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Abstract

The standard approach to phylogeny estimation uses two phases, in which the first phase produces an alignment on a set
of homologous sequences, and the second phase estimates a tree on the multiple sequence alignment. POY, a method
which seeks a tree/alignment pair minimizing the total treelength, is the most widely used alternative to this two-phase
approach. The topological accuracy of trees computed under treelength optimization is, however, controversial. In
particular, one study showed that treelength optimization using simple gap penalties produced poor trees and alignments,
and suggested the possibility that if POY were used with an affine gap penalty, it might be able to be competitive with the
best two-phase methods. In this paper we report on a study addressing this possibility. We present a new heuristic for
treelength, called BeeTLe (Better Treelength), that is guaranteed to produce trees at least as short as POY. We then use this
heuristic to analyze a large number of simulated and biological datasets, and compare the resultant trees and alignments to
those produced using POY and also maximum likelihood (ML) and maximum parsimony (MP) trees computed on a number
of alignments. In general, we find that trees produced by BeeTLe are shorter and more topologically accurate than POY
trees, but that neither POY nor BeeTLe produces trees as topologically accurate as ML trees produced on standard
alignments. These findings, taken as a whole, suggest that treelength optimization is not as good an approach to
phylogenetic tree estimation as maximum likelihood based upon good alignment methods.
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Introduction

Most phylogenies are estimated in two steps: first, a multiple

sequence alignment is produced, and then a tree is estimated on

the multiple alignment. Such ‘‘two-phase’’ methods are reasonably

fast and accurate for small enough datasets, but can have

unacceptably high error for large datasets that evolve with many

indels and substitutions [1,2].

Methods that co-estimate trees and alignments have also been

developed, including [3–19]. Some of these methods are

likelihood-based methods that are based upon stochastic models

of evolution that include indels as well as substitutions [3–12].

These likelihood-based methods are computationally very inten-

sive and cannot be used on datasets with more than, perhaps, 200

sequences (BAliPhy [3] is the most computationally scalable of

these methods, but it also has not been used on datasets bigger

than this). Other co-estimation methods include [13–19]; these are

generally much faster (and more scalable) than the statistically-

based methods. Of these methods, POY [18,19] is the most

commonly used.

POY is a method that tries to optimize a variant of maximum

parsimony [20] in which indels contribute to the cost of the tree.

Thus, the input to POY is a set of unaligned sequences and an edit

distance function, with the edit distance function defined by a cost

for every substitution and a gap penalty (defined by a gap open

and gap extend cost). The objective criterion in POY is to

minimize the total length, as defined by the sum of the edit

distances on the edges of the tree. This is the NP-hard treelength

problem, originally posed by Sankoff and Cedergren [21]. When

indels are forbidden (by setting the gap open cost to infinity),

treelength optimization is identical to maximum parsimony [20];

hence, treelength is a generalization of the maximum parsimony

criterion. The output of POY is a tree T with leaves bijectively

labelled by the input sequences and ancestral sequences at every

node in the tree, and thus also an alignment on the sequences

defined by the tree, ancestral sequences, and edit distance function

(i.e., the edit distance function implies an optimal pairwise

alignment for every edge between the sequences labelling the

endpoints of the edge, and the transitive closure of that set of

pairwise alignments is the output multiple sequence alignment).

The use of POY (and of its underlying optimization criterion,

treelength) is a matter of controversy in phylogenetics [22–28]. For

example, in 2007, Ogden and Rosenberg [24] showed that various

standard ways of running POY produced trees and alignments

that were much less accurate than those computed by maximum

parsimony analyses of ClustalW alignments (denoted by MP(Clus-

talW)). A later study by Lehtonen [29] showed that using more

intensive heuristics to optimize simple gap penalty treatments with

the newer version of POY produced trees with comparable

topological accuracy to MP(ClustalW) [30], even though the

alignments were less accurate than ClustalW alignments.

Liu et al. [31] revisited the question by focusing on the specific gap

penalty used in POY. They selected a treelength criterion they

termed ‘‘Affine’’, where each gap of L nucleotides had cost 4zL,

each transition had cost 1, and each transversion had cost 2. They

observed that POY did not optimize the Affine treelength very well,

and developed a new method, called POY*, that uses Probtree [32] as

the starting tree and then runs POY under the Affine criterion. Liu

et al. [31] showed that trees produced using POY* were at least as
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accurate as trees estimated using maximum likelihood on alignments

produced using many popular alignment methods, and concluded

that optimizing trees using treelength optimization might produce

highly accurate trees under the Affine treelength criterion provided

better heuristics for treelength were used.

However, the inference made by Liu et al. [31] that Affine

treelength might be a good optimization criterion was based upon

the observation that POY* produced highly accurate trees. Since

their study showed that POY was not very effective at finding trees

that optimized the Affine treelength criterion, it is possible that the

topologically accurate trees produced by POY* resulted from the

fact that the starting tree was highly accurate, and that the search

heuristic used by POY did not move far away from its starting tree.

In this paper we evaluate whether the conclusion by Liu et al.

that optimizing Affine treelength is competitive in topological

accuracy with many two-phase methods is sustained when a more

careful search for short trees is used. To enable this study, we

developed a very simple heuristic, BeeTLe (Better TreeLength),

that has the following structure: BeeTLe runs a collection of

methods, including POY, to produce a set of trees on a given input

set of unaligned sequences, uses POY to compute the treelength of

each tree, and then returns the tree that had the shortest

treelength. Thus, BeeTLe is guaranteed to find trees at least as

short as those found using POY, and thus enables us to evaluate

the impact of using treelength to find trees.

We report on a study comparing BeeTLe used with three

treelength criteria (Affine and two treelength criteria that are

based upon simple gap penalty treatments) to POY, two-phase

methods, and SATé, a method for co-estimating alignments and

trees. We explore performance on simulated and biological

datasets, each having at least 100 sequences. We show that

BeeTLe produces shorter trees than POY, thus confirming the

value in using BeeTLe to optimize treelength instead of POY. We

also show that optimizing treelength for all three ways we explored

were competitive with maximum parsimony analyses but not with

maximum likelihood analyses on almost all alignment methods.

Furthermore, alignments produced using treelength optimization

are not as accurate as standard alignments.

Thus, for the datasets we explored, treelength optimization was

not competitive with the best two-phase methods (maximum

likelihood on the leading alignments) with respect to the accuracy

of alignments and trees.

Basics
The treelength problem was originally proposed by Sankoff and

Cedergren [21], and can be generalized as follows:

Definition 1 The Generalized Sankoff Problem

(GSP). The input is a set S of unaligned sequences and a function

c(x,y) for the edit cost between two sequences x and y. The output is a tree

T~(V ,E) with leaves labeled by S and internal nodes labeled with

additional sequences such that the treelength
P

(v,w)[E c(lv,lw) is minimized,

where lv is the sequence labeling vertex v.

Thus, GSP is defined by an edit distance function, and this

function depends upon how gaps are penalized. GSP is NP-hard,

since the case in which the edit distance function forbids gaps (by

setting the cost for a gap to be infinite) is the NP-hard Maximum

Parsimony (MP) problem [20]. However, the GSP problem is even

NP-hard when the tree T is known (so that the objective is to find

the best sequences at the internal nodes of T so as to produce the

shortest total treelength [33], under a simple gap penalty). Thus

the treelength problem is harder than the maximum parsimony

problem, since even the fixed-tree problem is NP-hard.

Although several algorithms have been developed for the GSP

problem (both for the fixed tree and general case), POY is the

standard method used to produce trees from unaligned sequences

via treelength optimization. POY takes as input a set of unaligned

sequences and an edit distance function cost(L) for the cost of a

gap of length L, given by cost(L)~c0zc1L. When c0~0 the gap

cost is said to be ‘‘simple’’, and when c0w0 the gap cost is said to

be ‘‘affine’’.

We use three different treelength criteria in this paper, Simple-

1, Simple-2, and Affine, as follows. Simple-1 sets the cost of every

indel and substitution to 1. Simple-2 is a treelength criterion

studied by Ogden and Rosenberg [24], which they found to

produce more accurate trees than any other treelength criterion

they considered, and which assigns cost 2 to indels and

transversions and cost 1 to transitions. Finally, the Affine

treelength criterion studied in Liu et al. [31], which produced

more accurate trees than Simple-1 or Simple-2, sets the cost of a

gap of length L to 4zL.

Results

In our first experiment, we investigated how well POY is able to

solve the treelength problems. Figures 1 and 2 compare POY and

BeeTLe with respect to treelength and tree error, respectively, for

each of the three treelength criteria we consider on simulated data.

Comparisons of treelength scores obtained on the biological

datasets are provided in Figure 3. Note that for each treelength

criterion, BeeTLe generally produces shorter trees. Furthermore, a

comparison of topological error rates shows that trees produced by

BeeTLe and POY tend to be quite different.

Figure 1. Normalized treelength scores for BeeTLe under different treelength criteria on the 100-taxon model conditions. Treelength
scores for BeeTLe under a particular treelength criterion are normalized by POY’s score under the same criterion; thus, scores below 1 indicate that
BeeTLe finds a shorter tree than POY. Averages and standard error bars are shown; n~20 for each reported value.
doi:10.1371/journal.pone.0033104.g001
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PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33104



We then examined the question of whether optimizing

treelength can return trees that are competitive with the better

two-phase methods with respect to topological accuracy. Our first

experiment compared the treelengths achievable for the model

(true) and SATé trees (computed using its first version, SATé-I), by

letting POY optimize ancestral sequences on these tree topologies.

As shown in Table S4, for all three treelength criteria, the model

tree had treelengths that were much larger than the shortest

treelengths found by POY, and the treelengths for the SATé-I

trees were also larger than those found by POY. These

observations suggest that optimizing treelength is unlikely to yield

highly accurate trees, since the model tree had such poor

treelengths compared to those found by POY. However, because

BeeTLe is more effective than POY at optimizing treelength, we

use BeeTLe to estimate trees and alignments under the three

treelength criteria to provide a more critical evaluation of this

hypothesis. We compared trees computed using BeeTLe (under

each of the three treelength criteria, Simple-1, Simple-2, and

Affine) to trees computed using SATé and two-phase methods

(maximum likelihood and maximum parsimony on various

alignments), in order to determine the impact on topological

accuracy of optimizing treelength. We estimated maximum

likelihood trees using RAxML [34] and maximum parsimony

trees using PAUP* [35], and we used MAFFT [36], Opal [37],

Prank+GT (Prank [38] with a particular guide tree, as described in

[1]), Probtree [32], and ClustalW [30] to produce alignments. We

also used SATé-I [1] and SATé-II [14] to co-estimate alignments

and trees. Figure 4 and Table 1 show results on simulated datasets

with 100 taxa.

These results show that trees computed using BeeTLe, under

any of the three treelength criteria, were generally less topolog-

ically accurate than the best alternative methods (i.e., SATé-I,

SATé-II, ML(Probtree), and ML(MAFFT)). A comparison of

BeeTLe to SATé-II, for example, shows that on model conditions

100L5 and 100M5, BeeTLe trees were almost as accurate as

SATé-II trees (1%–3% difference in missing branch rate), and had

indistinguishable performance on 100S5. However, these are the

slowest evolving models, and not all biological datasets evolve

quite this slowly (compare, for example, the empirical statistics of

the biological datasets we studied to those of these simulated model

conditions). Under the harder model conditions, differences

between methods grew, and the methods separated into two

distinct classes: the most accurate methods (SATé-I, SATé-II,

ML(MAFFT) and ML(Opal)) and the less accurate methods

(ML(ClustalW, ML(Probtree), ML(Prank+GT), and all three

BeeTLe methods). In particular, ML(MAFFT)’s missing branch

Figure 2. Missing branch rates of POY and BeeTLe under different treelength criteria on the 100-taxon model conditions. Averages
and standard error bars are shown; n~20 for each reported value.
doi:10.1371/journal.pone.0033104.g002
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rate was significantly better than BeeTLe-Affine’s on almost all

model conditions (Benjamini-Hochberg-corrected pairwise t-tests

with a~0:05, as discussed in Table S3). Furthermore, the

difference in tree error between the less and more accurate

methods generally increased with the difficulty of the model

condition. Thus, trees computed by BeeTLe were clearly much

less topologically accurate than those produced by any of the more

accurate methods. Within the set of less accurate methods,

BeeTLe-Affine did particularly well, and often produced more

accurate trees than any of the other less accurate methods. Thus,

in general, trees estimated using BeeTLe were far less accurate

than ML trees estimated on alignments produced by SATé-I,

SATé-II, MAFFT and Opal. A comparison between BeeTLe-

Affine, BeeTLe-Simple-1, and BeeTLe-Simple-2 shows that

BeeTLe-Affine generally produces more accurate trees than

BeeTLe-Simple-1 or BeeTLe-Simple-2.

When we consider trees estimated using Maximum Parsimony

(MP), the comparison changed substantially. We see that BeeTLe-

Affine was not only competitive with maximum parsimony trees,

but that BeeTLe-Affine produced more accurate trees than MP on

most alignments for almost all model conditions (the only

exception being MP(MAFFT), as shown in Table S3). BeeTLe-

Simple-2 was also reasonably accurate, producing more accurate

trees than maximum parsimony on ClustalW, ProbTree,

Prank+GT, and Opal, for many model conditions.

Although our main concern is topological accuracy, we note

that alignments estimated by either POY or BeeTLe, irrespective

of treelength optimization criterion, were less accurate than

alignments produced by the standard alignments methods, and

much less accurate than SATé alignments (Fig. 5).

Discussion

The most important observation in this study is that for all three

treelength criteria we explored, trees and alignments found by

methods for optimizing treelength were generally not among the

most accurate. Thus, maximum likelihood trees produced on

almost all alignment methods we studied were more accurate than

BeeTLe and POY trees. Interestingly, trees estimated by BeeTLe-

Affine and Beetle-Simple-2 were often more accurate than

maximum parsimony trees, even on very good alignments,

showing the potential for treelength optimization to improve

phylogenetic estimation. However, treelength optimization did not

produce trees of comparable accuracy to trees produced using

maximum likelihood, except for very poor alignments.

Our study also showed that BeeTLe is often able to find shorter

trees than POY, and ones that are topologically quite different

from those found by POY. Thus, inferences about the utility of

treelength for phylogeny and alignment estimation can be made

more accurately when using BeeTLe than when using POY.

Additional observations can be made that may impact further

studies. First, the choice of treelength criterion clearly impacts tree

error. In particular, BeeTLe-Affine was consistently at least as

accurate as BeeTLe-Simple1 or BeeTLe-Simple2 on the simulated

data. A comparison of the gap length distributions between the

simulated and biological data (see Figure S1, Figure S2, Table S1,

and Table S2) shows that these two types of datasets have very

different distributions. The simulated datasets have medians and

means that are very close, and have only moderately large

maximum gap lengths; by contrast, the biological datasets all have

medians equal to 1 (so that more than half of the gaps are single

nucleotides) and some very long gaps. In fact, the biological

datasets have maximum gap length ranging from 1400 to 3889.

Given this combination of features, it is clear that the biological

datasets we studied do not have gap lengths drawn from the same

distribution as are created by this simulation protocol. More

generally, it seems likely that the gap length distribution for these

biological datasets may be drawn from a mixture model rather

than some simple single parameter model, such as is used in this

simulation. Thus, appropriate choices of the gap length penalty

may require particular care. More generally, to the extent that

optimizing treelength is to be helpful in estimating trees, the choice

of treelength criterion will need to be made carefully.

The study we provide has several limitations. First, we explored

only three treelength criteria. While these three criteria are ‘‘good’’

choices for treelength (in particular because Simple-2 gave the best

Figure 3. Normalized treelength scores for BeeTLe under different treelength criteria on the biological datasets. Treelength scores for
BeeTLe under a particular treelength criterion are normalized by POY’s score under the same criterion; thus, scores below 1 indicate that BeeTLe finds
a shorter tree than POY. n~1 for each reported value.
doi:10.1371/journal.pone.0033104.g003

Treelength Optimization for Phylogeny Estimation

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33104



results in Ogden and Rosenberg’s study [24] and Affine gave even

better results in Liu et al.’s subsequent study [31]), they are by no

means representative of the full range of treelength criteria. Therefore

it remains possible that a better treelength criterion can be developed.

However, as noted above, it may be that the use of affine treelengths

may be inherently too simplistic (fitting single parameter models

rather than mixture models) to produce good results. Also, our

method, BeeTLe, is not designed to thoroughly search treespace for

short trees. Instead, it is a very simple technique that scores a set of

trees (including POY, RAxML(MAFFT), RAxML(ClustalW) and

some of the neighbors of these trees) for treelength, and returns the

shortest tree. Therefore, it is likely that even shorter trees would be

obtained by a more careful search through treespace. As a result it is

possible that the shorter and topologically more accurate trees would

be obtained by a more careful analysis.

It is worth noting that we only explored two phylogeny

estimation methods (i.e., RAxML for ML analysis and PAUP* for

MP) and a handful of alignment methods (i.e., MAFFT, SATé,

Probtree, Prank+GT, Opal, and ClustalW). It is possible that

better alignments could be obtained using other alignment

methods and that better trees might be obtained on these

alignments using other phylogeny estimation methods. In

particular, likelihood-based methods such as MrBayes [39], Phyml

[40], GARLI [41], FastTree [42,43], and Metapiga2 [44] might

produce more accurate trees. We also did not explore the

performance of BAli-Phy or other co-estimation methods that treat

indels informatively, and these also might produce more accurate

trees. Thus, it is possible that there are currently available methods

that might yield more even more accurate trees than those tested

in this study.

We close with some comments about the general problem of

estimating trees and alignments from unaligned sequences, and

whether co-estimation of trees and alignments is beneficial or

detrimental. In other words, although it is important to understand

Figure 4. Missing branch rates of different methods on 100-taxon model conditions. We report missing branch rates for BeeTLe-Affine in
comparison to ML methods, SATé, and SATé-II (top chart) and in comparison to MP methods (middle chart). On model conditions marked with ‘*’,
ML(MAFFT)’s missing branch rate significantly improved upon BeeTLe-Affine’s (using one-tailed pairwise t-tests with Benjamini-Hochberg [57]
correction for multiple tests, n~40 for each test, and a~0:05). On model conditions marked with ‘$’, BeeTLe-Affine’s missing branch rate significantly
improved upon MP(MAFFT)’s (using similar statistical tests). Averages and standard error bars are shown; n~20 for each reported value.
doi:10.1371/journal.pone.0033104.g004

Treelength Optimization for Phylogeny Estimation

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e33104



whether POY (or any method based upon treelength optimization)

is reliable for estimating highly accurate trees or alignments, the

more important question is which approaches are likely to produce the

most accurate trees and alignments?

The study we presented suggests strongly that treelength

optimization is unlikely to produce trees or alignments that are

as accurate as maximum likelihood on the leading alignment

methods; it also showed that SATé trees and alignments were even

more accurate than maximum likelihood trees on leading

alignments. Thus, parsimony-style co-estimation (as in POY and

BeeTLe) produced trees and alignments that are inferior to the co-

estimation approach in SATé. It makes sense, therefore, to discuss

SATé ’s co-estimation technique.

The technique used by SATé to co-estimate trees and

alignments uses iteration combined with divide-and-conquer; each

iteration involves the estimation of a new alignment (produced

using divide-and-conquer) and then uses RAxML to produce an

ML tree on that new alignment. However, the ML model used in

estimating the tree is GTR+Gamma, and so indels are treated in

the standard way, which is as missing data – rather than treating

Table 1. Average missing branch rate (%) on each 100-taxon model condition.

100-taxon model condition Total Max

Method L5 M5 S5 M4 S4 L4 M3 S3 L3 S1 M1 S2 M2 L2 L1 Average Std Err

ML(TrueAln) 4.9 6.2 4.0 6.7 8.1 8.4 9.5 11.1 10.2 12.7 9.9 12.9 10.1 9.3 12.5 9.1 0.9

SATé-II 5.2 6.6 6.2 7.6 10.5 9.3 14.9 13.2 13.1 16.0 15.8 17.2 18.0 18.9 29.9 13.5 2.1

ML(MAFFT) 5.2 6.5 6.3 7.6 10.5 10.1 14.3 14.0 13.8 16.4 17.3 17.3 19.2 20.5 33.6 14.2 2.2

SATé 5.0 6.3 5.2 7.1 11.8 10.3 14.9 14.2 13.4 17.5 17.8 17.0 22.4 24.3 33.2 14.7 2.1

ML(Opal) 5.4 6.3 9.1 8.3 12.5 12.9 15.6 14.2 17.3 17.7 17.4 18.1 23.1 27.7 38.0 16.2 2.0

MP(TrueAln) 6.9 9.9 7.5 13.1 17.9 17.4 18.2 25.1 22.2 25.6 23.9 30.6 22.9 20.8 26.3 19.2 1.4

BeeTLe-Affine 7.2 9.0 7.2 10.5 14.7 20.5 20.5 23.0 26.0 29.8 26.6 31.5 25.4 27.3 36.4 21.0 2.0

ML(Probtree) 5.3 6.2 4.2 7.0 9.6 13.4 14.9 24.2 22.5 31.8 27.8 37.8 27.3 36.0 52.8 21.4 2.6

BeeTLe-Simple-2 6.2 9.5 6.3 12.0 17.5 19.3 22.4 25.0 27.9 31.6 28.3 32.8 28.5 26.9 37.6 22.1 2.5

ML(Prank+GT) 5.0 6.0 5.2 8.7 13.4 21.7 21.2 28.1 29.6 30.8 31.2 35.4 30.4 33.4 46.2 23.1 2.4

MP(Prank+GT) 6.7 9.3 7.1 12.7 19.3 22.4 22.3 29.4 28.6 30.2 28.2 34.3 29.4 30.2 38.2 23.2 1.8

MP(MAFFT) 7.3 10.2 8.3 13.7 20.0 19.9 22.5 27.8 26.5 29.4 30.5 32.7 30.2 32.3 42.8 23.6 2.0

BeeTLe-Simple-1 6.1 9.5 6.4 12.5 20.6 24.3 24.0 26.8 23.9 28.1 30.2 41.2 29.5 29.9 42.2 23.7 3.2

MP(Opal) 7.8 10.7 10.3 14.5 20.4 21.3 23.9 27.1 27.7 28.0 30.4 32.7 32.4 35.0 44.0 24.4 1.8

ML(ClustalW) 6.1 7.0 7.3 10.6 15.5 20.0 24.4 30.1 31.3 35.2 36.7 38.9 35.0 37.2 48.9 25.6 2.5

MP(Probtree) 7.9 10.5 7.8 13.5 18.0 22.9 21.7 32.5 32.0 36.8 34.6 42.6 34.0 43.7 58.3 27.8 2.2

MP(ClustalW) 7.0 9.9 8.6 14.7 20.9 26.1 27.3 36.3 35.2 38.4 39.5 44.3 37.5 38.8 49.2 28.9 2.0

For conciseness, model condition identifiers are truncated to unique suffixes. ‘‘Total Average’’ is the average across all model conditions. ‘‘Max Std Err’’ is the maximum
standard error of any model condition. n~20 for each reported value; n~300 for ‘‘Total Average’’ and ‘‘Max Std Err’’.
doi:10.1371/journal.pone.0033104.t001

Figure 5. Alignment SP-FN error of different methods on 100-taxon model conditions. Averages and standard error bars are shown; n~20
for each reported value.
doi:10.1371/journal.pone.0033104.g005
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them as events in a stochastic model that includes indels as well as

substitutions. This approach clearly has empirical benefits (as

shown in this study and in [1,14]) over the two-phase methods we

studied; however, this is not a statistically rigorous indel treatment

method. We hypothesize that methods that treat indels in a

statistically rigorous manner are likely to produce more accurate

alignments and trees than SATé.

Finally, this entire study (and the previous studies we discussed

[24,29,31]) are based upon nucleotide sequences, and so even

though treelength-based methods, such as POY, can be used on

amino-acid sequences, these studies do not directly yield any

insight into the problem of estimating trees and alignments from

such sequences. However, the same questions can be asked

about amino-acid phylogeny and alignment estimation: is it

better to estimate the alignment first and then the tree, or to co-

estimate them, and which methods give the most accurate

alignments and trees? As with nucleotide datasets, most amino-

acid phylogenies have been estimated using two-phase methods

(i.e., first an alignment is estimated and then a tree based upon

that alignment), with the best alignment and phylogeny

estimation methods taking the particular properties of amino-

acid sequences into account. Therefore, phylogeny estimation

methods that are based upon stochastic models of amino-acid

evolution are beneficial (see the discussion in [45]), and

alignment estimation based upon estimated or known structural

features can also provide improvements. Co-estimation methods

like BAli-Phy with statistical performance guarantees can also be

used on amino-acid sequences, but are very computationally

intensive. SATé can also be used on amino-acid sequences, but

although it is very fast (and can analyze large datasets), it has no

statistical performance guarantees. To date, no performance

study has been published that compare any of these co-

estimation methods against the leading two-phase methods on

amino-acid sequences. Finally, SATCHMO-JS [17] uses HMMs

(Hidden Markov Models) to simultaneously construct a tree and

alignment from unaligned sequences, and has been shown to be

able to produce more accurate alignments than MAFFT [17].

However, SATCHMO-JS can only be used with amino-acid

sequences.

Thus, some co-estimation methods have been able to provide

improvements in alignment and phylogeny estimation accuracy

relative to two-phase methods for both nucleotide and amino-acid

analyses, but not all co-estimation methods give the same

accuracy. This study has shown that co-estimation methods that

are based upon treelength are not in general as accurate as the

leading two-phase methods, which use likelihood-based phylogeny

estimation to analyze high quality alignments. This and other

studies have also shown that two other co-estimation methods,

SATé and SATCHMO, can produce highly accurate results,

improving upon leading methods, even on large datasets.

However, statistical guarantees for co-estimation methods are

only provable for those methods that are based upon stochastic

models of evolution that include indels and substitutions.

Unfortunately, all such methods are computationally intensive,

and have not been able to run on large datasets.

It seems likely that statistically rigorous methods for co-

estimating alignments and trees may be key to obtaining highly

accurate estimations of evolutionary history (of which alignments

and trees are both partial hypotheses); however, all current

methods of this type are so computationally intensive that they

cannot be used in studies that address hundreds of sequences.

Future work is needed in order to create reasonably efficient

methods with strong statistical guarantees.

Materials and Methods

We used 300 100-taxon simulated datasets and four biological

datasets with up to 278 taxa. On each dataset, in addition to using

POY and BeeTLe (for each treelength criterion), we computed

phylogenetic trees using SATé (which co-estimates alignments and

trees) and various two-phase methods. We computed the tree error

for each estimated tree and alignment error for each estimated

alignment.

Simulated datasets
We used 300 simulated 100-taxon datasets provided by Liu

et al. [14], which evolved under a range of gap length distributions

(S for short, M for medium, and L for long), relative probabilities

of indels to substitutions, and overall amount of evolution, using

ROSE [46]. We show the empirical statistics for these datasets in

Table S1. In all, there are a total of 15 model conditions, and each

model condition has 20 datasets. For each simulated dataset S of

unaligned sequences we know the model tree and the true

alignment. To define the reference tree for each simulated dataset,

we follow the methodology of Liu et al. [1], and modify the model

tree for the dataset by contracting zero-event branches (that is,

branches on which no substitution or indel occurs during the

evolutionary process that generates the dataset). This modification

is done since reconstruction of zero-event edges is a matter of

chance.

Biological datasets
We used datasets from CRW, the Comparative RNA Website

[47]. CRW datasets have reference alignments based upon

secondary structure. Based upon these reference alignments, we

selected four datasets that present some challenge to alignment

estimation due to the large number of indels. Since reference trees

were not provided with these datasets, we only used these datasets

to investigate the effectiveness of treelength optimization heuristics

by comparing treelength scores obtained by different methods.

The empirical statistics for these datasets are provided in Table S2.

Tree and alignment estimation methods
We ran SATé version 7/4/2009 alpha (available from www.cs.

utexas.edu/users/phylo/software/sate/) to produce trees and

alignments. For the two-phase methods, we computed alignments

using several techniques, including MAFFT (using its L-INS-i

algorithm) version 6.240 [48–50], ClustalW version 2.0.4, Opal

version 1.0.2 [37], Probtree (as described in a prior study by

Nelesen et al. [32]) using ProbconsRNA version 1.1 [51], and

Prank+GT (as described in [1]) using Prank version 080904 [38].

We used RAxML [52,53] version 7.0.4 to estimate ML trees and a

parsimony ratchet analysis using PAUP* [54] version 4.0b10. For

our MP analyses, we returned the majority consensus of the best

trees that we found. For treelength optimization, we used POY

version 4.1.2 and BeeTLe, under the Simple-1, Simple-2, and

Affine treelength criteria (defined earlier). The commands used for

each method are provided in Methods S1.

We now describe the BeeTLe algorithm. For a given treelength

criterion, BeeTLe runs POY under that criterion, and also

ML(MAFFT) and ML(ClustalW). BeeTLe then samples the

neighborhood around these selected trees, by producing a random

perturbation of the selected tree to obtain 20 additional trees. We

use random p-ECR [55] moves to create these perturbations,

where a random p-ECR move contracts p randomly selected edges

in a tree, and then randomly refines the resulting unresolved tree

to obtain a binary tree. To produce the set of 20 additional trees

from a single selected tree, we do the following 20 times: we apply

Treelength Optimization for Phylogeny Estimation
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a random p-ECR move [55] to the selected tree, with p chosen

uniformly at random between one and five. This process thus

produces 20 additional trees, each of which is one p-ECR move

away from the starting tree.

Measuring tree error
While the bipartition distance (also known as the Robinson-

Foulds distance) is the standard way of measuring tree error, it is

inappropriate when either the true or estimated trees are not

binary [56], as it is biased in favor of unresolved trees. Since our

analyses includes estimated trees that may not be fully resolved, we

compare trees using the missing branch rate (also known as the

false negative rate), which is the proportion of edges present in the

true tree but missing from the estimated tree.

Statistical significance
We evaluated the statistical significance of the differences in tree

error (Table S3) using one-tailed paired t-tests with the Benjamini-

Hochberg correction [57].

Computational resources
The simulations and analyses were performed using a

heterogeneous Condor [58] computing cluster at the University

of Texas at Austin. This cluster had computers with between 1 and

8 cores running at speeds between 1.86 GHz and 3.16 GHz. All

programs were run as 32-bit serial executables on a single

dedicated core with dedicated access to at least 512 MB and at

most 4 GB of main memory.

Supporting Information

Figure S1 Histogram of gap lengths in true alignments
from each 100-taxon model condition. Axes are logarith-

mically scaled.

(EPS)

Figure S2 Histogram of gap lengths in reference
alignment from each biological dataset. Axes are logarith-

mically scaled.

(EPS)

Table S1 Simulation parameters and empirical statis-
tics for the simulated datasets in our study. The

parameters used to evolve sequences on trees are listed for the

fifteen 100-taxon models. The p-distance between two sequences is

the normalized Hamming distance between the two sequences.

‘‘Setwise avg p-dist’’ is the average pairwise p-distance across all

pairs of sequences in the true alignment, and ‘‘Setwise max p-dist’’

is the maximum pairwise p-distance across all pairs of sequences in

the true alignment. ‘‘Gap’’ is the percentage of the true alignment

matrix containing indels. ‘‘Cols’’ is the number of columns in the

true alignment. ‘‘Avg gap len’’ is the average length of a gap, or

contiguous string of indels, in the true alignment. The edgewise

average (maximum) p-distance is the average (maximum) p-

distance between the sequences labeling the endpoints of edges in

the model tree. ‘‘Resolution’’ is the number of edges in the

reference tree divided by n{3, the maximum number of internal

edges possible in any unrooted tree on n taxa.

(PDF)

Table S2 Empirical statistics for biological datasets.
Empirical statistics for the curated alignment are shown for all

biological datasets. The curated alignment is used as the reference

alignment. The columns from left to right show the dataset name,

the number of taxa, the number of columns in the reference

alignment, the average p-distance of the reference alignment, the

maximum p-distance of the reference alignment, the percent

indels of the reference alignment, the average gap length of the

reference alignment, and the median gap length of the reference

alignment. All biological datasets had a median gap length of 1.

(PDF)

Table S3 Q-values from statistical tests comparing
missing branch rates on 100-taxon model conditions.
We performed one-tailed paired t-tests with Benjamini-Hochberg

correction [57] to see if ML(MAFFT)’s missing branch rate

improved upon BeeTLe-Affine’s. We also performed similar

statistical tests to see if BeeTLe-Affine’s missing branch rate

improved upon MP(MAFFT)’s. n~40 for each test.

(PDF)

Table S4 Normalized treelength scores obtained on the
model tree and SATé-I tree. For each of the three treelength

criteria, we obtained treelength scores on either the model tree or

SATé-I tree by constraining POY to solve a fixed-tree variant of

the Generalized Sankoff Problem (see text for details). Treelength

scores are normalized by the treelength score obtained by POY

run under default settings. Averages (‘‘Avg’’) and standard errors

(‘‘SE’’) are shown to either three or four decimal points. Model

conditions are shown in the same order as in Figure 1.

(PDF)

Methods S1 Supporting materials about methods.

(PDF)
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and accurate simultaneous estimation of multiple sequence alignments and

phylogenetic trees. Syst Biol 61: 90–106.
15. Yu J, Holder MT, Sukumaran J, Mirarab S. SATé version 2.1.0. Website.
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