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The investigation of human perception and movement kinematics during manipulation

tasks provides insights that can be applied in the design of robotic systems in order to

perform human-like manipulations in different contexts and with different performance

requirements. In this paper we investigate control in a motor task, in which a tool

is moved vertically until it touches a support surface. We evaluate how acoustic and

haptic sensory information generated at the moment of contact modulates the kinematic

parameters of the movement. Experimental results show differences in the achieved

motor control precision and adaptation rate across conditions. We describe how the

experimental results can be used in robotics applications in the fields of unsupervised

learning, supervised learning from human demonstrators and teleoperations.

Keywords: contact velocity, motor control, motor learning, robotic learning, hidden Markov models, manipulation

task, multisensory, movement with risk

1. INTRODUCTION

A key challenge for future robotics is the mastering of everyday activities (Beetz et al., 2015).
When entering into everyday life situations, e.g., in kitchens, house cleaning, or in interactions
with humans, robots are confronted with a huge variety of objects, material properties, and with
a continuously changing environment, in which novel objects never experienced before can show
up at any time. The ability to learn and to adapt to the respective object properties is a key feature
in such a situation, in particular for the successful manipulation of objects and tool usage. The
objects and materials involved may have various properties, for example being easily breakable, like
expensive wine glasses, or they may be deformable, like dough, or elastic, like plastic bottles. This
implies that a lot can go wrong, if an agent does not apply the appropriate forces, for example.
But how can a robot, or a human, learn that something is breakable, cuttable, or deformable?
How can one learn, for example, which movement of a spoon is appropriate to just crack the
egg-shell, and not leaving it intact, or smashing the whole egg? A key phase in tool-object and
object-object interaction is the contact event. Contact events generate characteristic haptic, visual,
and auditory information that can help in learning how to deal with tools and objects. Since humans
have a mastery in dealing with such everyday situations that is not yet reached by their robotic
counterparts, this prompted us to investigate how humans can learn and adapt their behavior
on the basis of contact events. In particular, we measured how subjects can learn to control the
movement of a tool (spoon) toward an object with a desired contact force, based on haptic and
auditory information about the contact event.
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The contribution of individual sensory channels to the human
sensorimotor loop is difficult to investigate since sensory events
are usually experienced as one multisensory unit in the natural
world. Therefore we used a virtual reality experimental setup
augmented with haptic rendering and real-time sound synthesis,
which enabled us to present participants with separate sensory
information during a motor task. With the aim of using the
acoustic information generated during manipulation tasks to
improve the robot’s capabilities, we investigate human kinematic
control under different sensory conditions. In particular, we
aim to model the extent to which humans can use auditory
information to adapt sensory motor patterns.

The goal of the analysis of kinematic control is to model
how humans learn to master motor tasks, how tasks execution
is adapted to different requirements and how the learning
and adaptation processes are enabled by the available sensory
information. In particular, models of motor control, learning
and adaptivity under different sensory conditions can be used
to determine the extent to which one sensor modality can be
replaced by others in the case of missing, noisy, or incomplete
sensory feedback.

In the present study, we investigate the influence of sensory
feedback on human movement behavior during a contact event.
This work provides evidence on how the sensorimotor system
performs control actions during motor tasks given the afferent
information available. Motor control and task performance
are investigated in terms of the kinematic parameters of the
movement and their adaptation due to the repetition of the task
and the available sensory information. The experimental results
illustrate the individual contribution of haptic and auditory
information to task performance as well as the strategy used
by the motor control system triggered when haptic information
is missing. Based on the significant differences found across
conditions and blocks of trials we quantified the rate at which
the movement parameters adapt in each condition. Furthermore,
we describe three areas of application in robotics in which
our experimental results can be applied: unsupervised learning,
supervised learning from data and human demonstrators,
and teleoperations.

2. RELATED WORK AND BACKGROUND

During object manipulation tasks, action phases are
generally delineated by distinct sensory events that
represent task subgoals. The motor control system uses
afferent signals and sensory predictions to modulate motor
output according to the requirements imposed by the task
(Johansson and Flanagan, 2009).

During the events that mark transitions between action
phases, such as the moment of contact of a tool with a surface,
the brain receives sensory information from multiple sources;
visual, haptic, and auditory modalities encode information
about the physical nature of the contact event (e.g., force
and contact duration) as well as information related to
object properties (e.g., size, shape, material) (Cook, 1997; Van
Den Doel and Pai, 2007; Johansson and Flanagan, 2009).

These multisensory representations enable humans to learn
sensorimotor correlations that can be used to monitor task
progression and to trigger corrective actions if mismatches
between the predicted and the actual sensory outcomes are
detected (Johansson and Flanagan, 2009).

Models based on human manipulation have been used as
a basis for the design of robotic systems (for a review see
Yousef et al., 2011). Manipulation consists of a sequence of
action phases separated by contact events, each fulfilling a
subtask (Johansson and Flanagan, 2009; Yousef et al., 2011).
A prototypical manipulation task consists of reach, load, lift,
hold, replace, and unload phases (Johansson and Flanagan, 2009).
Contact events correspond to sensory events in the haptic, visual,
and auditory modalities. The goal of the unload phase is marked
by the moment in which the object touches the support surface,
and is characterized by the contact force and the impact sound.
The detection of the force and the magnitude of contact forces
due to the motion of the hand during manipulation is regarded
as one of the minimum functional requirements for a robotic
sensing systemmimicking human in-handmanipulation (Yousef
et al., 2011). This paper focuses on this functional requirement
by investigating the control of force during the contact phase of a
prototypical manipulation task.

In the field of robotics different sensors can measure
physical quantities during task performance. The fusion of
information coming from different sensor modalities is used
for environment perception, system diagnosis, and decision
making (Luo and Chang, 2012). The manipulation capabilities
of mobile robots are regarded as weak compared with the
motion and sensing abilities, due to the immature cooperation
between the sensor-motor systems (Luo and Chang, 2012). A
key feature of human manipulation is the ability to perceive
the consequences of an action. Robots are still missing this
ability, as exemplified by Stelter et al. (2018). Force sensing in
robotic systems, which is essential for skillful manipulations, is
limited when compared to human capabilities. Robotic systems
can overcome the limitations of force sensing by exploiting
the acoustic information generated by tool-object, or actuator-
object interactions, improving the robot’s capabilities to extract
information about the materials (e.g., texture or weight), the
kinematics of an interaction (e.g., contact tool-object contact
velocity) and the monitoring of task progress.

Robots operating in changing environments or under
uncertain conditions must adapt constantly to the new
circumstances imposed by the context. Furthermore, uncertain
conditions might also arise during the execution of well known
tasks (e.g., a robot manipulating a liquid container, in which
the amount of fluid can’t be specified a priori). Therefore,
models of human adaptivity can inspire the design of adaptive
robotic systems.

The sensory information generated during the manipulation
of an object informs not only about the success of the contact
event but also about its quality in form of the haptic sensation
and, most prominently, the acoustic sensation. This so called
impact sound is characterized by its short duration, an abrupt
onset and a rapid decay (Aramaki and Kronland-Martinet, 2006).
It encodes perceptual information about the physical attributes of
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the object (material, shape, size) and the strike movement [force
of the impact and the location of the collision on the object’s
surface (Cook, 1997; Van Den Doel and Pai, 2007)]. Information
encoded in impact sounds highlights their importance for the
performance of manipulation tasks, especially when human-like
precision is required.

Information encoded in sound has been used in robotics for
the perception of events and the recognition of objects (Sinapov
et al., 2011; Luo et al., 2017b). Information encoded in sound has
also been used in the recognition of materials (for a review see
Luo et al., 2017a). In these applications, the characteristic features
of the sound produced by an action (i.e., the acoustic signature
from an action-object interaction) are used in classification tasks.
Actions performed by robotic actuators that produce an acoustic
signature include tapping, lifting, shaking, dropping, crushing,
and pushing (Sinapov et al., 2011). Thus far, robotic systems have
mainly used the information about object material, shape and size
encoded in acoustic signals, setting aside information about the
event that generated the sound.

With respect to the haptic component, contact forces play a
major role in tool manipulation. A contact force involves the
actions exerted by one object in direct contact with another
(Hamill et al., 2015). Contact forces are essential to the execution
of everyday activities in which tools act on objects. These forces
are perceived as distinct sensory events that represent action
task subgoals (e.g., initial tool-object contact). These afferent
signals are used by the motor control system to modulate the
motor output according to requirements imposed by the task
(Johansson and Flanagan, 2009).

All surfaces and objects on which an individual interacts
provide a reaction force. During the impact phase between two
objects the force increases with increasing indentation while
the velocity at which the objects are approaching each other is
reduced (Machado et al., 2012). When a hand-held tool makes
contact with an object’s surface the reaction force is proportional
to the acceleration of the tool combined with the hand and
arm forces. The afferent signal generated by the reaction force
indicates the person that contact has taken place. Once tool
and object are in contact, the reaction force is used to control
the rest of the interaction (e.g., keep tool in contact with the
object at a desired position or with a target force to perform
a task). During the contact onset of a hand-held object and
a surface the impact force is transmitted to the fingers and
the upper arm. Muscular activity observed during collisions of
hand-held tools and surfaces may reflect a mixture between
anticipatory and purely reactive responses triggered by fast
adapting mechanoreceptors (White et al., 2011).

Moreover, voluntary movements of hand-held objects
produce predictable modulations of the load (Latash, 2013).
In Rapp and Heuer (2015), the effects of the predictability
of abrupt offsets of horizontal forces on initial conditions and
kinematic characteristics of the movements triggered by the force
offset were investigated. Their experimental results show that
anticipatory adjustments resulted in shorter peak amplitudes of
the involuntary movements triggered by abrupt force changes
and that the modulations of movement times depended on the
different states of the limb at the moment of change.

Anticipatory adjustments are regarded as an example of the
predictive nature of motor control (White et al., 2011). When
the abrupt unloading or loading of the hand can be predicted,
anticipatory adjustments of muscular activity or changes of limb
impedance can be observed (for examples see Rapp and Heuer,
2015). Apart from the adjustments observed in White et al.
(2011) and Rapp and Heuer (2013, 2015), anticipatory behavior
observed during task performance also includes the velocity
decrease when the target is approached in reaching movements.
Similar velocity reductions occur in vertical and horizontal
movements when the hand or hand-held tool approaches a
contact surface.

3. MATERIALS AND METHODS

3.1. Participants
Ten volunteers (five females and five males) with an age range
of 26–40 years participated in the experiment. Nine participants
were right handed. All participants had normal or corrected-
to-normal vision and reported having no motoric problems. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The experiment was approved by the
ethics committee of the University of Bremen.

3.2. Apparatus
Stimulus presentation and control of the experiment was
accomplished with Vizard 5 (WorldViz). Haptic stimuli were
generated using a Phantom Premium 1.5 (3D Systems) force-
feedback device, equipped with a stylus which provides 3 degrees
of freedom positional sensing (x, y, and z coordinates), 3
degrees of freedom force-feedback and measurement of pitch,
roll and yaw. Interaction with the virtual objects is achieved by
manipulating the stylus. Feedback force is rendered at the tip of
the stylus when it touches the surface of a virtual object.

The audio was presented through DT 770 (Beyerdynamic)
headphones, the sound synthesis was implemented in ChucK
(Wang and Cook, 2003). The output from the sound synthesis
module was mixed with pink noise. The pink noise was presented
continuously in order to mask the sound of the Phantom
hardware. Communication between virtual reality software and
the sound synthesis module was implemented with the Open
Sound Control (OSC) protocol.

The experimental setup is shown in Figure 1. Participants sat
down with their head placed on a chin rest and looked at the
image being reflected in a mirror from a monitor (EIZO Flexscan
F784-T). The viewing distance to the mirror was 15 cm. The
Phantom hardware and the participants’ hands were occluded by
the mirror.

3.3. Stimuli
Participants viewed a 3D environment containing a red box
(termed contact box) (15 × 15 × 20 cm) and a spoon (see
Figure 1). The visual and haptic stimuli were aligned spatially.
The virtual spoon was attached to the stylus of the Phantom;
thus the stylus manipulation was reflected in its position and
orientation. In addition, a semitransparent box (termed start
box herein) was displayed to signal the start position of the
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FIGURE 1 | Experimental setup. (a) Schematic illustration of the experimental

setup. (b) 3D virtual environment.

FIGURE 2 | Block diagram of the modal synthesis algorithm.

movement. The center of the contact box was located at x = 12
cm, y = 10 cm, z = −9 cm from the origin and the center of
the start box at x = 12 cm, y = 22 cm, z = −9 cm. The impact
sound was synthesized and force was rendered when the tip of
the stylus reached upper surface of the contact box. Participants
were requested to hold the stylus like they would hold a pen, so
that the tip of the spoon was always pointing down.

3.3.1. Sound Synthesis
When a solid object is struck the forces at the contact point
cause its outer surfaces to vibrate and emit sound (Van Den Doel
and Pai, 2007). In order to investigate impact sounds and
their perception, a sound synthesis module was implemented,
taking into account the physics of the object and the kinematic
characteristics of the movement that caused the impact. In this
“physically informed” approach the parameters of the synthesis
system have physical meaning (Cook, 1997) aiming to reproduce
an impact sound from a perceptual point of view (Aramaki and
Kronland-Martinet, 2006).

Impact sounds were generated in real time by a modal
synthesis algorithm that enables modeling of the vibrating object
and excitation physics (Cook, 1997; Aramaki and Kronland-
Martinet, 2006). The synthesis system, shown in Figure 2,
consists of an excitation block and an object block. The
implementation is closely based on the systems described in Cook
(1997) and Van Den Doel and Pai (2007).

In the object block a vibrating object is modeled by a bank
of resonant band-pass filters. The model parameters (modal
frequencies, decay rates, and the gain coefficients of each mode)
were obtained experimentally by recording the impulse response
of a glass surface. The synthesis model utilizes 68 modes at 1
contact point. Thus, impact on the virtual object corresponds to
a vibrating glass surface.

In the excitation block the force was modeled based on the
coupled hammer-object model used by Avanzini and Rocchesso
(2001), in which the contact force is proportional to the velocity
of the strike. The velocity of the strike was mapped to the
amplitude of an impulse function used to excite the filter bank.
For the real time interaction, velocity was approximated by the
difference between the current discrete time position and the last,
divided by the time step.

3.4. Experimental Task
The participants’ task was to move the spoon away from the
start position until it touches the contact box, and they were
requested to try to do this with a target force. The target force was
displayed as a dimensionless force score on the top of the screen
(see Figure 1), which reflects the proportionality of the velocity of
the strike and the contact force (score = 10[s/m]×velocity[m/s]).
The target force score was set to 5, which corresponds to
0.5 m/s, and it was constant throughout the experiment and
across participants.

At the beginning of each trial, participants moved the spoon
toward the start box. Participants were instructed to hold the
spoon within the start box. Once a steady position was detected,
the start box changed its color from red to green, resembling a
traffic light. Participants were requested to hold the spoon steady
until the box turned green and then to move it vertically in
order to touch the contact object. The trial ended at the moment
of contact.

At the end of the trial, the force error was computed as
error = score − target. The feedback about the contact force
was given with three linguistic labels displayed in the result text
box on the top of the screen. Force was described as LOW when
error < −2, GOOD when abs(error) ≤ 2, and HIGH when
error > 2. After the feedback was displayed, the start box changed
its color to blue and participants were instructed to proceed with
the next trial. Participants were explicitly instructed to achieve an
accurate contact force across trials in order to maintain GOOD
performance throughout the experiment.

There were three experimental conditions that differed in the
sensory information delivered at the moment of contact between
the spoon and the contact object. In the haptic condition (H)
force was rendered when the tip of the spoon touched the surface
of the contact box. In the acoustic (A) condition impact sound
was synthesized when it reached the surface of the contact box.
In the haptic-acoustic condition (HA) force was rendered and
audio was generated. Visual information was available in all the
conditions, thus they only differed on the availability of haptic
and acoustic information.

After the initial instruction, participants were allowed to do
practice trials in order to get used to the experimental setup.
Participants performed the experiment in 3 blocks of 50 trials
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(one block per condition). The order of the conditions was
randomized. At the end of each block participants took a short
break. Participants were instructed to report arm fatigue at any
time during the experiment.

3.5. Data Analysis
Position data from the Phantom were sampled at 60 Hz and
preprocessed using a 4th order two-way low-pass Butterworth
filter. The cutoff frequency was determined for each participant
using residual analysis (Yu et al., 1999; Winter, 2009).
Position data were subsequently differentiated to calculate the
absolute velocity.

Kinematic features were computed from the position and
velocity data. The peak velocity (PV) and average velocity (AV) of
the movement as well as the percentage of time to peak velocity
(TPVP), which expresses the acceleration time in relation to
the complete movement time, were calculated to describe the
characteristics of the movement.

The relation between the magnitude of PV to the
contact velocity (CV) was quantified as the ratio of
contact to peak velocity (CTP). The agreement between
the CV and the target contact velocity was assessed by
calculating the percentage deviation (DEV) computed as
abs(CV − target velocity)/target velocity. An example of the
position and velocity curves during a trial is shown in Figure 3.

4. RESULTS

A two-way repeated measures MANOVA (α = 0.5) with
the experimental condition and the trial block (one block
representing five consecutive trials) and CV, CTP, AV, PV, TPVP,
and DEV as dependent variables shows significant main effects
of the experimental condition, Wilks′3 = 0.11; F(12,186) =

30.1; p < 0.001, and trial block, Wilks′3 = 0.77; F(54,2,228) =

2.1; p < 0.001. This result indicates a difference of at least
one of the variables PV, AV, and TPVP between conditions and
in the course of the trial sequences. A significant interaction
between factors, Wilks′3 = 0.79; F(108,5,292) = 2; p < 0.001,
indicates that the kinematic characteristics in the course of the
trial sequences are themselves modulated by sensory feedback. As
a second step, a closer examination using individual ANOVAS
was performed: CV data show significant main effects of the
experimental condition, F(1.2,58) = 185.8; p < 0.001, trial block
F(4.5,221) = 3.5; p < 0.01, and a significant interaction between
factors, F(7.9,386.6) = 3; p = 0.03. AV data show significant
main effects of the experimental condition, F(1.6,80) = 80; p <

0.001, trial block F(4.5,221) = 4.5; p < 0.01, and a significant
interaction between factors F(5.8,283.3) = 3; p = 0.02. The
same applies to PV data, which show significant main effects of
the experimental condition, F(1.7,84.3) = 52.1; p < 0.001, trial
block F(3.6,176) = 5.1; p = 0.001, and a significant interaction
between factors F(7.7,487) = 2.5; p = 0.01. Interestingly, CTP
data show a significant main effect only of the experimental
condition, F(1.1,55.7) = 191.5; p < 0.001, but no effect of trial
block F(6.1,300) = 1.6; p = 0.14. Furthermore, DEV data rather
show a trend but no significant main effect of the experimental
condition, F(1,52) = 3.8; p = 0.056, and a significant main effect

of trial block F(5.8,284) = 2.3; p = 0.034. Finally TPVP does
not differ significantly, neither between experimental conditions,
F(1.9,91) = 2.7; p = ns, nor between trial blocks, F(4.5,218.8) =

0.87; p = ns.
In summary, the inferential statistics support, that the

differences of movement behavior between sensory conditions
and changes of movement behavior over the course of time
(i.e., trials), which may reflect motor learning, are evident in the
data of the kinematic parameters CV, PV, AV, whereas CTP only
expresses the influence of sensory conditions but no change over
time. DEV data are not affected by sensory feedback (it may be
considered as minimally affected concerning the controversial
issue whether near significant results indicate systematic trends
as e.g.,Wood et al., 2014 discuss) but there are significant changes
in the course of time. TVPV data does not reflect any systematic
influence at all, neither of sensory feedback nor over the course
of time.

Post-hoc pairwise comparisons (Bonferroni corrected) of
the kinematic parameters that proved significant in the
aforementioned analyzes reveal the effect of particular sensory
feedback conditions: CV data show a significant difference
between the A condition compared to the H (p < 0.001) and
the HA (p < 0.001) conditions, whereas H and HA conditions do
not differ significantly (p = ns). Similar patterns also apply to the
kinematic features AV, CTP, PV: there is a significant difference of
the A condition in comparison to the H (AV, CTP, PV: p < 0.001)
and HA condition (AV, CTP, PV: p < 0.001), whereas there is
none (AV, CTP, PV: p = ns) between the H and HA conditions.

4.1. Contact Velocity
We examined the contact velocity to asses the participants’ task
performance. Figure 4 shows the qualitative feedback labels (i.e.,
LOW, GOOD, HIGH) obtained for all participants throughout
the experiment. It can be observed that GOOD performance was
achievedmore often in the A condition, while performance in the
haptic conditions tended to be LOW.

CV data averaged for all subjects across trials are shown in
Figure 5. It can be observed that participants were closer to the
target velocity in the A condition. Figure 5 also shows the CVwas
similar in the haptic conditions.

DEV averaged for all subjects across trials is shown in
Figure 6. Throughout the experiment DEV tended to be around
40% in the haptic conditions. On the other hand, DEV in the A
condition was not uniform throughout the experiment.

CTP averaged for all subjects across trials is shown in Figure 7.
The CTP tended to be between 0.4 and 0.5 in the haptic
conditions. On the other hand CTP tended to be around 0.7
in the A condition. This indicates that the deceleration toward
the contact position was larger in the haptic conditions. This
suggest that participants developed a different strategy to perform
the task in the A condition, in which participants would stop
only after the contact sound was generated (due to the lack of
a physical limit) instead of the abrupt stop at the contact surface
that occurred in the haptic conditions.

CV, DEV, and CTP data indicate that participants used
a different control strategy to achieve a GOOD performance
throughout the experiment. Thus, the strategy used in the A
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FIGURE 3 | Representative vertical position and velocity curves during a trial.

FIGURE 4 | Feedback labels for the haptic (H), acoustic (A), and haptic-acoustic (HA) conditions.

condition enabled them to approach more often the target
velocity. However, this led to a less stable (i.e., less repeatable)
performance across trials as illustrated by the DEV data and the
larger standard deviation of CV.

4.2. Kinematic Features
TPVP data are shown in Figure 8. TPVP indicates that the
duration of the acceleration and deceleration phases were
asymmetric. TPVP data show that the acceleration phase took
about 90% of the movement time in all conditions. This result
suggests that the timing of events was not affected by the
availability of sensory information.

AV and PV are shown in Figures 9, 10, respectively.
Similarities in AV and PV between H and HA conditions suggest
that motor control is more precise when haptic information is
available. By contrast, AV and PV tend to be larger and show a
larger variability, as observed in their standard deviation, in the A
condition. This suggests that it is more difficult to achieve precise
motor control when only acoustic information is available.

The similarities between H and HA conditions suggest that
haptic information has a larger influence in motor control. In
this case, the motor control system assigns a larger weight to
the incoming haptic information. Thus the contribution of the
less reliable acoustic information can’t be distinguished in the
HA condition.

The larger values of AV and PV in the A condition, observed
approximately after trial 25, might reflect an active perception
strategy which the participants use to increase the reliability of
the acoustic information in order to cope with the requirements
of the task (i.e., achieve a GOOD contact). Increasing the velocity
produced louder contact sounds, making acoustic information
more reliable, at the cost of exceeding the task requirement, thus
going through the contact surface due to the absence of physical
limit. The variability of the AV and PV in the A condition seem
to reflect the conflict induced in the motor control when trying to
improve acoustic information while coping with the requirement
of the task. Further experiments can be devoted to investigate the
differences in reliability of haptic and acoustic information.
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FIGURE 5 | Contact velocity against trial number averaged over all subjects

for the haptic (H), acoustic (A), and haptic-acoustic (HA) conditions. The

dashed line represents the target contact velocity (0.5 m/s). The contour

represents the standard deviation.

FIGURE 6 | Deviation from contact to target velocity against trial number

averaged over all subjects for the haptic (H), acoustic (A), and haptic-acoustic

(HA) conditions. The contour represents the standard deviation.

4.3. Adaptation of Kinematic Parameters
The temporal evolution of CV, AV, and PV data is shown in
Figures 5, 9, 10, respectively. The significant differences among
trial blocks shown in the statistical analysis indicate that the
kinematic parameters were modulated by the sensory feedback
available in each condition as participants repeated the task. In
order to assess the adaptation of the kinematic parameters we fit
an exponential function to the CV, AV, and PV data. The a, b,
and c parameters of the exponential function (see Equation 1)
are interpreted as leading value, learning rate, and asymptote.
This interpretation of the curve parameters is taken from
Danion et al. (2013).

y = a · e−b∗x
+ c (1)

FIGURE 7 | Ratio of contact to peak velocity against trial number averaged

over all subjects for the haptic (H), acoustic (A), and haptic-acoustic (HA)

conditions. The contour represents the standard deviation.

FIGURE 8 | Percentage of time to peak velocity against trial number averaged

over all subjects for the haptic (H), acoustic (A), and haptic-acoustic (HA)

conditions. The contour represents the standard deviation.

The parameters of the fitted curves are summarized in Table 1.
The fitted curves are shown in Figures 11–13. The curve
parameters illustrate the differences in the adaptation of the
movement kinematics throughout the experiment. The learning
rate was larger in the haptic conditions, thus indicating
that movement parameters reached a stable point with fewer
repetitions. The asymptotes of the haptic conditions show a
similar operating point. In contrast, the fitted curves for the
A condition show that a stable point of operation was not
achieved. This indicates that the active perception strategy used
by participants didn’t enable them to achieve a stable operation
within the given number of trials. Thus, it would have been
necessary a larger number of repetitions in order to achieve a
stable and precise task performance.
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FIGURE 9 | Average velocity against trial number averaged over all subjects

for the haptic (H), acoustic (A), and haptic-acoustic (HA) conditions. The

contour represents the standard deviation.

FIGURE 10 | Peak velocity against trial number averaged over all subjects for

the haptic (H), acoustic (A), and haptic-acoustic (HA) conditions. The contour

represents the standard deviation.

TABLE 1 | Parameters of the fitted exponential curves: (a) leading value, (b)

learning rate, and (c) asymptote.

CV AV PV

a b c a b c a b c

A −0.182 0.033 0.606 −0.111 0.027 0.443 −0.137 0.068 0.768

H −2 3.376 0.293 −0.077 0.629 0.310 −2.000 3.563 0.655

HA −2.000 3.872 0.293 0.050 0.271 0.312 −0.227 0.747 0.660

4.4. Discussion of Experimental Findings
Interestingly, the low CV values observed in the H and HA
conditions suggest that the sensory feedback provided was
impeding participants to increase the velocity regardless
of the LOW linguistic feedback provided. In comparison,

in the A condition participants exceeded more often the
target velocity. In other words, participants were more
conservative to try high velocities when haptic feedback
was available. This can be regarded as a difference in
the motor adaptation process, in which the range of
velocities tried out by the motor system to find the
target performance differed between the acoustic and the
haptic conditions.

We hypothesize that a certain risk is implicit in the haptic
conditions, which leads participants to achieve lower velocities.
Being too fast in the haptic conditions leads to contacts which
might be perceived as harsh or rough, whereas in the A condition
the movement can be stopped smoothly after the contact sound
has been produced. Thus, apart from the goals of the task, the
consequences of increasing the contact velocity are different.

This indicates that the consequences and the risk aspect
of the actions need to be explicitly addressed in further
investigations ofmotor control with individual sensormodalities.
Feedback provided to participants should not be limited only
to the parameters of the action (e.g., contact velocity), but
also include information about its consequences (e.g., breaking
virtual objects when manipulation velocity exceeds a threshold).
Adding any form of explicit feedback about the consequence
in the A condition might have led to a different motor
adaptation. Thus, we argue that both implicit and explicit
feedback about an action’s consequences must be addressed,
as they might influence task execution and the process of
motor adaptation.

5. MODELING HUMAN ADAPTATION OF
KINEMATIC PARAMETERS AND TASK
SKILLS FOR ROBOTICS APPLICATIONS

Regarding the categories of robot motion planning proposed by
Spiers et al. (2016), end-effector control is the most common
application of motion planning. In this type of motion planning
the motions of the robot gripper or tool are specified in the
Cartesian space, as opposed to the use of symbolic instructions
(Spiers et al., 2016). Since the end-effector position and its
orientation are specified by the programmer, inverse kinematics
are employed to control the other joints and links involved in the
movement (Spiers et al., 2016).

The experimental task given to the participants, in which
the kinematics of a grasped tool were controlled in order to
make contact at a target position, resembles the end effector
motion planning in robotics. Thus, the models of human motor
control and motor adaptivity are suitable of being applied in
robotics problems in which the position and the kinematics
of end-effector are crucial to achieve a successful and skillful
manipulation. In the following subsections we describe how
models of human control can be applied to the modeling of
action performance regularities for robotics. We distinguish
three areas in which our results could be of interest: (i)
unsupervised learning, (ii) supervised learning from data and
human demonstrators, and (iii) teleoperations.
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5.1. Unsupervised Learning
A long-term perspective in robotics is that robots can
continuously improve and adapt their sensorimotor performance
based on their experiences with objects and environments in
everyday situations. With respect to the handling of tools and
objects, learning the appropriate contact forces is a central
requirement. What could be the sources of this learning
process? Haptic force measurement is an obvious source but
the respective sensor technique is not yet well-established and
expensive. Our data indicate that a much simpler source, acoustic
information, which requires only microphones and appropriate
signal processing, could be used as an alternative for learning
appropriate contact forces. Learning may take somewhat longer,
and the precision level achieved could be somewhat reduced,
but it is possible to adapt the motor system to a desired level of
contact force on the sole basis of acoustic information.

It should be noted that even if there is no explicit force
measurement, certain aspects related to contact and force which
have not been available to our subjects in the VR setup will be
available for robots acting in a real-world setting. Even without
force measurement the robot movements will be stopped, or
discontinuously decelerated, at the moment of contact. This
can be sensed both with visual information and with crude
readings from the motors. This additional information may well
help to improve the precision level beyond the level reached
by our subjects (they have only crude information about the
time of contact because their movement of hand and spoon is
not stopped, but rather the spoon goes undisturbed through the
virtual object surface).

A further point that has to be considered in unsupervised
learning of robots is the handling of risk. Our subjects have been
surprisingly sensitive to risk, but only in the haptic conditions. As
described, this might be due to the peculiarities of the VR setup,
which encouraged a risky behavior in the A condition. Thus,
the different influence of the consequence (or risk) aspects of a
task (e.g., if velocity>threshold then object breaks) vs. the simple
specification of the task (e.g., keep velocity below a threshold)
observed in human motor control and motor adaptation can be
used to inspire the design of robotic systems. In general, robots
should avoid to destroy things, but too careful behavior could
also impede learning. A robot’s adaptation or active perception
behavior can include certain conditions in which risk is allowed
in order to find an optimal motor plan (e.g., when learning to
manipulate glasses with different amount of liquid the robot
should be allowed to spill some liquid in order to find the
optimal manipulation velocity). Risk level setting thus has to
be an external decision which takes environmental and learning
aspects into account.

5.2. Supervised Learning of Action
Performance Regularities for Robotics
In the context of interactive perception, Bohg et al. (2017)
state that there is a regular relationship between actions
and their sensory response, which can be exploited by
robotic systems for the prediction and interpretation of
these sensory signals. The information necessary to learn

the regularity of an action can be also provided by a
human demonstrator. In addition to the regularities between
actions and their corresponding sensory signals, we propose
to inform the robotic system about the regularity of the
action performance by a human demonstrator. The regularities
of the action performance can be modeled in terms of the
statistical properties of the kinematic parameters and the
learning curves.

The motions recorded under different sensor modalities
can be considered as a series of examples from a set human
demonstrators. A robotic system can learn from observing
how humans perform a task under different conditions. In
particular, the learning curves are useful to estimate how
many repetitions are needed by a human demonstrator
to achieve a stable (regular) performance under different
sensory conditions.

5.3. Uni- and Multi-Modal Task
Performance for Teleoperation
Modeling of task performance under different sensory conditions
can be applied in the field of teleoperation, in particular,
when the system can’t transmit and reproduce the complete
sensory information relevant for the task. This is of particular
relevance in teleoperation, since visual and acoustic information
is simple to record and to reproduce, while haptic information
is already difficult to measure but even more difficult to
reproduce. Our evidence that acoustic information can be used
as (partial) replacement of haptic information is hence an
encouraging result.

In the context of learning from demonstration in telerobotics,
teachers or demonstrators must master the task without having
the complete sensory information (Billard et al., 2016). Our
experimental results model performance differences across
different sensory conditions and the leaning curves provide an
estimate of the amount of trials needed to achieve a stable
point of operation. Furthermore, our experimental results can
be generalized as we model the motor control skill across
different demonstrators.

Output of real-world processes can be characterized as signals
(Rabiner, 1989). The hidden Markov model (HMM) is an
stochastic signal model which works based on the assumption
that the signal can be characterized as a parametric random
process (Rabiner, 1989). A HMM models an stochastic process
as set of finite states connected by transitions. This model is
characterized by its transition probability matrix (A), an output
probability matrix (B) and the initial state distribution (π) (for a
tutorial review on HMMmodels see Rabiner, 1989).

HMMs have been used to represent human skill in the context
of telerobotics operation (Yang et al., 1994). Yang et al. (1994)
used position and velocity trajectories to learn human skill
in the spatial and velocity domains, aiming to select the best
task performance from the observed data. The goal of the skill
modeling was to obtain the most likely human performance
from a set of training examples. In this approach, the HMM
represents the most likely performance of a given task. As
the task performance depends on the person’s skill, the model
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FIGURE 11 | Exponential fits to the contact velocity data.

FIGURE 12 | Exponential fits to the average velocity data.

FIGURE 13 | Exponential fits to the peak velocity data.

was used by the robotic application to select actions from the
input data.

Following a similar approach, the skill developed in our
experimental task can be modeled as a hidden Markov process.
The analysis of the experimental data indicates that the skill, as
quantified by the kinematic features, depends on the available
sensory information and is adapted as the task is repeated. The
samples of the velocity curve acquired during the experiment
can be considered as observable symbols, with different states

that model the velocity as the trial progressed, from the
movement onset until reaching the contact position. In this
way the course of velocity can be modeled as a n state left-
right HMM. This trained HMM would represent a prototypical
execution of the task, which can be queried by the robot in
order to reproduce the movement. Based on the course of
the prototypical execution, the robot can calculate the desired
end effector variables in order to track a target path and
to adjust, where necessary, the trajectory parameters (e.g.,
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FIGURE 14 | Example of the decoded state from a 2-state HMM learned from

peak velocity data. One sample corresponds to one trial. The decoded state

labeled as 0 corresponds to the learning phase and the state labeled as 1

corresponds to the phase of stable performance.

motion time, maximum velocity, and acceleration) according
to its kinematic constraints (i.e., maximum joint velocities and
maximum joint accelerations).

In addition to the modeling of the prototypical task execution,
we propose to use a HMM in order to model the course of
the adaptation of the kinematic parameters. In this case, the
kinematic features observed throughout the experiment can be
considered as observable symbols. Different states would model
the parameters used by the person on a trial-to-trial basis and
the state transitions would reflect the active perception strategy
followed to accomplish the task. Such a model would be able
to model the adjustment of the kinematic parameters (e.g.,
PV) from the low magnitudes observed during the first blocks
of trials until achieving a stable magnitude as, for example,
modeled with the asymptote of the exponential curve fit. Once
the model has been obtained from the set of training data, the
source of the adaptation process can be simulated. To exemplify
this concept, a 2-state HMM was trained from the PV data
from all participants, one state modeling the learning phase and
another modeling the phase of stable performance. Ten training
examples from the PV data across trials in the A condition
(one example per participant) were used to learn the model
parameters. Figure 14 shows the decoded states from the PV data
of one participant.

The parameters of the fitted exponential curves and the
HMMs can be used to identify the point in which performance
reaches a stable point of operation. This enables the classification
of trials as “learning” or “regular,” providing an interpretation of
the variation of the observed performance as more repetitions
are executed. This classification can be used to label a set of
human demonstrations, which can be queried by the robotic
system. Annotating the trials can help to reduce the search
space when looking for a particular type of task execution.
Thus, with the proposed approach it is possible to model
performance during the learning phase or at a stage at which
the person has achieved a stable performance, enabling the

transfer of skill acquisition strategies and performance skills to
robotic systems.

6. CONCLUSIONS

In this paper we have investigated how humans can use different
sources of information to adapt their kinematic parameters in
tool use. Specifically, we have measured the influence of haptic
and auditory information in a virtual reality experiment, where
the task was to learn how to move a virtual spoon with the hand
in such a way that the contact velocity with an object assumes
a specified level. Our data suggest the following conclusions:
First, auditory information alone is basically sufficient for the
learning of the movement of a tool toward an object with a
specified contact force/velocity. It can be assumed that this is
a general result, which is also valid in other situations, for
example when a glass has to placed on a table without allowing
for so much contact force that it will be shattered. Second, if
haptic information is available, subjects learn faster, and act more
precise, but they keep the contact force systematically reduced.
This could be interpreted as a risk-avoidance strategy which
ensures that the desired contact force is in no case substantially
exceeded by the unavoidable, system-inherent variability of the
movements, which could otherwise cause destruction.

In general, kinematics were adjusted according to the sensory
information available to the motor control system. Furthermore,
if multisensory information is available, the haptic information
dominates. This is observed not only with respect to learning rate
and precision, but also for the risk-avoiding systematic reduction
of the average contact force level.

The differences in kinematic features across blocks of trials
illustrate the course of adaptation as the task was repeated.
The adaptation that results from the different active perception
strategies can be modeled as a stochastic process. Two types
of models can be obtained by means of HMMs from a set of
realizations of a motor task: a prototypical task execution and
the course of adaptation of the kinematic parameters, which
enables the identification and labeling of different task executions
as learning or regular trials. Both can be used as sources of
information which can be queried by a robot in order to plan
the motion of an end effector. It is still open for discussion which
kinematic parameters may serve best as features for the training
of a HMM. It may depend on the task, the constraints of the
system (e.g. the robot’s maximum acceleration) or the specifics of
the movement’s course, since some kinematic features carry more
information on particular movements phases than others.

As shown in the related work section, acoustic information has
been mainly used for the interactive recognition of household
objects. In that context, the robot learns behavior-grounded
object recognition models (Sinapov et al., 2011). In a similar
fashion robots can learn behavior-grounded action models to
perform manipulation tasks in which action parameters are
matched to the sound they produce, achieving different levels of
precision and accuracy. Thus, using acoustic information for the
learning and adaptation of kinematic properties is possible and
can be applied in robotics.
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Behavior-grounded models for new applications need to
consider the strategies used by humans to integrate the
available sensory information and how we compensate the
missing information. A central question is how auditory and
haptic information modulate the kinematic parameters during
a manipulation task. In order to extend the use of acoustic
information into new applications, the behavior-grounded
models must consider the reliability of this information source
(as it might be affected by ambient or mechanical noise) and
how humans cope with various levels of reliability. As reviewed
in Bohg et al. (2017), research in interactive perception is mostly
concerned with visual information, thus it is necessary to extend
research toward a multi-modal framework. The experimental
results show how different sensor modalities have an effect on
the execution of a motor task. This paper provides preliminary
evidence regarding the role of acoustic information in the
learning and adaptation of kinematic properties and points at
potential fields of application in robotics.
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