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a b s t r a c t 

Background: Predictive analytics are being used increasingly in the field of spinal surgery with the development 

of models to predict post-surgical complications. Predictive models should be valid, generalizable, and clinically 

useful. The purpose of this review was to identify existing post-surgical complication prediction models for spinal 

surgery and to determine if these models are being adequately investigated with internal/external validation, 

model updating and model impact studies. 

Methods: This was a scoping review of studies pertaining to models for the prediction of post-surgical complica- 

tion after spinal surgery published over 10 years (2010-2020). Qualitative data was extracted from the studies 

to include study classification, adherence to Transparent Reporting of a multivariable prediction model for In- 

dividual Prognosis Or Diagnosis (TRIPOD) guidelines and risk of bias (ROB) assessment using the Prediction 

model study Risk Of Bias Assessment Tool (PROBAST). Model evaluation was determined using area under the 

curve (AUC) when available. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 

statement was used as a basis for the search methodology in four different databases. 

Results: Thirty studies were included in the scoping review and 80% (24/30) included model development with 

or without internal validation. Twenty percent (6/30) were exclusively external validation studies and only one 

study included an impact analysis in addition to model development and internal validation. Two studies refer- 

enced the TRIPOD guidelines and there was a high ROB in 100% of the studies using the PROBAST tool. 

Conclusions: The majority of post-surgical complication prediction models in spinal surgery have not undergone 

standardized model development and internal validation or adequate external validation and impact evaluation. 

As such there is uncertainty as to their validity, generalizability, and clinical utility. Future efforts should be made 

to use existing tools to ensure standardization in development and rigorous evaluation of prediction models in 

spinal surgery. 
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Predictive analytics is gaining popularity in the field of spine surgery

n line with patient safety and quality improvement initiatives, and this

s certainly evident in surgical decision-making [ 1 , 2 ]. Given that elec-

ronic medical records (EMRs) are heavily invested in and can store data

n surgical outcomes and complications, there has been a subsequent

urge in prediction model development which can help inform surgical

ecision-making [ 3 , 4 ]. EMRs and large multicentre databases are often
✩ The generalizability and utility of prediction models for spine surgery remains un
∗ Corresponding Author: 1053 Carling Ave., Ottawa, ON, Canada, K1Y 4E9. 613-79

E-mail addresses: tcant098@uottawa.ca (T.C. Canturk), dczik005@uottawa.ca (D

A. Stratton), Wojtek@telfer.uottawa.ca (W. Michalowski), skingwell@toh.ca (S. King

ttps://doi.org/10.1016/j.xnsj.2022.100142 

eceived 30 May 2022; Received in revised form 4 July 2022; Accepted 6 July 2022

vailable online 14 July 2022 

666-5484/© 2022 The Authors. Published by Elsevier Ltd on behalf of North Ameri

icense ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
sed for model development but the data may not be standardized, may

ave missing values and could be at risk of bias [ 5 , 6 ]. 

Prediction model development requires that model features have

linical relevance, are feasible to measure, and impact the outcomes of

nterest [ 7 , 8 ]. Logistic regression has traditionally been used for model

evelopment but there is significant interest in applying machine learn-

ng algorithms to model development. Regardless of the algorithm se-

ected, the model must have a balance of accuracy, transparency, and

eneralizability [7–9] . The model must then be rigorously tested and
certain without adequate validation and impact studies. #uottawaortho 
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alidated in different settings before it can be used on a larger scale

8–10] . 

Moons et al. described a framework for prediction model develop-

ent and evaluation, which includes model development, internal val-

dation, external validation, model updating, and model impact stud-

es [ 8 , 10 ]. After development, the model should next undergo inter-

al validation, which is the assessment of whether the predictive re-

ults accurately represent the studied population [8] . To ensure that the

odel is generalizable to distinct populations from those that developed

he model, external validation must then occur [10] . The model should

hen be updated and evaluated with model impact studies to determine

hether the model is being utilized correctly in clinical settings and is

aving its intended impact [10] . 

The current standard is that research groups presenting new models

hould be following the Transparent Reporting of a multivariable predic-

ion model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines,

hich outline the necessary steps for reporting studies about the devel-

pment, validation, and updating of prediction models [11] . With the

ncrease in prediction model publications there has been an expected

nterest in analyzing and summarizing the quality and applicability of

hese models. The Prediction model study Risk Of Bias Assessment Tool

PROBAST) aims to assess the risk of bias and applicability of stud-

es that develop, validate or update multivariable prognostic prediction

odels [12] . 

The objective of this review was to summarize existing complica-

ion prediction models in spinal surgery and to determine if the mod-

ls are being adequately studied with external validation, model updat-

ng, and model impact studies. Prediction models developed for use in

he pre-operative phase, and at the time of surgical or shared decision-

aking, for the prediction of post-operative complications in spinal

urgery were the focus of this review. Secondary objectives of the re-

iew were to perform a risk of bias and applicability assessment using

he PROBAST tool, to determine if the published research on prediction

odels in spinal surgery are adhering to the TRIPOD guidelines and

o evaluate whether logistic regression or other machine learning al-

orithms are becoming the predominant approach to prediction model

evelopment. 

ethods 

earch strategy 

The search methodology was completed in agreement with the

eporting Items of the Preferred Reporting Items for Systematic Re-

iews and Meta-Analysis (PRISMA) statement [11] . Our search identi-

ed studies on prediction models, calculators, and algorithms for spinal

urgery complications. The search strategy used Medical Subject Head-

ngs (MeSH) terms determined with the assistance of a medical librar-

an for each database to ensure consistency. The search was a conve-

ience sample limited to English studies published between 2010 and

he search date (July 2020) in Web of Science, Embase (Ovid), MEDLINE

Ovid), and Scopus. 

nclusion and exclusion criteria 

The inclusion criteria were: (1) studies with expressed purpose of de-

eloping, validating, updating or determining impact of models, calcula-

ors or algorithms used for predicting postoperative complications after

pinal surgery; (2) model features including preoperative variables or

lanned intraoperative variables (i.e., instrumentation plan, use of bone

orphogenic protein); (3) studies with patients over the age of 18. The

xclusion criteria were: (1) models that used intraoperative features that

ould not be known or anticipated preoperatively (i.e., blood loss, med-

cations); (2) models that were not developed from any spinal surgery

atients (i.e., frailty index); (3) studies with exclusively traumatic, infec-
2 
ious or oncologic spinal diagnoses; (4) conference proceedings, poster

resentations, letters to the editor, or abstracts; (5) non-English studies.

ata extraction and risk of bias and quality assessment 

All identified studies through the database searches were uploaded

o Covidence (2021 version), an online tool used for organization and

ata management of systematic and scoping reviews. Each study was in-

ependently reviewed by two of the authors (TC and DC), with conflicts

esolved by the senior author (SK). 

As per Moons et al., the extracted studies were grouped into tables

ased on whether they were model development and/or internal vali-

ation studies ( Tables 1 and 2 ) or external validation, model updating

nd/or model impact studies ( Table 3 ) [ 6–8 , 10 ]. Table 1 includes all

tudies that utilized logistic regression (LR) for model development and

nternal validation. Table 2 includes studies that used other machine

earning algorithms for model development and internal validation. 

A risk of bias and quality assessment was completed for each arti-

le using the Prediction study Risk of Bias Assessment Tool (PROBAST)

12] . PROBAST divides the risk of bias (ROB) into four domains: (1)

articipants (i.e., study design); (2) Predictors (i.e., standardized and

ransparent predictors); (3) Outcomes (i.e., defined and measured the

utcomes within a timely manner); and (4) Analysis (i.e., proper model

evelopment, whether lost data was handled appropriately). A set of

uestions are answered for each domain with either a ‘yes’, ‘no’, or un-

lear response, allowing a low, high, or unclear ROB to be assigned

o each domain within an article. Risk of bias analysis is important

s it provides an alternative metric to evaluate the article’s limitations

n study design and validation process. Additionally, ROB analysis al-

ows readers to be able to draw stronger conclusions from a study’s

esults, if it has low ROB [13] .The tool also has a section for appli-

ability where it is determined whether the prediction model applies

o the research question of the scoping review [12] . The ROB assess-

ent should be consistent amongst reviewers; however, the applica-

ility can vary as it is dependent on the primary systematic review

uestion. 

esults 

Our search identified 1910 studies that were inserted in COVIDENCE

or duplication removal and subsequent review steps. Details of the re-

iew process including abstract removal for duplication, relevance and

ull text-review of eligibility are found in Fig. 1 . The top three reasons

or exclusion at this step were wrong outcomes (84.4%), wrong setting

4.8%) and wrong study design (3.8%). After this step, we manually

dded one more study that met our criteria after a hand search of refer-

nces. 

There were 30 studies that met the inclusion and exclusion criteria.

hree studies (10%) were published between 2010-2015 and 90% were

ublished between 2016-2020. There were 24 studies that included

odel development with or without internal validation and this rep-

esented the majority of the studies (80%) that were identified. All 24

f these studies describe distinct prediction model; however, some mod-

ls were developed using the same databases and/or had minor varia-

ions in feature selection or predicted outcomes. Seventy-nine percent

19/24) of these studies only included internal validation with model

evelopment, 8% (2/24) only focused on model development and 13%

3/24) included either external validation or impact study in addition

o internal validation and model development. Twenty of the 24 studies

83%) used logistic regression for model development while 17% (4/24)

sed other machine learning methods. 

Table 1 summarizes the 20 model development and internal vali-

ation studies developed using LR. Table 2 includes the four predic-

ion models that utilized ML algorithms during the model development.

able 3 summarizes the nine studies that included external validation,

odel updating or model impact analyses. Six studies were exclusively
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Table 1 

Studies that used logistic regression for model development and/or internal validation. 

Authors Year Calculator 

name 

Study design Number of 

cases 

Registry Diagnostic/ 

procedural 

classification 

Complications measured Study 

classification 

Model evaluation TRIPOD 

McGirt et al. [51] 2015 None Prospective 1,803 Single centre Lumbar spine 

surgery 

Overall complications MD and IV AUC: 

Development: 0.72 

Validity: 0.82 

no 

Yilgor et al. [52] 2017 Global 

Alignment and 

Proportion 

(GAP) Score 

Retrospective 222 Multicentre Posterior 

fusion 

Mechanical complications 

(proximal junctional 

kyphosis or failure, distal 

junctional kyphosis or 

failure, rod breakage, and 

implant-related 

complications) 

MD and IV AUC: 

Development: 0.88 

Training: 0.92 

no 

Passias et al. [53] 2019 None Retrospective 123 Multicentre Cervical 

deformity 

surgery 

Medical or surgical 

complications 

MD and IV AUC complications: 

Overall:0.79 

Medical: 0.77 

Surgical: 0.74 

no 

Bekelis et al. [54] 2014 None Retrospective 13,660 NSQIP Spinal surgery Stroke, MI, death, infection, 

UTI, DVT, PE, return to OR, 

SSI 

MD and IV AUC: 0.65-0.95 (reported 

individually for each 

complication) 

no 

Lee et al. [55] 2014 SpineSage Retrospective 1,476 Multicentre Spinal surgery Cardiac, pulmonary, GI, 

neurologic, hematologic, 

urologic; any medical 

complication and major 

medical complication 

MD and IV AUC: 

Any medical complication: 

0.76 

Major medical complications: 

0.81 

no 

Klemencsics et al. 

[56] 

2016 None Prospective 1,030 Single centre Lumbar de- 

compression, 

microdiscec- 

tomy, or 

instrumented 

fusion 

SSI MD and IV AUROC: 

Development: 0.71 

Validation :0.72 

no 

Belykh et al. [57] 2017 None Retrospective 350 Single centre 

Microdiscectomy 

Recurrence of lumbar disc 

herniation 

MD 0.60-0.99 (Accuracy of 

prediction rate for different 

models) 

no 

Han et al. [58] 2019 None Retrospective 345,510 (MKS 

& MSM) and 

760,724 

(CMS) 

MKS, MSM, CMS Spinal surgery Overall adverse event (AE) 

occurrence and types of AE 

occurrence during the 30-day 

postoperative follow-up. 

MD and IV AUC: 

Overall: 0.70 

Specific:0.76 

no 

Fatima et al. [59] 2020 None Retrospective 80,610 NSQIP Lumbar 

degenerative 

spondylolis- 

thesis 

Overall adverse events MD and IV AUC: 0.7 yes 

Ratliff et al. [16] 2016 Spinal Risk 

Assessment 

Tool 

Retrospective 279,135 Truven Health Analytics 

MarketScan Commercial 

Claims and Encounters and 

Medicare Supplement and 

Coordination of Benefits 

Databases 

Spinal surgery Major complications MD and IV AUC: 0.7 no 

( continued on next page ) 
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Table 1 ( continued ) 

Authors Year Calculator 

name 

Study design Number of 

cases 

Registry Diagnostic/ 

procedural 

classification 

Complications measured Study 

classification 

Model evaluation TRIPOD 

Kim et al. [60] 2017 None Cross- 

sectional 

database 

22,629 ACS-NSQIP Posterior 

lumbar spine 

fusion 

Cardiac, wound 

complications, VTE, 

mortality 

MD and IV AUC: 0.59-0.70 no 

Janssen et al. [61] 2019 None Retrospective 898 Single centre Instrumented 

thoracolumbar 

spine 

SSI MD and IV AUC: 0.72 no 

Kim et al. [62] 2018 None Cross- 

sectional 

Database 

Study 

4,073 ACS-NSQIP ASD Cardiac or wound 

complications, venous 

thromboembolism, mortality 

MD and IV AUC: 0.55-0.79 no 

Li et al. [63] 2020 None Retrospective 124 Single centre ASD Medical and surgical 

complications 

MD AUC: 0.82 no 

Passias et al. [53] 2019 None Prospective 117 Multicentre Cervical 

deformity 

surgery 

Distal junctional kyphosis MD and IV AUC: 0.87 no 

Yagi et al. [64] 2020 PRISM Retrospective 321 Multicentre ASD Mechanical failure MD and IV AUC: 0.81 (mechanical 

failure and risk grade 

correlation) 

AUROC: 0.96 (predictive 

model accuracy 92%) 

no 

Yagi et al. [28] 2019 None Retrospective 151 Multicentre ASD Neurologic, implant related, 

SSI, other infection, 

cardiopulmonary, 

gastrointestinal 

MD, IV and EV AUC: 

Development: 0.82 

Validation: 0.75 

no 

Yagi et al. [26] 2018 None Retrospective 195 Multicentre ASD Major complications (all 

post-op complications 

recorded) 

MD, IV and EV AUROC: 0.96 

(92% predictive model 

accuracy, 

84% external validation 

accuracy) 

no 

Buchlak et al. [27] 2017 The Seattle 

spine score 

Retrospective 136 Single centre ASD Cardiopulmonary, wound, 

infection, thrombotic, 

unplanned return to surgery, 

death (30 days) 

MD, IV and 

Impact Study 

AUROC: 0.71 no 

MD: model development; IV: internal validation; EV: external validation, LR: logistic regression, ML: machine learning, AUC: area under the curve, AUROC: area under the receiver operating characteristic, MI: 

myocardial infarction, UTI: urinary tract infection, DVT: deep vein thrombosis, PE: pulmonary embolism, SSI: surgical site infection, GI: gastrointestinal, ASD: adult spinal deformity, NSQIP: National Surgical Quality 

Improvement Program®, ACS-NSQIP: American College of Surgeons National Surgical Quality Improvement Program®, MKS: Truven MarketScan Database, MSM: MarketScan Medicaid Database, CMS: Centers for 

Medicare and Medicaid Services Database. 
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Table 2 

Studies that used machine learning for model development and/or internal validation. 

Authors Year Calculator 

name 

Study design # Of cases Registry Diagnostic/ 

procedural 

classification 

Complications 

measured 

Moon’s 

classification 

Model 

evaluation 

TRIPOD 

Scheer et al. [65] 2018 None Retrospective 336 Multicentre ASD Pseudarthrosis at 2 

years 

postoperatively 

MD and IV AUC 

Development: 

0.97 

Training: 0.94 

No 

Scheer et al. [66] 2017 None Retrospective 557 Multicentre ASD Minor or major 

intraoperative and 

postoperative 

complications 

MD and IV AUROC: 0.89 No 

Hopkins et al. [67] 2020 None Retrospective 4046 Single centre Posterior 

spine fusion 

Surgical site 

infection 

MD and IV AUC: 0.78 No 

Clark et al. [68] 2020 NZRISK-Neuro Retrospective 18,375 New Zealand 

registry 

Neuro or 

spinal surgery 

Mortality MD and IV AUC: 

0.9 (30-day), 

0.91 (1 year) 

0.91 (2 year) 

Yes 

MD: model development; IV: internal validation; EV: external validation, LR: logistic regression, ML: machine learning, AUC: area under the curve, AUROC: area 

under the receiver operating characteristic ASD: adult spinal deformity, NZRISK-Neuro: The New Zealand Neurosurgical Risk Tool. 

Scoping review screening and extrac�on 

1912 studies imported for screening

917 studies screened

216 full-text studies assessed for eligibility 

30 studies included

995 duplicate studies removed

687 studies irrelevant

186 studies excluded
0 ongoing studies

0 studies awai�ng classifica�on

Fig. 1. Scoping review screening and extrac- 

tion. 
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xternal validation studies and two of these studies evaluated the Spine

age tool [14] and ACS-NSQIP calculator [15] respectively and one

tudy evaluated the spinal risk assessment tool [16] . While all nine stud-

es included external validation, there was only one study that also con-

ucted an impact study and another single study which conducted a

odel update in addition to the external validation. 

ROBAST Results 

The PROBAST assessment indicated high ROB for all 30 studies that

e assessed. Seventy percent of studies (21/30) had low ROB for the

articipants domain as they met all the PROBAST criteria. PROBAST

equires that appropriate data sources be used with appropriate inclu-

ion/exclusion criteria, and this was generally the case. 
5 
The predictor, outcomes, and analysis components of the PROBAST

ssessment showed the highest ROB. For the predictor domain 57%

17/30) of the studies had high ROB. Due to the retrospective nature of

any studies the predictor definitions and assessments were not clearly

istinct from the outcome assessment, thus introducing bias. There was

igh ROB in 83% (25/30) of the studies for the outcome domain and

7% (26/30) for the analysis domain. As per the PROBAST assess-

ent, high ROB was introduced by low numbers of participants with

he outcome, mishandling of continuous and categorical predictors or

issing data, predictor selection primarily based on univariate analy-

is and a lack of accounting of model overfitting or optimism. Finally,

he PROBAST guidelines recommend downgrading low ROB studies to

igh ROB if they have a small data set and/or the model was developed

ithout external validation [12] . 
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Table 3 

External validation, impact and model update studies that used either logistic regression or machine learning. 

Authors Year Calculator name Study design # Of cases Registry Diagnostic/ 

procedural 

classification 

Complications measured Moon’s 

classification 

Model evaluation TRIPOD 

Yagi et al. [28] 2019 None Retrospective 151 Multicentre ASD Neurologic, implant related, 

SSI, other infection, 

cardiopulmonary, 

gastrointestinal 

MD, IV and EV AUC: 

Training: 0.82 

Validation: 0.75 

no 

Sebastian et al. [29] 2019 ACS-NSQIP Surgical 

Risk Calculator 

Retrospective 2808 ACS-NSQIP Single-level 

posterior 

lumbar fusion 

NSQIP 30-day complications EV and 

performance 

assessment 

C-statistic: 0.56-0.66 no 

Yagi et al. [64] 2018 None Retrospective 145 Multicentre ASD Proximal junctional failure EV and model 

update 

AUC: 

Training: 0.98 

Testing: 1.00 

no 

Janssen et al. [31] 2018 Spine Sage Retrospective 898 Single centre Instrumented 

thoracolumbar 

spine cases 

SSI EV AUC: 0.61 N/A 

Kasparek et al. [32] 2018 Spine Sage Retrospective 273 Single centre Spinal surgery Overall medical 

complications and major 

medical complications 

EV AUC: 

Overall complication: 

0.71 

Major complications: 

0.85 

N/A 

Wang et al. [30] 2017 ACS-NSQIP Surgical 

Risk Calculator 

Retrospective 242 Single centre Lumbar 

laminectomy 

without fusion 

Post-operative complications 

as per NSQIP 

EV AUC: All observed 

complications: 0.44 

Predicted complications: 

0.14 

-See the paper for AUC 

of specific complications. 

N/A 

Veeravagu et al. [69] 2017 Spinal Risk 

Assessment Tool 

(RAT) and ACS 

NSQIP surgical risk 

calculator 

2 cohorts: 

Retrospective 

and 

Prospective 

200 (retros- 

pective) 246 

(prospe- 

ctive) 

Single centre Spine surgery Cardiac, wound, thrombotic, 

pulmonary, urinary tract 

infection, radiculopathy, 

dysphagia, delirium, other 

EV AUC: 

Complications: 0.67 (for 

both SpinalRAT and 

ACS-NSQIP) 

N/A 

Yagi et al. [26] 2018 none Retrospective 195 Multicentre ASD Major complications MD, IV and EV AUROC: 0.96 no 

Buchlak et al. [27] 2017 The Seattle spine 

score 

Retrospective 136 Single centre ASD 30-day cardiopulmonary, 

wound, infection, 

thrombotic, unplanned 

return to surgery, and death 

MD, IV and 

Impact Study 

AUROC: 0.71 no 

MD: model development; IV: internal validation; EV: external validation, LR: logistic regression, ML: machine learning, AUC: area under the curve, AUROC: area under the receiver operating characteristic, SSI: surgical 

site infection, ASD: adult spinal deformity, NSQIP: National Surgical Quality Improvement Program®, ACS-NSQIP: American College of Surgeons National Surgical Quality Improvement Program®. 
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With the overarching goals of improving health care quality and

afety, research using large data sets and predictive analytics continues

o expand and evolve [ 2 , 3 , 6 , 17–24 ]. In particular, the field of spinal

urgery has experienced an exponential increase in the development of

rediction models [25] . Although more prediction models are being de-

eloped than ever before, this review confirms that only a small frac-

ion of them undergo external validation, model updating and/or im-

act studies. This raises numerous concerns about their clinical utility,

alidity, and reliability in different populations. 

As highlighted by Moons et al., it is vital for prediction models to

ndergo a multifactorial design process, which includes internal vali-

ation, external validation, and impact studies in order for them to be

ptimally tested for their respective niche [ 6–8 , 10 ]. This systematic re-

iew of complication prediction models for spinal surgery identified 30

rticles and only 8 articles assessed specifically, or included, external

alidation. Moreover, there was only one model update [26] and one

mpact study [27] . Only two model development studies included exter-

al validation within their first publication based on the Moons criteria

 26 , 28 ]. Additionally, only one study included an impact study with

heir model development and internal validation [27] . 

Given that most predictive models for spinal surgery complications

on’t undergo external validation, the large majority of models that are

eveloped and internally validated are never tested on other patient

opulations, potentially limiting generalizability and clinical value of

he model. External validation is important because different popula-

ions have unique, site-specific, unmeasurable features that may influ-

nce both patient complications and outcomes. This may lead to signif-

cant differences in model performance in various settings. 

The NSQIP surgical risk calculator is a readily available online tool

29] , but it was not an accurate and reliable predictor of post-surgical

omplications in an elderly Chinese population [30] . Similarly, the

pineSage tool [14] demonstrated poor predictive performance in a Eu-

opean population [31] . Conversely, Kasparek et al.’s external validation

tudy [32] demonstrated similar area under the curve (AUC) values as

he internal validation [14] , both for medical and major medical com-

lications (0.85 and 0.71 respectively). 

External validation studies are critical to evaluate model perfor-

ance in new settings and to determine whether re-calibration or

ther measures are warranted for local optimal performance [ 33 , 34 ].

iven the paucity of external validation studies and the variable model

erformance observed, this should give pause when applying the tools

nreservedly and provide the impetus for further external validation

esearch. Alternatively, other authors have advocated for site-specific

rediction models, based on local data and features from EMRs, thus

bviating the need for external validation [31] . 

It should be noted that 62% (13 of 20) of model development and in-

ernal validation studies included in our review were published between

018-2020. This may limit the time for undertaking any external vali-

ation studies, however, it confirms the recent increase in spine surgery

omplication prediction model development. 

The identification of only one impact study in this review is notable

s impact studies have a critical role in real world model evaluation. In

he context of a complication prediction model for surgery, the model

ay impact surgeon or patient decision making, treatment outcomes,

atient satisfaction with the decision-making process, clinic logistics or

atient flow and interfacing with electronic health records to name a

ew [35–38] . While adequate calibration, discrimination and classifica-

ion of a prediction model may appear to indicate a successful clinical

erformance, multiple studies have shown that the real-life performance

ay not have any meaningful impacts in clinical decision making [39–

1] . Furthermore, impact studies allow physicians to contextualize the

rue utility and effect of the developed model on patient care [42] . 

Kappen et al. highlight several potential reasons for why impact stud-

es are difficult to undertake [42] . The ideal way to measure a model’s
7 
linical impact on real-life decision making, change in practice, and

ealth outcomes is via large scale cluster-randomized studies. However,

hese studies have substantial cost and effort and may be impractical

iven growth of prediction models [ 10 , 43–45 ]. While significant efforts

hould be given to the model development, equal importance should be

iven to all levels of model validation, impact and updating in order for

hese models to be clinically valuable. 

The TRIPOD guidelines provide a comprehensive checklist for pre-

iction model development and they are separated into ‘Model Devel-

pment’ and ‘Model Validation’ [46] . There are numerous benefits in

ollowing TRIPOD guidelines including standardization of the model de-

elopment process, transparency, and ensuring high quality research.

ransparency provides the foundation for external validation studies,

an help to avoid duplication, and can potentially improve clinical up-

ake. Even though the TRIPOD guidelines were initially published in

015, the vast majority of the models that were developed after did not

ollow the TRIPOD-recommended steps. Only two out of 21 studies in

his review pertaining to model development and published after 2015

eferenced the use of TRIPOD guidelines during their development. 

PROBAST is a ROB assessment tool specifically developed for pre-

iction models which differentiates it from other ROB approaches

 12 , 47 , 48 ]. Flaws in study design, conduction, and/or analysis in the

rediction model development should be identified in order to have a

lear understanding and appreciation of the model’s predictive perfor-

ance [12] . Our PROBAST assessment indicated high ROB for 100%

f the studies. Specifically, there was high ROB in 30%, 57%, 83% and

7% of the studies for the participant, predictor, outcomes, and analysis

omains. All studies had a high ROB in at least one domain of outcomes

r analysis and the PROBAST tool recommends downgrading model de-

elopment studies from low to high ROB if external validation is not

ncluded as part of the study. 

Similar observations on ROB were reported by other studies includ-

ng, White et al.’s PROBAST analysis in their systematic review, which

ound high ROB in all 13 of the studies that they analyzed [49] . Addi-

ionally, Vemena et al.’s study on 556 clinical prediction models (CPMs)

ound 529 (95%) of the CPMs had high, 20 (4%) had low,7(1%) had un-

lear ROB classification [50] . 

The primary objective of this review was to evaluate whether pre-

iction models for postoperative spine surgery complications are being

dequately studied with external validation, model updating, and model

mpact studies. Other published systematic reviews pertaining to post-

perative complications in orthopedic surgery [25] and complications or

utcomes in spinal surgery [49] have been descriptive and comprehen-

ive but have not analyzed the existing research in this manner. This

eview has confirmed the increase in published complication prediction

odels in spinal surgery, but the studies are heavily weighted towards

odel development and internal validation. The lack of external valida-

ion and model impact studies represent significant potential limitations

n their generalizability and clinical utility. 

There are limitations to this scoping review. The goal of the review

as to identify all published complication prediction models in spinal

urgery that a spine surgeon might want to apply to their own practice

nd to evaluate the existing research as it pertains to model develop-

ent, validation, updating and impact. It became apparent that many

tudies reported on risk factors or multivariate predictors of various out-

omes and these studies were excluded unless the expressed purpose of

he study was to develop a prediction model. As such, it is possible some

elevant models were erroneously excluded during the process, but it is

nlikely that these models were at a stage where they were internally or

xternally validated or operational in a clinical practice. Similarly, it was

elt that prediction models reported in abstracts, conference proceed-

ngs, letters or otherwise would not be able to undergo the evaluation

tilized in this scoping review. There are some important limitations to

he PROBAST assessment. A comprehensive external assessment of ROB

s aided with tools such as PROBAST, but the assessment is generally ren-

ered more difficult by a lack of explicit information rather than overt
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igns of bias. It is certainly important for all researchers publishing on

rediction models to be aware of TRIPOD guidelines and the PROBAST

ssessment to ensure consistency and transparency in the reporting of

rediction models. 

onclusions 

The objective of this scoping review was to determine whether ex-

sting complication prediction models in spinal surgery have undergone

dequate internal and external validation, model updating and evalu-

ted with model impact studies. The majority of studies identified in this

eview pertained exclusively to model development and internal vali-

ation. A small number of external validation studies were conducted

nd only one impact study was identified. All studies had high ROB as

etermined using the PROBAST tool and very few studies referenced

he TRIPOD guidelines. While complication prediction models in spinal

urgery may be useful adjuncts to surgical decision-making questions

ill remain as to their validity, generalizability, and clinical utility un-

ess the models undergo appropriate validation, updating and impact

nalysis. Users of prediction models in spinal surgery should be aware

f their current, inherent limitations. Going forward, researchers with an

nterest in predictive analytics and the development of prediction mod-

ls for spinal surgery should familiarize themselves with the TRIPOD

uidelines and PROBAST tool in the earliest stages of model planning

nd focus additional research on the impact of prediction models. 
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