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Parkinson’s disease (PD) is one of the most common neurodegenerative

disorders, which is accompanied with the classical motor symptoms and a

range of non-motor symptoms. Bacter ia l infection affects the

neuroinflammation associated with the pathology of PD and various

antibiotics have also been confirmed to play an important role not only in

bacterial infection, but also in the PD progression. This mini-review

summarized the role of common bacterial infection in PD and introduced

several antibiotics that had anti-PD effects.

KEYWORDS

Parkinson’s disease, bacterial infection, neuroinflammation, antibiotics, anti-PD
Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases,

which seriously affects patients’ health and quality of life. The clinical manifestations of PD

include non-motor symptoms and motor symptoms. Motor symptoms are mainly motor

retardation and static tremor, while non-motor symptoms include sleep disorder, smell

loss, anxiety, depression and cognitive disorder (Homayoun, 2018). Levodopa is currently
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the first choice of the treatment of PD, but long-term use of

levodopa will cause obvious adverse reactions, and thus could not

achieve a complete cure effect (Tambasco et al., 2018). The main

pathological features of PD are the loss of dopaminergic neurons

in the substantia nigra pars compacta (SNpc) and the

accumulation of misfolded a-synuclein (Balestrino and

Schapira, 2020). Although PD might be associated with several

cellular mechanisms, including mitochondrial dysfunction,

oxidative stress, neuroinflammation, and defective protein

degradation, the pathogenesis of PD is still unclear (Poewe

et al., 2017).

It has recently been discovered that bacteria play an

important role in the pathogenesis of neurodegenerative

diseases (Sampson et al., 2016; Kim et al., 2020). A large

number of studies have shown a strong link between bacterial

infection and neuroinflammation (Morais et al., 2021; Shen

et al., 2022). Neuroinflammation is considered to be one of the

causes of PD (Hirsch and Standaert, 2020), and bacterial

infections have been confirmed to be closely associated with

PD. For example, gastrointestinal infections increased the risk of

the disease (Nerius et al., 2020). In this mini review, we

summarized the association between multiple bacterial

infections and PD, and then discussed the role of antibiotics in

the treatment of PD.
Effects of bacterial infection on
PD pathogenesis

Bacteria could cause a variety of infections, most commonly

in the lung, skin and gastrointestinal tract, etc. (Alby and

Nachamkin, 2016; Cookson, 2017; Deusenbery et al., 2021).

Several bacterial infections are closely related to the onset of

PD (Figure 1).
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Helicobacter pylori

Helicobacter pylori (H. pylori) is a major cause of gastritis,

ulcers, gastric adenocarcinoma and MALT type lymphoma,

accompanied by a variety of gastrointestinal symptoms

(McGee et al., 2018). Current studies indicate that H. pylori is

associated with neurodegenerative diseases (Miklossy, 2011). H.

pylori infection is very common in patients with PD (Blaecher

et al., 2013). It has long been found that patients with H. pylori

ulcers are more likely to develop PD than healthy people of the

same age (Actis, 2019). Neuroinflammation, autoimmunity and

apoptosis induced by H. pylori infection might be related to the

pathogenesis of PD. In addition, in the treatment of PD with

levodopa, the elimination of H. pylori infection with

antimicrobial could increase the absorption of levodopa in the

intestinal tract (Nyholm and Hellström, 2021). However,

another evidence demonstrates that eradication therapy for H.

pylori does not reduce the risk of PD, even though H. pylori is a

risk factor for PD (Huang et al., 2018). The mechanism of

association between H. pylori infection and PD is still unclear.

The main reason is that there are too many possibilities for H.

pylori to cause PD, including the toxic factors, the inflammatory

reaction and its influence on intestinal flora, etc. (Dobbs et al.,

2016; Noto and Peek, 2017). Thus, the epidemiological

investigations are needed for further study.
Mycobacterium tuberculosis

Mycobacterium tuberculosis (M. tuberculosis) is a highly

infectious bacterium, and known to induce human

tuberculosis (TB). A statistical meta-analysis of human gene

expression in response to M. tuberculosis infection identified

several enriched pathways, such as the LRRK2 pathway in PD
FIGURE 1

Main bacteria associated with PD.
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(Wang et al., 2018), which play a critical role in regulating the

central nervous system (CNS) immune milieu in PD patient

(Cookson, 2017; Kim and Alcalay, 2017). Moreover, M.

tuberculosis infection could induce neuroinflammation in

astrocytes of PD-related brain regions in a LRRK2-dependent

manner. Furtherly, the LRRK2 inhibitors are considered as a

major drug development in treatment of PD patients by

elevating levels of cytosolic mtDNA and chronic cGAS

signaling (Arru et al., 2016; Weindel et al., 2020). Likewise,

Rifampicin, an antibiotic commonly used to treat infections with

M. tuberculosis, was discovered to have the ability of

neuroprotective effects by reducing microglial activation and

improving neuron survival against inflammation, which

provides a novel therapeutic strategy of anti-Parkinson (Yulug

et al., 2014; Liang et al., 2017). Recently, a therapeutic strategy

with repeating bacillus Calmette-Guerin (BCG) vaccination was

found to be applicable in disease with inadequate aerobic

glycolysis including PD (Faustman, 2020). Therefore, basing

on the therapeutic strategies with M. tuberculosis might provide

a new mentality in PD treatment.
Porphyromonas gingivalis

Porphyromonas gingivalis (P. gingivalis) is a keystone

pathogen for periodontitis (Hajishengallis et al., 2012). Patients

with periodontal inflammatory disease (PID) are more likely to

develop PD (Chen et al., 2017). It has been demonstrated that

inflammation is associated with neurodegenerative diseases, and

PD patients have higher levels of inflammatory cytokines in the

brain compared with people don’t have PD (Adams et al., 2019).

Gingipains are critical proteases encoded by P. gingivalis that

could interfere or evade the host complement system. Gingipain

proteases produce effects on fibrinogen that increases the risk of

periodontal bleeding in patients with periodontitis (Haditsch

et al., 2020; Kadowaki, 2021). Studies also found that the

enzymes interfered coagulation through interacting with

fibrinogen, prothrombin (Imamura et al., 2001) and the

stimulation of the kallikrein/kinin pathway (Hočevar et al.,

2018; Mo et al., 2020). Furthermore, amyloid fibrin (ogen)

protein structure was observed in platelet poor plasma clots,

and samples from PD patients contain much more amyloid-

specific signal compared with the control donors (Adams et al.,

2019). Thus, P. gingivalis might affect the development of PD by

inducing inflammation and blood changes according to the

latest research progress.
The other bacteria

There are many other bacteria verified to be associated with

PD. Clostridium difficile (C. difficile) is one of the main pathogens
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causing diarrhea and pseudomembranous colitis which could

colonize when the host has intestinal flora (Leffler and Lamont,

2015; Smits et al., 2016). The individuals with C. difficile

infection (CDI) history were at higher risk of PD during the

first 2 years since CDI diagnosis over a Swedish population-

based cohort study (Kang et al., 2020), but there was no

obviously increased PD risk in long-term follow-up.

Chlamydia pneumoniae (C. pneumoniae) has been recognized

as an important common respiratory pathogen causing

otolaryngeal diseases, including pharyngitis, otitis media,

tonsillitis and sinusitis (Roulis et al., 2013). C. pneumoniae

might have close relationship with neurodegenerative,

including Alzheimer’s disease (AD) due to its role in protein

deposition and apoptosis in CNS (De Chiara et al., 2012).

Besides, an epidemiological study demonstrated that PD risk

was increased in healthy individuals who have the familiar

pathogens, such as B. burgdorferi and C. pneumoniae (Patrick

et al., 2019).
Antibiotics and PD

Antibiotics are various kinds of chemical compounds that kill

directly or inhibit the microorganisms. Antibiotics are used widely

in treating bacterial infection diseases and have decreased the

mortality rates. Until now, more and more ancillary properties

are found in antibiotics, such as anti-inflammatory effects (Moon

et al., 2012; Rashed et al., 2022), inducing gastrointestinal motility

(Lam & Ng, 2011), and neuroprotective properties against

neurodegenerative and neuroinflammatory disorders (Sultan

et al., 2013; Ruzza P. et al., 2014). Thus, antibiotics function as

neuroprotective drugs may not only through treating bacterial

infections, but also some other approaches. Here, several

antibiotics were demonstrated to be the potential alternatives to

PD drugs (Table 1).
Rifampicin

Rifampicin, a wide-spectrum antibiotic, is a semisynthetic

derivative of rifamycin with the common structure of an

naphthohydroquinone chromophore spanned by an aliphatic

ansa chain that mainly transporting the drug to across the blood-

brain barrier (BBB) into brain parenchyma. Rifampicin has been

confirmed to have the apparent protection in neurodegenerative

diseases by different multiple mechanisms, including with anti-

apoptotic, anti-inflamatory and anti-oxidant properties (Yulug

et al., 2014). In addition, rifampicin could increase the number

of surviving dopaminergic neurons at different concentrations

(Bi et al., 2013). Also, rifampicin pretreatment led to a dose-

dependent increase in cell viability of dopaminergic neurons.

Meanwhile, rifampicin decreased LP-induced expression of pro-
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inflammatory mediators (Molloy et al., 2013). Thus, as a

macrocyclic antibiotic for the treatment of M. tuberculosis and

other mycobacterial infections, rifampicin is supported to be a

novel anti-inflammatory drug for PD, but the molecular and

cellular mechanisms still need further investigations.
Tetracyclines

Tetracyclines and its derivatives are broad-spectrum

antibiotics with inhibitory effect on most gram positive and

negative bacteria and the ability of bactericidal in high

concentration. In addition to the antibiotic functions,

tetracyclines are reported to generate protection against

neurodegenerative and neuropsychiatric diseases (Stoilova et al.,

2013; Ruzza C. et al., 2014; Bortolanza et al., 2018) by reducing

pro-inflammatory molecule production (Sultan et al., 2013;

Morris et al., 2018), inhibiting matrix metalloproteinase activity

and mitochondrial dysfunction (Cathcart and Cao, 2015).

Furthermore, tetracycline derivatives, including doxycycline

(DOX) and minocycline (MIN), are considered as an alternative

therapy strategy in neurodegenerative disorders (Reglodi et al.,

2015; Socias et al., 2018). Current evidence indicated that MIN

mainly inhibited microglial activation, neuronal apoptosis and

reactive oxygen species (ROS) production (Romero-Miguel et al.,

2021). Moreover, DOX was confirmed to downregulate the

expression of matrix metalloproteinases (MMPs) (Cho et al.,

2011). Meanwhile, DOX could suppress the activation of

microglia (Santa-Cecıĺia et al., 2016). Therefore, there is rapidly

growing evidence showing that tetracycline has the potential

therapeutic benefit for PD, but clinical studies are needed to

confirm its neuroprotective effect.
b-lactam

Ceftriaxone (CEF) is a b-lactam antibiotic which is most

frequently used in local/systemic infection and hospital acquired
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infections. Recently, CEF have been highlighted the therapeutic

efficacy against neurodegenerative diseases. For instance, CEF

could ameliorate abnormal uncontrolled movements (Chotibut

et al., 2017) in animal models of PD. Moreover, CEF attenuated

oxidative damage (Bisht et al., 2014). Also, CEF was found to

prevent the degeneration of dopaminergic neurons (Ho et al.,

2014) and inhibit neuroinflammation (Kaur & Prakash, 2017).

Thus, CEF is currently becoming a research hotspot with its

multiple activities to relieve symptoms of PD. At present, more

and more studies are re-interested with antibiotics due to its

surprising ancillary properties in anti-inflammatory effects.

With the affection of variety mental and neurological diseases

in human people, drug reuse is considered as a promising new

drug discovery strategy basing on the limitation of target-based

drugs approaches (Lee and Kim, 2016; Corsello et al., 2017;

Gooch et al., 2017).
Conclusion

Parkinson ’s disease is the second most common

neurodegenerative disease in the world and levodopa remains

the main option for the treatment of PD. In this mini review, the

relationship between common bacterial (H. pylori, M.

tuberculosis, P. gingivalis, C. difficile and C. pneumoniae)

infection with PD and their possible action mechanisms, such

as neuroinflammation factors, LRRK2 pathway and toxic protein

aggregations, were revealed. Meanwhile, the use of antibiotics in

treatment of PD is worth exploration, which could provide new

strategies in PD treatment. It is worth noting that levodopa is

usually administered orally or enterally and the intestinal

microbiota could also affect its therapeutic efficacy. Combined

use of levodopa with antibiotics to regulate bacterial infection in

PD patients might open a new direction to improve the

therapeutic effect of levodopa. Furthermore, the underlying

mechanisms of these antibiotics’ action still warrant

further illumination.
TABLE 1 The protective mechanisms of antibiotics on PD.

Antibiotics Mechanisms of action References

Rifampicin •Increase dopaminergic cell survival (Bi et al., 2013)

•Decrease the expression of inflammatory mediators induced by LPS (Molloy et al., 2013)

Tetracyclines •Decrease the pro-inflammatory molecules production (Morris et al., 2018)

•Decrease matrix metalloproteinase activity (Cathcart and Cao, 2015)

•Reduce ROS production (Romero-Miguel et al., 2021)

b-lactam •Reduce oxidative damage (Bisht et al., 2014)

•Attenuate the degeneration of dopaminergic neurons (Ho et al., 2014)

•Inhibit neuroinflammation (Kaur and Prakash, 2017)
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