on a linear scale enables their interpolation with a
second-degree polynomial and, consequently, the determination of the critical shear rate
equal to

.
γ = 11,166 s−1. Due to the limitations of the rotational rheometer as well as the

inability to inject HPC through small needles, it is not possible to unequivocally determine
the behavior of the tested system using higher than critical shear rates.

The results of the measurements carried out in the perikinetic aggregation regime
are shown in Figure 12. Based on slight changes in the transmission values obtained at
37 ◦C, it can be stated that the gelation process does not occur. Only a change in the
environmental conditions by heating the measuring chamber to 40 ◦C after about 8 h
of measurement causes a rapid decrease in the value of the analyzed signal. Due to the
inability to precisely control the heating rate, it was considered unjustified to conduct
further quantitative analysis of the phenomenon. Simultaneously, based on the obtained
results, it was unequivocally demonstrated that, despite the possibility of determining
gelation times based on the equalization of the values of dynamic modules, aggregation
limited only by stochastic Brownian motion does not occur during the measurement carried
out under the same conditions, i.e., temperature.
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2.7. Reo-Optical Analysis of Thixotropic Properties

Due to the significant influence of the shear field on the phase transition conditions of
the investigated formulations, an attempt was made to determine the changes in thixotropic
properties after injection using classical rheological techniques combined with a parallel
small-angle light scattering analysis, the so-called Rheo-SALS technique [41,51,53]. When
monitoring the dynamics of the sol–gel phase transition phenomenon induced by envi-
ronmental stimuli, the key value in the analysis is the storage modulus G′ representing
the elastic properties of the medium; its rapid growth is identified with the formation of a
spatial polymer network. Consequently, to precisely analyze the changes caused by the
injection, it was decided to perform three-interval thixotropic tests [54] in the oscillation-
rotation-oscillation mode. In the rotation mode, the shear rate range encountered during
the injection [28] was used.
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Figure 13 shows the change in the course of the storage modulus G′ versus time
for the characteristic values of the shear rate. It is visible that the highest values of the
G′ modulus were obtained for crab-derived chitosan sol (G′ = 2.2 Pa). The chitosan sol
obtained from the higher molecular weight polymer had slightly lower storage modulus
values of about 2 Pa. It was found that in the case of chitosan systems, despite slightly
different initial values of the dynamic modulus, after the rotational shear interval, both
systems are characterized by almost the same elastic properties. The most significant
differences are seen when measured with a shear rate of 8000 s−1. In this case, after
applying the rotational shear interval, the storage modulus G′ values are higher for the
polymer sol obtained from crab-derived chitosan. Based on the test results obtained, in
particular the low values of the storage modulus of about 0.10–0.15 Pa, it was shown that
the tested HPC solution has poor elastic properties and can store a small amount of energy
in each deformation cycle. To quantify the changes in thixotropic properties caused by
the varying shear rate in the second rotational interval, the deformation and recovery
parameters determined for chitosan systems were analyzed (Figure 14). This analysis was
not presented for the systems obtained from hydroxypropyl cellulose due to the almost
unchanged elastic properties with simultaneous low values of the storage modulus, which
could lead to a misinterpretation of the phenomenon.
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chitosan (black), shrimp-derived chitosan (red), and HPC (blue) systems.
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In the case of crab-derived chitosan sol, it is visible that the course of both thixotropic
parameters changes is again a non-monotonic dependence on the value of the shear rate.
The use of the lowest shear rate of 200 s−1 in the rotational interval results in a slight
deformation of 20% and the recovery of the structure in 95%. With the increasing shear rate,
an increase in deformation is observed with a simultaneous gradual decrease in the degree
of structure recovery. After reaching the extremum at

.
γ = 3219 s−1 determined based on

the maximum value of the approximating function, the deformation value decreases with a



Int. J. Mol. Sci. 2021, 22, 13208 13 of 22

simultaneous increase in the degree of structure recovery 30 s after the end of the rotational
interval. At the experimental point closest to the critical shear rate, i.e., for a shear rate
of

.
γ = 3000 s−1, both thixotropic parameters reach a value of about 58%. In the case of

chitosan sol with a higher molecular weight, the change in the parameters of the three-
interval thixotropic test was presented on a linear scale, similar to the dependence of the
gelation time on the shear rate used in the initial interval (Figure 8b). It was found that the
dependencies of both thixotropic parameters are quadratic functions of the applied shear
rate in the second test interval. In the range of low shear rates, the determined parameters
reach values similar to those calculated for the chitosan sol of lower molecular weight, i.e.,
the deformation reaches Def = 23% and the recovery Rec = 94%. With the increase of the
shear rate used in the second test interval, the value of the deformation degree increases,
while limiting the recovery of structure. After the highest shear rates (15,000 s−1) used had
subsided, the deformation degree reached 81%, while the medium rebuilt its structure by
52%. Thus, in both cases, the obtained dependencies are fully consistent with the results
determining the effect of the short-term rotation interval on the conditions of the sol–gel
phase transition (Figures 4b and 8b).

Figure 15 shows the scattering pattern obtained during the three-interval thixotropic
tests. It can be seen that for both chitosan systems, the presence of a unidirectional shear
field in the second test interval results in an anisotropic intensity distribution in both
directions; the intensity of these changes increases with the increase of the shear rate in
the second interval. The observed differences between the systems result from an abrupt
change in the anisotropy of the intensity distribution and a significant increase in the
scattering area. In the case of crab-derived chitosan, such a change already occurs at a shear
rate of 2000 s−1 (Figure 15c), while for shrimp-derived chitosan it is observed at a shear
rate of 15,000 s−1 (Figure 15k). In the last case, for a shear rate value below 15,000 s−1,
deformation of whole biopolymer molecules is observed, the intensity of which does not
increase as rapidly as in the case of crab-derived chitosan. It is extremely important that at
the end of the test, in each of the analyzed cases, the intensity anisotropy disappears, and
the obtained shapes of the scattering images are spherical. This means that the systems
returned to their original state despite the application of an intense shear field.
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Completely different patterns were obtained when examining the sol obtained from a
cellulose derivative. In this case, no significant differences are observed between consec-
utive images up to a shear rate of 2000 s−1. When using higher shear rates, the obtained
patterns are similar to those in studies on small dispersed systems under high shear con-
ditions [55]. The light was scattered multiple times during the measurements, due to the
appearance of many colloidal particles in the camera’s field of view. Moreover, unlike
chitosan systems, after the shear field has receded, the HPC structure does not return to its
pre-shear state.

3. Discussion

Colloidal polymer systems that undergo thermoinduced sol–gel phase transition are
considered to be very promising materials that can be used as injection drug carriers or
matrices supporting the tissue regeneration process. The most common requirements for
this group of materials, apart from their biodegradability and biocompatibility, are limited
to remaining in the form of a sol before injection, as well as gelation under physiological
conditions, with particular emphasis on temperature. Based on HPC studies, it has been
shown that providing a liquid form of the sol may prove insufficient, especially when
trying to use small injection needles (Figure 2), which would reduce the invasiveness of
the administration. A similar non-injectable effect may occur with longer needles where
the flow will result in greater pressure losses [28]. Thus, it seems reasonable to carry out
instrumental injectability tests each time injection systems are designed.

It has been shown that the flow of the polymer sol under the conditions of high
shear rates observed during injection causes a significant increase in shear stress, which
consequently affects the sol–gel phase transition conditions. However, this effect is neither
dependent on a single parameter, nor is it a purely linear function of the applied shear rate.
Based on the conducted research, three critical areas of the influence of flow conditions, i.e.,
shear rate, on the gelation kinetics, were determined and presented in Scheme 1.
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Regardless of the tested system and the method of shear in the initial interval, the
use of low, in the context of injection, shear rates of approx. 200 s−1, corresponding to
the flow through the 14 G needle, significantly shortens the time necessary to observe
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the gelation characteristic point. Acceleration of the structure formation will most likely
result from the synergistic effect of molecular, diffusion, and thermal changes. Under the
influence of a short-term shear pulse, the polymer coils will loosen, and thus the access
to the junctions zones will be facilitated [32]. This phenomenon, observed as an increase
in the size of the molecules, is particularly visible for the crab-derived chitosan sol by
reducing the light scattering area (Figure 15b), which, according to the scattering theory,
indicate a larger colloidal particle size [51,56]. Moreover, due to the shear-thinned nature
of the test medium the apparent viscosity of the system will decrease, thus the diffusion
resistance will decrease, and consequently, the movements of aggregates will be intensified.
Eventually, during the initial shear interval, an additional amount of mechanical energy
will be supplied to the system, which will be converted into heat by dissipation, thus
reducing the necessary amount of energy supplied to the system during storage at 37 ◦C.
This thesis seems to be confirmed by changes in the initial values of the storage modulus
G′ as a function of shear rate, particularly well visible in the case of crab-derived chitosan.
It was found that the application of low shear rates increases the value of the G′ modulus
by about 25% compared to the control measurement. It is worth noting that this parameter
not only quantifies the elastic properties of the medium but is a measure of the energy
stored in the system.

The acceleration of the sol–gel phase transition for both systems may also result from
shear-induced precipitation of the polymer from the solution. Based on rheological studies
combined with the SANS scattering technique carried out for the von Willebrand factor, it
was shown that an increase in the rate above 2300 s−1 leads to the exposure of hydrophobic
domains in the protein; the observed changes are irreversible [57]. In analogy to the flow-
induced crystallization of the synthetic polymer (PEO) [37], in the case of the HPC-water
system, a moderate shear field may break the protective water sheath surrounding the
polymer chains [58]. While according to Supper’s theory [59], in the case of thermosensitive
colloidal chitosan systems with the glycerophosphate salts, the addition of a polyol salt
protects the polymer chain from precipitation at neutral pH by forming a protective shell.
This prevents the formation of hydrophobic bonds, the formation of which is indicated
as one of the mechanisms of thermoinduced sol–gel phase transition [60,61]. Therefore, it
seems that under the influence of shearing the protective sheath may break and lead to the
creation of aggregation nuclei [32,50].

As the shear rate increases, the time required for gelation to occur becomes longer.
This is due to the progressive deformation of polymer molecules along the streamline,
illustrated in the form of anisotropic intensity distributions of scattered light along two
perpendicular directions (Figure 15b–e,h–k). Quantitative parameters confirming this
thesis are changes in the value of deformation and the recovery determined based on the
results of 3ITT tests. As shown in Figure 14, both thixotropic parameters reach the value
of approx. 60% in the range of moderate shear rates observed during the injection. This
means that proper aggregation must be preceded by relaxation of the stresses. Therefore, it
can be assumed that the latter step will slow down the gelation process compared to the
application of a short-term low-intensity shear interval. On the other hand, the kinetics of
the sol–gel phase transition is still influenced by the phenomena described above, such as
the reduction of the diffusion resistance due to the decrease in the fluid viscosity.

It would seem that a further increase in the value of the shear rate used in the initial
shear interval would intensify the phenomenon of deformation of polymer molecules
and further delay the phase transition. Such a phenomenon was observed for the ther-
mosensitive sol obtained from cellulose derivative. Based on the analysis of the obtained
light scattering patterns, it can be concluded that biomolecules are fragmented induced by
mechanical stimuli, analogous to mechanical degradation caused by a short-term intense
compression, tension, and/or shear [62–64]. Similar phenomena have been thoroughly
described for protein systems. In the case of studies with the use of the von Willebrand
factor in the shear rate range 190–4761 s−1, the presence of a larger number of small multi-
meters indicating progressive fragmentation was found [65]. Moreover, in studies with
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β-lactoglobulins, it has been shown that both continuous shear, as well as a short-term shear
pulse, result in the production of fibers formation [66]. Wherein, a significant difference
was observed in the distribution of the length of the produced filaments, i.e., continuous
shear ensured a greater monodisperse. If the occurring fragmentation is irreversible, due
to the limited ability to rebuild the structure, the time necessary to observe the critical
point of the phase transition will be significantly longer (in the case of aggregation in the
orthokinetic regime (Figure 11)) or even impossible to achieve in the case of aggregation
induced solely by stochastic Brownian motion (Figure 12). In addition to the thixotropic
properties, the initial viscoelastic properties of the tested medium seem to be important,
with particular emphasis on the elastic properties, as well as the direct gelation mechanism.
In the case of the sol obtained by dissolving hydroxypropyl cellulose in water, the storage
modulus G′, identified with the properties of the polymer network, reached the values of
approx. 0.10–0.15 Pa. This means that the spatial structure of the research medium is very
poor and as a result of intense shearing (

.
γ > 3000 s−1) it is further weakened.

Different behavior is observed in the case of chitosan systems. As it has been shown
in the case of studies conducted for crab-derived chitosan sol, after reaching the 60%
degree of deformation and recovery at the shear rates of approx. 3200 s−1 (Figure 14a,b),
the characteristic time is shortened (Figure 7). It seems that similar to HPC, mechanical
degradation of molecules is observed under the influence of an intense shear field. However,
in this case, after the expiration of the short-term intense trigger, the system can form a
spatial structure due to better viscoelastic properties and significantly higher initial values
of the storage modulus G′. The shortening of the gelation time may result from the
progressive fragmentation leading to the reduction of the size of the molecules with a
simultaneous increase in their number. Consequently, a significant increase in the available
junction zones and aggregation nuclei is observed. In addition, due to the smaller size,
confirmed by rheo-optical tests, the transport of molecules in the continuous phase will
be easier both by diffusion (perikinetics) and convection (orthokinetics). This concept
is consistent with Alexander-Katz and Netz’s theory [67] concerning the instability of
collapsed polymers under the influence of the shear field. According to the theory proposed
based on numerical simulations at the molecular level, the unfolding of polymer chains
will occur as a result of the formation of a protrusion, which will then refold while reducing
the size of the molecules. This phenomenon will be observed when applying critical shear
forces that will dominate the interactions between the polymer chains and the cohesive
forces. A similar concept of shear-induced structural changes has been proposed for
proteins in which the tertiary structure would be destroyed [47]. In both of the above-
mentioned issues, the influence of, e.g., molecular weight and conformation of polymer
chains is still controversial.

Based on the test results obtained for both chitosan systems, it can be seen that the
molecular weight of the polymer is a parameter that significantly affects the value of the
critical shear rate, above which fragmentation of molecules may occur. Regardless of the
aggregation regime and the type of initial shear interval, in the case of using chitosan
of crab origin, the value of the critical shear rate was approx. 3200 s−1, while when
using chitosan with a higher molecular weight (of shrimp origin) it increased to approx.
8000 s−1 (during shearing in the needle) and 19,200 s−1 (shearing directly in the measuring
system of the rheometer). It should be noted that the last of the reported values was
determined based on extrapolation of the approximating function of the experimental data
and exceeds the range of applicability of the rheometer measuring system used. Due to the
similar size of both molecules, determined based on the rheo-optical studies, it should be
assumed that the chitosan chains with a higher molecular weight are much more tightly
packed, and consequently, it is possible to create more bonds between the functional groups.
Consequently, the higher molecular weight system has stronger cohesive properties, which
can only be dominated by using significantly higher shear forces than the lower molecular
weight polymer. Additionally, for a higher molecular weight polymer, the type of initial
shear interval used is much more important. Despite the satisfactory consistency of the
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obtained results for crab chitosan sols, it was shown that when the initial shear interval is
applied directly in the rheometer measuring system, the model curve has a more flattened
shape, which suggests a less invasive measurement and thus a less impact on the gelation
conditions. The lack of reaching the extreme value of the gelation time at the critical value
of the shear rate in the case of the shrimp-derived chitosan seems to confirm the lower
invasiveness of the shear carried out directly in the rheometer measuring system.

The last, extremely important aspect that can explain the differences in the gelation con-
ditions preceded by shear in both tested polymers may result primarily from interactions
at the molecular level and different mechanisms of forming an unlimited polymer network.
It is known that in the case of purely physical thermoinduced sol–gel phase transition, an
example of which is HPC gelation [19], the gel produced is much less stable, and the process
itself is fully reversible, unlike the two-stage aggregation of chitosan systems, during which
diffusion-limited aggregation is preceded by reaction-limited aggregation [32,68].

It was unequivocally demonstrated that the initial shear interval significantly affects
the conditions of the sol–gel phase transition of polymer systems. Moreover, from the
administration point of view and the gelation conditions, the use of the needles with
the largest diameter, e.g., 14 G–16 G, seems to be the most advantageous. Unfortunately,
compared to thinner needles, the patient’s discomfort during application will be much
greater, but still this administration method will be less invasive than the implant scaffolds.
Based on the precise instrumental tests, both the injectability as well as the conditions of
polymer structure formation after application, it can be noticed that the chitosan-based
systems are an ideal injection matrix due to the possibility of administration with the
use of thin needles and simultaneous rapid phase transition inside the human body. A
practical aspect of the conducted research is the indication that the use of needles with
small diameters without preliminary tests may lead to an extension of the phase transition
time and, consequently, the spilling of the polymeric carrier before gelation. Finally, it
was confirmed that maintaining a liquid form of the sol does not ensure the possibility of
injection of a given system, and the determined times of the sol–gel phase transition using a
rheometer are much shorter than in the case of aggregation at rest, e.g., in a heating chamber.
In the extreme case, as shown for HPC, despite the occurrence of the phase transition point
in the rheometer measurement system, aggregation without an imposed flow is impossible.
This is due to different aggregation regimes, orthokinetics, and perikinetics, respectively.

The conducted research provides so far unpublished reports on the influence of the
shear field on the conditions of thermoinduced sol–gel phase transition determined by the
proposed direct and indirect research methods.

4. Materials and Methods

The studies used chitosan of crab (Sigma Aldrich, Poznan, Poland, product No. 50494)
and shrimp (Sigma Aldrich, Poznan, Poland, product No. 50494) origin with different
molecular weight, hydroxypropyl cellulose (Sigma Aldrich, Poznan, Poland, product
No. 191884), hydrochloric acid (Fluka Analitycal provided by Alchem, Torun, Poland,
product number: 84415), and disodium β-glycerophosphate (Sigma Aldrich, Poznan,
Poland, product No. 50020).

4.1. Preparation of Thermosensitive Hydrogels

A total of 400 mg of chitosan was dissolved in 16 mL of 0.1 M hydrochloric acid
solution and left for 24 h at room temperature. Subsequently, a suspension of disodium
β-glycerophosphate (GP) was prepared by dispersing 2 g of the powder in 2 mL of distilled
water. Then, both systems were cooled separately for 2 h at 4 ◦C to finally introduce the GP
suspension drop by drop into the polymer solution. The obtained material, in accordance
with the commonly used preparation [16], was stored in the refrigerator for another 24 h
before the actual measurement.

Powdered hydroxypropyl cellulose was dissolved in distilled water to obtain 5 to
20% solutions, and then left for 48 h at room temperature to completely dissolve the
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polysaccharide. After carrying out the preliminary rheological characterization, the optimal
concentration of the HPC solution equal to 10% was selected and the system was directed
to the proper study of the injection influence on the phase transition conditions.

4.2. Rheological Analysis-Research Apparatus

Rheological tests were carried out with the use of an Anton Paar MCR301 (Anton Paar,
Warszawa, Poland) rotational rheometer equipped with a cone-plate CP50-1 measuring
system (cone diameter 50 mm, angle 1◦, truncation 48 µm).

Rheological tests combined with the simultaneous small angle light scattering (SALS)
analysis were carried out using an Anton Paar MCR502 (Anton Paar, Warszawa, Poland)
rotational rheometer equipped with a dedicated glass measuring system PP43/GL-HT. The
measurement gap was 0.3 mm.

4.3. Preliminary Rheological Characterization of Hydroxypropyl Cellulose Sol

In order to select an optimal concentration of HPC solution for proper measurements
of the effect of injection on the sol–gel phase transition conditions, non-isothermal gelation
kinetics were tested from 5 ◦C to 60 ◦C (heating rate 1 deg/min) at constant deformation
(angular frequencyω = 5 rad/s and amplitude γ = 1%) [18,68,69].

In order to determine the rheological parameters of the polymer sol, flow curves in
the range of shear rates of 100–15,000 s−1 were determined. The lower value of the range
resulted from the possible values of the shear rate observed in the 14 G needle using the
1 mm/s crosshead speed; the upper value is due to device limitation. The measurement
was performed at 20 ◦C.

Instrumental injectability tests were performed using a Brookfield CT3 texture ana-
lyzer (Brookfield, London, United Kingdom) with a cell load of 4.5 kg (44 N) in compression
mode. In the study, injection needles (Zarys, dispoFINE) in sizes 14 G–25 G and 2 mL
disposable syringes with an internal diameter of 9.75 mm (Braun Injekt) filled with 0.5 mL
of the experimental medium were used. The tests were carried out with a typical manual
injection speed of 1 mm/s [30,31], and the injection was carried out “into the air”. The
system injectability was evaluated based on the dynamic glide force (DGF) value, i.e., the
force necessary to maintain the syringe plunger movement. Its value was defined as an
average of the longest range of forces in which they have a constant value [28,30,48].

4.4. Kinetics of the Phase Transition after Shearing

The kinetics of the sol–gel phase transition of the studied polysaccharide systems
was investigated in the peri- and orthokinetic aggregation regime under isothermal con-
ditions at 37 ◦C. The aggregation conditions in the perkinetic regime were determined
using the TurbiscanLab device (Formulaction, Toulouse, France), while the aggregation
conditions in the orthokinetic regime were determined using a rotational rheometer. Con-
stant deformation (angular frequencyω = 5 rad/s and amplitude γ = 1%) was used in the
tests [32,50].

The initial shear interval preceding the actual measurements of the aggregation kinet-
ics was performed in two ways. In the first one, the sample was sheared in the injection
needle using a typical manual injection speed. A Harvard PHD2000 infusion pump was
used in the tests to ensure a set, constant value of the injection rate. In the second case,
used when testing the gelation conditions in orthokinetic aggregation, the sample was
subjected to rotational shear for 3 s in the shear rate range of 200–15,000 s−1 directly in the
rheometer measuring system. Scheme 2 shows an overview of the conducted experiments.
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Scheme 2. Illustration of the experimental setup of the shear effect on gelation conditions depending on the aggrega-
tion regime.

4.5. Rheo-Optical Analysis of Conformational Changes Caused by the Injection

In order to determine the effect of the shear interval on the structure of biomolecules
on a macroscopic scale, three-interval thixotropic tests were performed in the oscillation-
rotation-oscillation mode [28,54,68] combined with simultaneous small-angle light scat-
tering analysis [51]. Constant deformation values of γ = 1% andω = 5 rad/s lasting 30 s
and 300 s, respectively, were used in the oscillatory shear intervals. The rotational shear
interval lasted 3 s; the values of the shear rate were changed in the range of 200–15,000 s−1.

5. Conclusions

The conducted studies unambiguously reveal the influence of the shear field on the
conditions of the sol–gel phase transition of polysaccharide colloidal systems, which has
not been discussed in the literature so far. Based on the research carried out in the range
of the shear rate from 200 s−1 to 55,000 s−1, two types of the observed changes have been
demonstrated. The proposed research methodology allows determining the potential of
the polymeric material as a minimally invasive drug carrier or cell scaffold, including
instrumental assessment of the risk of extending the gelation time, which may lead to the
sol spillage before in situ gelation.

It should also be noted that from the point of view of fluid mechanics and capillary
rheometry of non-Newtonian fluids, the phenomena occurring during the injection will
also be observed during the flow through the 3D printer’s nozzle. Therefore, similar test
procedures should be carried out to reflect the conditions of print formation after the flow
of the thermosensitive filament through the printer nozzle as well as to consciously design
injection systems for biomedical applications.
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