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1  |  INTRODUC TION

Pulmonary hypertension (PH) is a progressive cardiovascular disorder 
of multiple etiologies that typically ends in death due to right heart 
failure (HF). Based on the World Health Organization (WHO) classifi-
cation of PH, it is divided into 5 groups, of which PH due to left heart 
disease (PH-LHD) is the commonest. PH-LHD is described as a PH 
subtype with mean pulmonary artery pressure (mPAP) >25  mmHg 
and pulmonary artery wedge pressure (PAWP) >15 mmHg,1 although 
the threshold values of PAWP are controversial.2

HF caused by LHD is mainly manifested as reduced ejection 
fraction (HFrEF), with preserved ejection fraction (HFpEF) and left-
sided heart valve disease (VHD).3 The occurrence of PH in patients 
with LHD is a sign of disease progression.4 Nevertheless, therapeu-
tic agents directly targeting patients with PH-LHD are not available. 
Although there have been some studies supporting the treatment 
of PH-LHD with targeted drugs for PAH, none has been applied to 
clinical treatment of PH-LHD.5–16 Effective treatments for LHD do 
not seem to improve PH-LHD,17 because PH-LHD is divided he-
modynamically into pure postcapillary PH and combined pre- and 
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Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) is regarded as the most 
prevalent form of pulmonary hypertension (PH). Indeed, PH is an independent risk 
factor and predicts adverse prognosis for patients with left heart disease (LHD). 
Clinically, there are no drugs or treatments that directly address PH-LHD, and treat-
ment of LHD alone will not also ameliorate PH. To target the underlying physiopatho-
logical alterations of PH-LHD and to develop novel therapeutic approaches for this 
population, animal models that simulate the pathophysiology of PH-LHD are required. 
There are several available models for PH-LHD that have been successfully employed 
in rodents or large animals by artificially provoking an elevated pressure load on the 
left heart, which by transduction elicits an escalated pressure in pulmonary artery. 
In addition, metabolic derangement combined with aortic banding or vascular en-
dothelial growth factor receptor antagonist is also currently applied to reproduce the 
phenotype of PH-LHD. As of today, none of the animal models exactly recapitulates 
the condition of patients with PH-LHD. Nevertheless, the selection of an appropriate 
animal model is essential in basic and translational studies of PH-LHD. Therefore, this 
review will summarize the characteristics of each PH-LHD animal model and discuss 
the advantages and limitations of the different models.
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postcapillary PH.18,19 The biggest difference lies in pure postcap-
illary PH simply being a bruise in the pulmonary veins, while the 
latter tends to occur with pulmonary artery vascular remodeling. 
Normally, they are difficult to distinguish from each other on the 
basis of clinical phenotype or symptoms. Some studies found that 
diastolic pulmonary vascular pressure gradient20–25 may be indic-
ative of whether PH-LHD is accompanied by pulmonary vascular 
remodeling.

Hence, more in-depth studies are necessary to address the 
pathophysiology of PH-LHD and its pathogenic cellular and molec-
ular signaling mechanisms, such as the increase in capillary pressure 
in the lungs caused by LHD affecting the dysregulation of endothe-
lial homeostasis.26 Not much is known about the complex lesions 
and disease progression of PH-LHD, and an animal model that fully 
reproduces the pathological progression of human PH-LHD is still 
unavailable. Typically, PH-LHD animal models are mostly simulated 
models of PH due to HF. Moreover, the majority of patients with 
PH-LHD have metabolic syndrome manifestations,27 and recently 
there have been in vivo experiments to generate animal models of 
PH by simulating the metabolic syndrome of PH-LHD. Such stud-
ies will broaden our knowledge of PH-LHD with animal models that 
more closely approximate the disease, which will in turn lead to the 
development of better model options for preclinical treatments. The 
purpose of this review is to summarize the animal models of PH-LHD 
available at present and to outline the advantages and limitations of 
each model.

2  |  PH FROM PRESSURE OVERLOAD -
INDUCED LEF T-VENTRICUL AR (LV )  FAILURE

LV failure can be induced by several pressure overload entities. The 
banding position for PH-LHD in animal models is summarized in 
Figure 1, which will be further discussed, and Table 1 lists the ad-
vantages and pitfalls of all PH-LHD animal models for various animal 
species. The left ventricle is highly sensitive to a rapid increment in 
afterload stress. In the majority of models, this causes a sudden rise 
in LV afterload that induces acute left HF, which may result in death 
in some animals. However, the phenotype of hemodynamics, includ-
ing mPAP and/or right ventricular systolic pressure (RVSP), is differ-
ent among various animal species. The main type commonly used at 
present is aortic banding or ascending aortic banding models.

2.1  |  Aortic banding (AoB)

AoB is a simple, ancient, and common surgical procedure in which a 
band is clamped around the aorta to increase afterload. In its early 
state, it was mainly used in studies focusing on cardiac dysfunction 
in hypertension,28 myocardia hypertrophy,29 or cardiac pressure-
overload hypertrophy.30 In 2001, Backs et al. applied the AoB model to 
study congestive HF.31 The surgical procedure consisted mainly of as-
cending aortic binding in Wistar rats weighing about 90 g. The material 

used was a tantalum hemostatic clip (internal diameter 0.71 mm), and 
4 weeks after surgery, it was evident that the left and right ventricular 
weight increased, and pulmonary stasis was noticeable compared with 
the sham group. Although RVSP and mPAP were not measured when 
the AoB rat model was first described, they could be predicted to be 
elevated based on the changes in right ventricular remodeling.

In principle, AoB mimics increased LV afterload, which passively 
causes an increase in LV ejection pressure and pressure conduction, 
leading to increased pulmonary venous pressure, eventually leading 
to chronic right HF and PH. In 2007, Hentschel et al. further modi-
fied an AoB animal model with a 0.8 mm diameter titanium clip, and 
hemodynamics were examined 9  weeks later. Compared with the 
sham group, the AoB rat model exhibited elevated mPAP, pulmonary 
vascular resistance (PVR), and left atrial pressure.32 In 2009, this re-
search team used this rat model to study PH-LHD and found that 
inhaled nitric oxide improved pulmonary hemodynamics and pulmo-
nary edema in group 2 PH.33 This animal model was further pro-
moted, and aortic banding in rats is at present the most commonly 
used animal model to study PH-LHD,34–42 although the timing of the 
banding varies depending on the operator's experience.

Due to its simplicity, feasibility, and high reproductivity, AoB is 
commonly used in rat models to produce mild or medium PH-LHD 

F I G U R E  1  Overview of the banding for PH-LHD animal 
models. (A) Aortic banding; (B) left atrium; (C) pulmonary vein; (D) 
transverse aortic constriction. Created with BioRender.com
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depending on the aortic banding time according to the hemodynam-
ics characteristics summarized in Table 1. Aortic banding is usually 
utilized in young rats. Given that the chance of death due to acute 

left HF after ligation might increase in older rats, the rats are gener-
ally required to be 80–100 g. As the rats grow, the banding becomes 
tighter, which causes severe LHD and PH.

TA B L E  1  Animal models of PH-LHD

Method Strengths Limitations Time RVSP/mPAP Species

Aortic banding (AoB) Simple;
reproducible;
commonly used;
simulates HFpEF;
low cost

Sudden initial afterload increased 
predisposition to left heart 
failure and death;

difficult to induce severe RV 
failure;

PH due to aortic stenosis is 
uncommon in human patients

25 d34,36;
6 wk41,85;
7 wk39;
9 wk33,35,37,38,40,86; 

4 months87

RVP (cmH2O)
≈3534;
RVSP (mmHg)
≈3636;
≈4039;
mPAP (mmHg)
≈2441;
≈1633;
≈3035;
≈3337;
≈4238;
≈1886;
≈3287;
≈22.85

Rat33–41,85,86;
kitten87

Transverse aortic 
constriction (TAC)

Especially for mice;
simulates HFpEF;
low cost

Sudden initial afterload increased 
predisposition to left heart 
failure and death;

infrequent;
PH due to aortic stenosis is 

uncommon in human patients

6 wk5;
8 wk46,47

RVSP (mmHg)
≈355,46;
≈40.47

Mouse5,46,47

Descending aorta 
implanted by stent

Large animal;
simulates HFpEF

Operative difficulties;
high cost;
long time

5 months43 RVSP (mmHg)
51.43

Swine43

Left atrial stenosis Less complicated;
low cost;
mimics PH-LHD 

caused by mitral 
valve lesions

Surgery bleeding;
difficult to estimate LA pressure

10 wk52 RVSP (mmHg)
41.52

Rat52,53

Pulmonary vein 
banding

Large animal;
simulation of 

congenital 
pulmonary vein 
stenosis;

low mortality rate;
reproducible

Complicated;
high cost

10 wk88;
3 months50

mPAP (mmHg)
≈40,88

≈33.50

Swine50,88–90

Ligation of left 
coronary artery

Mimics HFrEF-PH;
low cost;
simple

Difficult to control the area of 
infarcts (size of pathological 
infarction only sufficient to 
develop HFrEF-PH)

2 wk91,92;
4 wk57,58,62,63;
5 wk60;
8 wk92;
17 d64

RVSP (mmHg)
≈5060,62,91,92;
≈5258;
≈4060,63;
≈25.64

Rat58,60–62,91,92;
mouse60,62,63;
swine64

High-fat diets (HFD) Simple;
mimics HFpEF-PH

Long time 20 wk65,66;
16 wk71

RVSP (mmHg)
≈4065;
≈32.71

Mouse65,66,71

Combined metabolic 
syndrome and 
pressure overload-
induced PH-LHD

Mimics EFpHF-PH;
closer to clinical 

patients with 
PH-LHD;

double hit

Complicated phenotype;
high cost

9 wk68 mPAP (mmHg)
≈30.68

Rat68

Combined metabolic 
syndrome and 
SU5416-induced 
PH-LHD

Mimic EFpHF-PH;
double hit;
closer to clinical 

patients with 
PH-LHD

Complicated phenotype;
high cost

14 wk71,93 RVSP (mmHg)
≈40.71,93

Rat71,93
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In recent years, attempts to develop large animal models of 
left ventricular pressure afterload have been emerging. Gyöngyösi 
et al.43 implanted a bare metal stent (9 mm in diameter) into the de-
scending aorta (immediately below the aortic arch) of pigs by left 
heart catheter insertion. At a 5-month follow-up, there was a sig-
nificant increase in mPAP, RVSP, right ventricle mass, and LV hyper-
trophy as well as a trend toward decreased right heart function. Of 
note, this is a large animal model with a minimally invasive percuta-
neous method to slowly induce LV hypertrophy and secondary PH, 
which adds great translational value for novel target identification 
due to its simulation of human conditions.

2.2  |  Transverse aortic constriction (TAC)

Another common model for pressure-load-induced HF in mice is 
TAC. In 1991, Rockman et al.44 first applied this model to the study 
of cardiomyocyte hypertrophy in mice by the ligation of transverse 
aorta using a 27 G blunt needle positioned between the innomi-
nate artery and the left carotid artery, which over a 6-week pe-
riod established a mouse PH model caused by left HF with medium 
hemodynamic compromise (RVSP 35–40 mmHg).45,46 After TAC in 
mice, left ventricular insufficiency, right ventricular hypertrophy, 
increased RVSP, and elevated mPAP develop over time, accompa-
nied by an increased degree of pulmonary fibrosis and infiltration 
of inflammatory cells.47 It has been demonstrated that the use of 
riociguat (a soluble guanylate cyclase agonist) or sildenafil (phos-
phodiesterase 5 inhibitor) improves pulmonary vascular remode-
ling and right heart function in TAC-induced PH-LHD.5 TAC in mice 
is not extremely challenging operationally and has a relatively high 
successful rate (80%–90%) with practice. In line with aortic band-
ing, mice undergoing TAC also experience a sudden elevation in 
LV pressure, and acute left HF is more likely to occur if older mice 
undergo the procedure, so it is recommended to use younger mice, 
about 3–4 months of age.45

2.3  |  Pulmonary vein banding (PVB)

To establish PVB model, the confluence of 2 main pulmonary veins 
is in principle nonrestrictively banded by surgery to narrow the pul-
monary veins in experimental animals, causing obstruction of the 
pulmonary circulation flow and enhanced pulmonary venous after-
load, followed by an increase in PAP and the eventual development 
of right HF. In 1972, Silove et al. applied a calf model of PVB to 
the study of progressive PH.48 In 1990, LaBourene et al. first used 
pulmonary vein ligation in piglets to study fibrosis of pulmonary 
veins.49 On this basis, in 2014, Pereda et al. first utilized this PVB 
surgery in a porcine model to simulate a part of the disease physio-
pathological process in PH-LHD.50 In the same year they described 
for the first time a swine model of pulmonary vein tying, they were 
the first to use large animals in the study of postcapillary PH as well 
as combined pre- and postcapillary or active PH.51

This model is generally applied to large animals, such as pigs. The 
observation period after surgery is usually 4 months, during which 
right heart catheterization is performed regularly, and it is the most 
common large animal model currently mimicking group 2 PH with 
medium hemodynamic compromise (mPAP 33–40 mmHg). The ad-
vantage of pulmonary vein narrowing is that it can simulate an ani-
mal model of PH caused by congenital pulmonary vein stenosis. The 
disadvantage lies in the high expense, and the procedure requires 
multiple operators.

2.4  |  Left atrium stenosis (LAS)

In 2017, Yoshitaka et al. proposed the first LAS surgery in rat and 
successfully established a new PH-LHD rat model for the study of 
arterialization of the internal pulmonary veins.52 Those rats phe-
nocopied medium PH-LHD as evidenced by an increase of RVSP to 
41  mmHg. The model is operated by opening the chest and ligat-
ing left atrium using a larger clip under direct vision.53 One study 
found that LAS surgery simulated pulmonary venous arterialization 
and PH caused by the mitral stenosis. Echocardiographic findings 
post-modeling revealed a significant increase in mitral inflow ve-
locity in rats receiving LAS surgery compared with those without, 
which is the first study to apply this model in PH caused by heart 
valve disease.53 It was also verified that increased left atrial area on 
computed tomography (CT) or magnetic resonance imaging (MRI) 
can predict the diagnosis of PH-LHD in patients.54,55 The LAS model 
is mainly applied in small animals of rats, which likewise adds a new 
option for the study of the molecular mechanisms of pulmonary ve-
nous arterialization.

3  |  ISCHEMIC HE ART FAILURE- INDUCED 
PH

Myocardial infarction models are the most widely used models in 
studies of cardiac ischemia, in which left anterior descending coro-
nary artery was commonly ligated to induce myocardial infarction. 
This has been applied to the study of ventricular function since 
as early as the 1970s.56 However, the application of this model to 
the study of PH-LHD has drawn attention in recent years. In 1998, 
Quang et al.57 found that endothelin A receptor blockade did not 
abolish pulmonary fibrosis and vasculature remodeling in a rat 
model of myocardial infarction despite improvement in mPAP.58,59 
The reason for coronary artery ligation inducing PH might be that it 
simulates HF caused by low cardiac output or low ejection fraction, 
which mimics the manifestation of PH. Normally, it takes approxi-
mately 5–8 weeks to develop PH for this model.

This model is commonly used in small animals such as rats60–62 
or mice,63 but can also be applied to large animals such as swine.64 
The left coronary circumflex artery can also be chosen for liga-
tion, although it is less frequently selected compared with the left 
anterior descending coronary artery. This PH-LHD rodent models 



    |  201LIU and YAN

by ligation of left coronary artery displayed a medium to severe 
hemodynamic compromise with an increase of RVSP to the range 
of 40–52 mmHg, although swine exhibited only a mild PH phe-
notype developed by this method owing to a short observation 
period and species-specific physiology. The main disadvantage 
of left anterior descending ligation is the low postoperative sur-
vival rate, mainly due to surgery-induced cardiac arrhythmias in 
animals, bleeding, or death caused by pneumothorax. This model 
requires rigorous training and experience to ensure a high sur-
vival rate for animals undergoing the procedure. The strengths 
of a myocardial infarction-induced PH model are attributable to 
its recapitulation of HFrEF in humans, especially for patients with 
myocardial infarction resulting in myocardial cell necrosis, HF, and, 
finally, group 2 PH.

4  |  METABOLIC MODEL S OF PH-LHD

Metabolic syndrome is observed in the majority of patients with 
PH-LHD27 and includes hypertension, hyperlipidemia, and diabetes 
mellitus. Animal models of metabolic syndrome are new models that 
have been gradually developed in recent years compared with afore-
mentioned PH models induced by HF.

4.1  |  High-fat diets (HFD)

In 2016, Meng et al.65 first described that HFD could induce PH-
LHD in animals, reporting development of heart failure with mani-
festations of PH in mice on a HFD for 20 weeks. This noninvasive 
method is simple and convenient, but it takes time for the mice 
to develop the phenotype of mild to medium PH-LHD. Of note, 
on genetic screening for preclinical HFD-induced PH models, 
epidermal growth factor receptor (EGFR) was identified to asso-
ciate with PH susceptibility induced by HFD.66 However, further 
investigation into the role of EGFR in the development of PH and 
its interplay with metabolic crosstalk per se in this model is war-
ranted to prove a cause-and-effect relationship. The HFD-induced 
PH-LHD mouse model, mostly seen in PH associated with HFpEF, 
is the classic model for studying this type of disease, while large 
animal models of PH associated with obesity-induced LHD also 
exist, such as in cattle.67

4.2  |  Combined metabolic syndrome and pressure 
overload-induced PH-LHD

In 2019, Ranchoux et al. first described a complicated model of 
PH-LHD in rats together with AoB causing left ventricular diastolic 
dysfunction followed by HFD or intraperitoneal injection of olan-
zapine for 9  weeks.68 This model combines metabolic syndrome 
and left ventricular diastolic dysfunction for the first time, and the 
experimental rats exhibit increased PVR and pulmonary vascular 

remodeling, more closely simulating PH caused by HFpEF. Their 
study showed that metabolic syndrome significantly promoted dias-
tolic dysfunction and remodeling of pulmonary vasculature in rats. 
Moreover, they confirmed that metformin not only improved the in-
flammatory environment of PH-LHD, but also mitigated pulmonary 
vascular remodeling in this PH-LHD model.69 However, the hemo-
dynamic characteristics demonstrated a mild elevation of mPAP to 
approximately 30 mmHg at the end point, slightly higher than that 
of the AoB-only model, despite obvious lung vasculature remodeling 
as evidenced by a vascular wall thickness triple that in control rats. 
This would suggest this model might be appropriate for the study of 
mild PH-LHD rather than severe cases, and metformin may be a new 
promising therapeutic agent for those patients with mild PH-LHD 
accompanied by metabolic syndrome.

4.3  |  Combined metabolic syndrome and SU5416-
induced PH-LHD

In 2016, Lai et al. first used a genetic rat model to study PH-LHD. 
They generated a double-hit rat model, combining metabolic syn-
drome as a consequence of obese ZSF1 with double-leptin receptor 
defect and pulmonary endothelial impairment by vascular endothe-
lial growth factor receptor antagonist SU5416 for the first time, and 
found that RVSP was significantly increased to around 40 mmHg and 
the hemodynamic characteristics in rats were similar to the clinical 
features of human HFpEF-induced PH,70 indicating this model might 
be appropriate for the study of medium PH-LHD. It is currently the 
only genetic rat model that can be used in the study of PH-LHD with 
metabolic syndrome. Importantly, treprostinil together with met-
formin is able to improve HFpEF-induced PH, alongside ameliorating 
metabolic syndrome.71

5  |  DIFFERENCES BET WEEN ANIMAL 
MODEL S AND HUMAN PH-LHD

The distinctions between animal models and PH-LHD patients are 
not well studied. Some studies differ with regard to the timing of 
modeling in the AoB model, with one study reporting 25  days to 
produce right heart dysfunction,37 but most of the AoB models are 
established at 9 weeks post-banding, which corresponds to the long 
time it takes for patients to develop PH-LHD and the right heart 
failure as a late response to left heart failure. PH-LHD patients 
with right heart failure sometimes manifest clinical signs of remis-
sion, when in fact the disease is further aggravated. The AoB model 
mainly recapitulates PH due to aortic stenosis. Nevertheless, its ap-
plication to the study of other subtypes of PH-LHD (e.g., PH-LHD 
due to congenital cardiomyopathies) is challenging. For the mouse 
model of myocardial infarction-induced PH, the difference lies in 
the infarction area in the mouse model being relatively fixed, while 
there is no strict pattern of infarction region in patients with PH-
LHD. Finally, in most patients, PH-LHD is accompanied by metabolic 
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syndrome, but it remains to be elucidated whether it is the metabolic 
syndrome affecting left or right heart function or LHD causing the 
metabolic syndrome. However, in the PH-LHD metabolic disorder 
model, a high-fat diet is usually applied to induce metabolic derange-
ment, which might be inconsistent with the patients' conditions.

6  |  CONCLUSION AND PROSPEC TS

Currently, therapies to improve or treat the long-term prognosis of 
PH-LHD are limited, with the diseased subpopulation occupying the 
largest proportion in PH. Despite the increasing understanding of the 
subgroup classification of PH-LHD and the continued development 
of animal models, many challenges remain in uncovering the patho-
physiological mechanisms and in developing effective treatments for 
the disease because of the complexity of LHD, PH, and the meta-
bolic disorders in PH-LHD. In preclinical studies of PH-LHD, none 
of the current available animal models, including aortic banding, left 
coronary artery ligation, and the recent combination of metabolic 
syndrome with aortic banding or vascular endothelial growth factor 
receptor blocker (Figure 2), can fully characterize PH-LHD and simu-
late the development of the disease. Although an attempt to apply an 
animal model of volume loading-induced heart failure72 to the study 
of PH-LHD has been proposed, its incompatibility with the patho-
logical process of the disease does not yet allow its mainstreaming. 
Considering PH-LHD caused by myxomatous mitral valve disease oc-
curring in dogs,73 its predominant echocardiography findings do not 
support its establishment as a stable model. Although metabolomics 
has been employed to in vivo models of PH challenged by monocro-
taline, hypoxia, or SU5416/hypoxia at the tissue or cellular level or in 
vitro models (such as pulmonary arterial smooth muscle cells under 
the stimulus of hypoxia),74–78 to date, the metabolic reprogramming 
of animal models mimicking PH-LHD remains unveiled. Hence the 

application of metabolomics to the PH-LHD would provide critical 
information for our understanding of the metabolic mechanisms un-
derlying PH-LHD, especially with metabolic perturbations.

Aside from the triggers of overload-induced LV failure, ischemic 
heart failure, or metabolic dysfunction, the genetic predisposition 
to PH-LHD at a large scale will require further investigation with 
the aid of next-generation sequencing, such as bone morphoge-
netic protein receptor 2 (BMPR2) as a pivotal predisposing gene for 
pulmonary arterial hypertension (PAH, group 1 PH). It is reported 
that BMPR2-deficient rats or Bmpr2+/R899X knock-in mice display a 
spontaneous pulmonary vascular remodeling and have been widely 
applied to explore the pathogenesis of PAH.79,80 The generation of 
a new genetic rodent model might represent a promising tool to 
study the pathogenesis of PH-LHD and whether it has a synergistic 
effect with other factors (such as metabolic dysfunction). In fact, 
the role of epigenetic regulation (e.g., DNA methylation,81 histone 
acetylation,82 and noncoding RNAs83) has been investigated in mul-
tiple PH animal models induced by either monocrotaline or hypoxia. 
However, its role in animal models of PH-LHD remains largely un-
known. Furthermore, the study of specific gene profiling of PH-LHD 
in comparison with other PH subtypes or LHD would be of great 
benefit to the discovery of potential targets and, thus, the genera-
tion of PH-LHD induced by genetic factors either alone or by double 
hits. Given that sex hormones are associated with insulin resistance 
and metabolic syndrome,84 future studies on PH-LHD evaluating 
whether there exists a gender bias and investigating the detrimental 
or protective role of sex hormones are warranted. In addition, the 
differences in right ventricular adaptation/decompensation pattern 
of PH-LHD and other PH subtypes should be scrutinized as well, 
since LHD might affect the right ventricle much earlier.

A more stable and reproducible animal model is a requisite for the 
identification of novel and effective therapeutic approaches for PH-
LHD treatment, and the development of an appropriate preclinical 

F I G U R E  2  Currently available animal 
models of PH-LHD. At present, PH-LHD 
animal models are established by (1) 
pressure overload-induced LV failure 
including aortic banding (AoB), transverse 
aortic constriction (TAC), pulmonary vein 
banding (PVB), and left atrium stenosis 
(LAS); (2) ischemic heart failure via ligation 
of left coronary artery; and (3) metabolic 
disturbance induced by high-fat diet 
(HFD) alone or with pressure overload-
induced LV failure, or the combination of 
olanzapine and pressure overload-induced 
LV failure, or by genetic predisposition of 
cardiometabolic syndrome and SU5416. 
Created with BioRender.com
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model of PH-LHD is urgently needed, which would allow us to better 
understand this disease and thus accelerate the development of new 
therapies.
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