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Microfluidic channel sensory 
system for electro‑addressing cell 
location, determining confluency, 
and quantifying a general number 
of cells
Crystal E. Rapier1, Srikanth Jagadeesan2, Gad Vatine2* & Hadar Ben‑Yoav1*

Microfluidics is a highly useful platform for culturing, monitoring, and testing biological cells. The 
integration of electrodes into microfluidic channels extends the functionality, sensing, and testing 
capabilities of microfluidic systems. By employing an electrochemical impedance spectroscopy (EIS) 
technique, the non-invasive, label-free detection of the activities of cells in real-time can be achieved. 
To address the movement toward spatially resolving cells in cell culture, we developed a sensory 
system capable of electro-addressing cell location within a microfluidic channel. This simple system 
allows for real-time cell location, integrity monitoring (of barrier producing cells), and confluency 
sensing without the need for frequent optical evaluation—saving time. EIS results demonstrate that 
cells within microfluidic channels can be located between various pairs of electrodes at different 
positions along the length of the device. Impedance spectra clearly differentiates between empty, 
sparse, and confluent microfluidic channels. The system also senses the level of cell confluence 
between electrode pairs—allowing for the relative quantification of cells in different areas of the 
microfluidic channel. The system’s electrode layout can easily be incorporated into other devices. 
Namely, organ-on-a-chip devices, that require the monitoring of precise cell location and confluency 
levels for understanding tissue function, modeling diseases, and for testing therapeutics.

Microfluidics is a powerful platform for cell biological research offering control over cellular microenvironments 
that effectively simulate dynamic in vivo conditions. When this platform is integrated with electronics, it can 
extend device functionality and provide precise details about the cellular environment, responses, and move-
ments. For example, electrochemical impedance spectroscopy (EIS) can be coupled with microfluidics. Under 
the right frequencies, EIS can be used as a non-invasive, label-free method for detecting the activities of cells in 
real-time and used for extended periods of time to monitor the impedance characteristics of cell cultures within 
incubators1. EIS effectively works by measuring the impedance of electric current by the cell-electrode inter-
face. As cell bodies attach, spread, and cover a sensing electrode, they hinder or impede the exchange of current 
between the electrode–electrolyte interface. While cells divide, grow, and spread over sensing electrodes, the 
impedance effectively increases over time. EIS can be used to monitor micromotion2–4, cell barrier function5–9, 
cytotoxicity10,11, facilitate allergen and compound screening12,13, determine cell morphology14, and monitor 
wound-healing15.

There is a movement toward spatially resolving cells in cell culture with minimal optical techniques16–18. 
The currently available microfluidic channel impedance-based position sensors only allow for the position of 
DEP focused or freely flowing single cells and particles to be detected19,20. This does not include the sensing of a 
population of cells grown on and within microfluidic channel surfaces. Other position sensing techniques only 
examine single cells21,22, are limited by small culture chamber volumes (non-microfluidic channels)16, require 
complicated tomography analysis and tools which can suffer from poor spatial resolution23 or fail to scan areas 
on the order of centimeters. Current mapping of the location and confluency of living cells within a microfluidic 
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channel must be done manually by removing cells from the incubator and viewing them under a microscope. 
Again, impedance can be used to “view” cellular growth and confluency, and, as a bonus, it can also sense local 
cellular events that cannot be seen through optical observation alone such as ligand binding6. An impedance-
based position sensor can be valuable for any system involving cellular attachment to a substrate—such as electric 
cell-substrate impedance sensing (ECIS). ECIS is used for monitoring the attachment, spreading, and integrity 
of cell monolayers attached to a substrate. Many ECIS studies probe the integrity of barrier producing cells 
which require confluent cultures, or decent-sized localized cell islands. Conventional ECIS electrode designs use 
unipolar impedance measurements in which the working electrode is much smaller than the counter electrode. 
The properties of the small electrode will govern the impedance results due to a higher potential drop occurring 
near it. One limitation of a typical ECIS system is that only a limited number (between 1 and 1000) of cells can 
be measured on the working electrode at one time24. For a general review of EIS principals and ECIS studies see 
review articles by Randviir et al. and Hassan et al.25,26.

Here, we report on a microfluidic system with an integrated electrode sensor design that allows for an entire 
cross-section of cells to be electro-addressed and analyzed along the length of a 2 cm microfluidic channel. 
Impedance-based cell analysis measurements can be done over a narrow or wide range of area along the length 
of the channel using various electrode combinations. EIS allows for greater characterization of the cells grown 
within microfluidic channels. Our electrode design allows for a uniform current density, and consistent, sensitive, 
and repeatable experimental results. The electrodes are intended to accommodate small and large microfluidic 
channels up to 0.8 cm in width that can be bonded to the chip. Our simple EIS based system saves time by 
allowing for real-time cell position, integrity, and confluency sensing without the frequent need of a microscope. 
Optical evaluation of cellular culture is still necessary; however, the reported sensor can be used as a tool to allow 
continuous analysis and device monitoring without taking cells in and out of the incubator for optical evaluation. 
In addition, our whole-channel impedance-based position sensor layout can easily be incorporated into other 
device designs, such as organs-on-chips, that require the precise, continual, and noninvasive cell monitoring 
benefits that impedance technology has to offer. This is particularly useful for vessel- or blood–brain-barrier-
on-a-chip devices that require the examination and testing of confluent layers of barrier producing cells. For 
that reason, we cultured and tested our microfluidic position sensing system with induced pluripotent stem cell 
(iPSC)-derived brain microvascular endothelial-like cells (iBMECs) as a proof of concept.

Results and discussion
Cellular reprogramming and differentiation.  iPSC-derived brain microvascular endothelial cells were 
successfully reprogrammed from human omental stromal cells. Figure 1 shows a 500 µm wide channel contain-
ing iBMECs after 2 days of growth. The inset containing fluorescent images shows the successful development 
of tight junctions and blood brain barrier specific transporter proteins present on the surface of iBMEC mem-
branes. Glucose transporter protein 1 (GLUT1) is a highly expressed transporter on the surface of endothelial 
cells comprising capillaries in the brain, i.e., the blood brain barrier. Immunostaining of the tight junction pro-
tein Zonula Occludens 1 (ZO-1) and GLUT1 are important for the qualitative validation of blood brain barrier 
formation and integrity. Impedance spectroscopy and equivalent circuit modeling can be used for the quantita-
tive analysis of barrier integrity.

Figure 1.   Image of a microfluidic channel containing iBMECs (scale bar 250 µm). The inset contains 
fluorescent images of iBMEC Zo-1 tight junction proteins (red), nuclei, and GLUT1 glucose transporter proteins 
covering the cell membrane (green). Inset scale bars are 20 µm.
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Device design.  A cell position impedance-based sensor was successfully integrated into microfluidic chan-
nels for the analysis and location of induced brain microvascular endothelial cells. Microfluidic position-sensing 
devices were made from a 500 µm wide microfluidic channels with four integrated gold electrodes spanning 
the width of the channels. Gold was chosen for the electrode material due to its inert properties with respect to 
biological cells and tissue27–29. Integrated electrodes were successfully coated with extracellular matrix (ECM), 
which did not inhibit the overall electrochemical properties of the electrodes, their conductivity, or performance 
of impedance spectroscopy. Impedance spectroscopy of ECM coated electrodes produces a semi-circle which is 
indicative of charge transfer reactions occurring between the electrode and the solution proving there is a work-
ing electrochemical interface. ECM coating of electrodes does affect the impedance, but not the electrochemical 
activity of the electrode. ECM is required for iBMEC attachment to substates. We used a commercial reagent 
from Emulate® to encourage ECM and subsequent cell binding to the device’s glass substrate and planar gold 
electrodes. A baseline control was created by measuring the impedance of an ECM coated device without cells. 
The ECM baseline was measured with warm (37 °C) endothelial cell media in order to be compared to experi-
mental measurements with cells present. The EIS profile of empty devices (no cells) containing ECM coated 
electrodes are presented as solid lines throughout the included figures.

To detect the presence of adherent cells, various pairs of electrode probes were activated throughout the 
length of the device’s microfluidic channel. Electrode pair 1&2 correspond to W2; pair 1&3 is W3; 1& 4 is W4; 
pair 3&4 is W43; and pair 2&3 is labeled as C23 within the reported graph legends. Electrode pairs labeled W2 
and W43 have the same distance between them and sometimes served as on chip repeats. Electrode pair W4 
represents the furthest distance measured within the system (0.8 cm). The electrode layout, height, interelectrode 
spacing, and impedance workflow with selected electrode pair combinations (W2, W3, & W4) are represented 
by the schematic drawing in Fig. 2a. Figure 2b demonstrates the system’s electrode functionality with current 
(I) flowing from the counter (CE) to the working electrode (WE) for the detection of position and confluency 
conditions within the microfluidic channel. Images comparing confluent and sparse iBMEC coverage of elec-
trodes and microfluidic channels is presented in Fig. 2c. The black horizontal rectangles in the image are the 
ECM coated gold electrodes.

Impedance spectroscopy and interpretation of Nyquist plots.  Impedance (Z) is essentially com-
plex resistance as it contains an imaginary component. Unlike resistance, impedance is based on alternating 
current and its value depends on frequency. Individual elements of a system under investigation can be revealed 
and characterized by performing a frequency sweep to extract information. Impedance has real (Re(Z)) and 
imaginary (− Im(Z)) components which are reflected in Nyquist plots as the X and Y axes respectively. The real 

Figure 2.   Microfluidic channel images with a schematic of electrodes and impedance workflow. (a) Schematic 
drawing of electrode layout, spacing, height, and electrode functionality with selected electrode probe 
combinations (W2, W3, & W4). “I” represents the current flowing from the counter (CE) to the working 
electrode (WE). (b) The schematic represents how cellular position and channel confluency are tested. (c) Image 
of confluent and sparse cell coverage of microfluidic channels with integrated gold electrodes (black horizontal 
bars). Image Scale bar 125 µm.
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and imaginary components are plotted against each other at different excitation frequencies. The excitation fre-
quency is not given explicitly but decreases as values move toward the right of the Nyquist plot. Depending on 
the system being studied, Nyquist plot traces can take on the shape of a semi-circle, a semi-circle with a tail, a 
straight line, etc. The trace profiles can provide information on the frequency-dependent impedance character-
istics of an investigated system such as reaction kinetics, charge/electron transfer, diffusion, capacitance, solution 
resistance, etc.

To obtain more detailed information about the cellular presence and dispersal conditions within the channel, 
various electrode probe pairs were examined to detect the location, presence or absence, and relative amounts of 
cells attached to the substrate. Repeatable patterns have been found for the presence of cells at different locations 
along a microfluidic channel. The Nyquist impedance plot traces in Fig. 3 compare bare gold, ECM coated (no 
cells), and cell covered electrodes (ECM coated gold electrodes with cells). For our microfluidic parallel coplanar 
electrode layout, Nyquist plot traces shift to the left (having a lower absolute impedance) as electrode coverage 
increases. This is seen by tracking the checkmark-like traces (knee position) along the Re(Z) x-axis in Fig. 3. 
A linear correlation was found between the number of cells and absolute impedance with a regression slope of 
− 0.03819 ± 0.00729, an R-squared value of -0.96547, and a p-value of ≤ 0.05 (Fig. 4). Impedance decreases with 
an increase in cell number for the parallel coplanar electrode design. Impedance spectra was able to discriminate 
between the range of fully confluent microfluidic channels or sections, sparse channels or sections, and channels 
where cells have detached from the substrate.

Figure 5 is a Nyquist impedance plot of iBMECs grown in two separate 500 µm wide microfluidic position-
sensing devices. The EIS profile of the ECM control (ECM coated electrodes without cells present) is presented as 
solid lines. Following the same trend as Fig. 3, the presence of more cells will shift the knee position of the Nyquist 
plot traces to the left toward higher frequencies (M-kHz) indicating a decrease in charge transfer resistance. The 
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Figure 3.   A comparison between bare, ECM coated, and cell covered ECM-gold electrodes. As electrode 
coverage increases, there is a decrease in impedance for the reported electrode design.
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relative confluency of cells between each pair of electrodes can be determined by the left-shift of cellular plot 
traces compared to ECM control traces within the Nyquist plot. As expected, the impedance trace profiles of 
the cells do not align with the ECM controls indicating the presence and dispersal of attached cells throughout 
the microfluidic channel (Fig. 5a, b). Electrode pairs 1&2 (W2) and 3&4 (W43) have the same distance between 
electrode probes and are positioned at opposite ends of the device. Figure 6 is a comparison of normalized abso-
lute impedance for electrode pairs W2 and W43 for devices “(a)” and “(b)” depicted in Fig. 5a, b respectively. 
Negative values reflect the left-shift of cell covered electrodes versus ECM controls on the Nyquist plot Re(Z) 
axis. For the first device (Fig. 5a), the EIS traces for electrode pairs W2 (green square) and W43 (green triangle) 
almost align, reflecting a similar amount of confluent cells present between each electrode probe pair. The nor-
malized data in Fig. 6 reveals both W2 and W43 for device (a) have respective averages of -0.09789 ± 0.01513 
and -0.11558 ± 0.01207 with significance of p ≤ 0.05 between them.

For the second device represented in Fig. 5b, a comparison of cell covered electrode pairs W2 and W43 versus 
their ECM control shows that they are shifted to the left more than the W2 and W43 traces in Fig. 5a. The Nyquist 
plots along with normalized change comparisons in Fig. 6 reflect that there are more cells between the W2 and 
W43 electrode pairs in the device (b) than device (a). Another example of the relative quantification of cells 
occurs when the distance between W3 (dark orange circles) and ECM W3 (orange solid line) are examined for 
both devices. There are more cells detected in Fig. 5b W3 probe pair versus Fig. 5a W3 probe pair as indicated by 

Figure 5.   Nyquist plots of two position-sensing microfluidic devices. Legend W2, W3, W4, and W43 are the 
labels for the cell containing device electrode probe combinations, 1 & 2, 1 & 3, 1 & 4, and 3 & 4 respectively. 
ECM labels correspond to ECM coated electrode probe combinations in devices without cells (controls).
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the distance between traces on the Real (Z) x-axis. This is also validated by comparing the normalized changes 
in impedance of W3 for both devices where a p value of ≤ 0.001 was found.

Detached and sparse cell culture within microfluidic devices can be detected with the presented position 
sensing system. Figure 7 provides an example of EIS results when cells detach from the ECM coated channel 
substrate, leaving cell aggregates along the channel edges. The images and the corresponding Nyquist plot in 
Fig. 7 demonstrate the condition and trace profiles of the microfluidic channel when this situation occurs. The 
cell trace profiles align with the ECM control trace profiles—revealing little to no cell attachment (Fig. 7b). This 
is indicated by p values for the various electrode combinations along the length of the channel.

Multiple devices can be compared at the same time to assess their level of confluency and the location of cell 
islands. Figure 8 is a Nyquist plot comparing two devices (Bet1 and Bet5). ECM traces are colored black in this 
figure to make the comparison between Bet1 and Bet5 clearer. The order and the position of the ECM controls 
on the Re(Z) x-axis are the same as in other figures. Both Bet1 and Bet5 devices were seeded on the same day 
(day 0) with the same batch and concentration of cells. Upon observation the next day (day 1), the Nyquist plot 
shows device Bet1 (turquoise marker) is populated with more adherent cells than device Bet5 (orange marker) 
based on the statistically significant shifts from ECM. Bet5 mostly aligns and matches the ECM control profiles 
for electrode pairs, W2, W43, and W4; however, there is an indication of cells dispersed between electrodes 1&3 
(W3). Deducting the information from electrode pairs W2 (1&2) and W3 (1&3), one can determine that cells 
are dispersed between electrodes 2&3 using the Nyquist plot results. P-values reveal device Bet5 is generally 
not significantly different from ECM baseline control overall. However, Bet1 and Bet5 are significantly different 
from each other on day 1 of incubation with p ≤ 0.001 for all electrode pairs compared between the two devices.

Conclusions
To address the movement toward spatially resolving cells in cell culture, we successfully developed and dem-
onstrated an impedance-based position sensor system capable of electro-addressing cell location, assessing 
confluency, and quantifying the relative amount of cells present within a microfluidic channel. This system was 
integrated with four bands of gold electrodes spanning the width of 500 µm wide microfluidic channels. These 
electrode probes were placed at different distances along the length of the channel to probe for cells. We utilized 
iBMECs as proof of concept for assessing the position and confluency of cells that, in nature, are required to 
produce a continuous barrier.

EIS results demonstrate that the locations of cells can be addressed using various pairs of electrodes at dif-
ferent positions along the length of the device. Impedance spectra distinguishes between empty, sparse, and 
confluent microfluidic channels. The electrodes can sense the confluency of cells located at different positions 
allowing for the relative quantification of cells between electrode pairs, especially when comparing multiple 
devices. Moreover, the electrode design can be easily integrated into other microfluidic engineered constructs 
such as organ-on-a-chip devices. A modified version of the device design herein can be used within blood ves-
sel- or blood–brain–barrier-on-a-chip devices to probe the confluency, barrier integrity, and the best area for 
transendothelial or ECIS studies. To use our particular electrode layout, other groups would need to establish a 
baseline with the specific ECM coatings required for their specific cell experiments. This can be done on a non-
cell containing uncoated device and ECM coated device. The devices must be treated as if cells were present, 
meaning they must be kept in an incubator and tested with the specific cell media used for cellular experiments. 
The baseline devices must also be tested for the same amount of days as the cell experiments. For example, if cells 
are grown within a device for three days and tested on day three, baseline ECM profiles should also be tested 
after 3 days of incubation. Theoretically, multiple cellular cultures can remain inside an incubator and be tested 
on demand with a portable multichannel potentiostat.

Overall, this simple microfluidic channel system allows for real-time electro-addressing of cell position, the 
examination of cellular attachment, confluence, and barrier integrity testing (for barrier producing cells) without 
the use of initial or frequent microscopic evaluation—saving time. Modified versions of this system will prove 

Figure 6.   Graph of W2 and W43 electrode pairs from devices “a” and “b” in Fig. 5a, b respectively, normalized 
to ECM.
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to be valuable in microfluidic cell culture and organ-on-a-chip constructs that necessitates precise cell location 
and cellular confluency levels for the modeling of diseases, testing of therapeutics, and for investigating basic 
research questions such as cell/tissue function and communication.

Materials and methods
Fabrication of microfluidic chips.  Channel mold fabrication.  Microfluidic channels were designed us-
ing CleWin4 CAD software and printed as a photomask through CAD/Art Services, Inc. Channels were fabri-
cated using standard photolithography techniques. Briefly, a four-inch silicon wafer was spin coated with SU-8 
3050 photoresist and soft-baked at 95 °C for 15 min. The spin coated wafer was then covered with a photomask 
containing the microfluidic channel designs. The wafer and photomask were exposed to UV light for patterning. 
The silicon wafer was subsequently baked at 65 °C for one minute and 95 °C for 5 min before development with 
AZEBR developer, according to the MicroChemicals processing guidelines, to achieve channel feature heights 
of 50 µm.

Electrode fabrication.  Electrodes were designed on CleWin4 software and the mask was printed through CAD/
Art Services, Inc. Electrodes were fabricated using a photolithography lift-off technique and E-beam evapora-
tion. Briefly, a four-inch borosilicate glass wafer is spin-coated with image reversal photoresist AZ-5214E to 
achieve a thickness of 1.6um. The borosilicate glass wafer is then soft baked and exposed to UV light for 10 s, 
followed by a postexposure bake and UV flood exposure for 150  s according to Merck technical guidelines 

Figure 7.   Image of device with unattached cells and its corresponding Nyquist plot. (a) Image showing four 
electrodes along the channel of one microfluidic device. Arrows point to areas where cells have detached from 
the substrate and aggregated together. The legend label C23 corresponds to electrode pair 2 & 3.
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through MicroChemicals. The borosilicate wafer was immersed in MIF726 developer to bring out the electrode 
design features. The wafer was then deposited with 20 nm of titanium followed by 200 nm of gold. After metal 
deposition, the wafers were subsequently soaked in acetone for an hour to complete the lift-off process exposing 
individual electrodes. The glass wafers were diced into individual pieces (electrode chips).

Device assembly.  Microfluidic channels were made using the silicon molds (described in the channel mold 
fabrication section) and a polydimethylsiloxane (PDMS) replica molding process. The process requires 10:1 
pdms base to curing agent ratio to be mixed thoroughly, poured onto silicon molds and degassed in a vacuum 
chamber. The silicon molds were then placed into an 80˚C oven for a minimum of 2 h. After the pdms solidified 
and cooled, microfluidic channels were cut and removed from the mold. For device assembly, PDMS channels 
and electrode chips were plasma treated, aligned, and placed into contact with each other for permanent bond-
ing. To prepare for cell seeding, device channels were sterilized and coated with Emulate® reagent. The Emulate® 
coated device channels were exposed to UV light for 30 min and then rinsed with PBS. The device channels were 
subsequently coated with extracellular matrix (ECM) containing a 4:1 mixture of 1 mg/mL of human placenta 
type IV collagen and 1 mg/mL fibronectin (Sigma-Aldrich) and placed into a 37 °C incubator overnight.

iPSC‑derived iBMEC cellular reprogramming, differentiation, and culture.  Induced pluripotent 
stem cell (iPSC)-derived brain microvascular endothelial-like cells (iBMECs) were reprogrammed from human 

Figure 8.   (a) Nyquist plot comparing two devices (Bet1 and Bet5) on day 1 of incubation. (b) A closeup of the 
lower Real Impedance (x-axis) region showing electrode probe pairs W2 and W43 for both devices compared to 
the ECM control (black). ECM traces are black in this figure to help with the comparison of Bet1 and Bet5. The 
order of the ECM controls is the same as in previous figures.
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omental stromal cells gifted by Dr. Rivka Ofir of Ben Gurion University of the Negev. To differentiate iPSCs into 
iBMECs, iPSCs were passaged over Matrigel in NutriStem™ medium for two to three days for cell culture expan-
sion up to 25–30% confluency (a density of 2–3 × 105 cells/well). For the following six days, cells were changed 
to an unconditioned medium lacking basic fibroblast growth factor (bFGF). Two days following this, human 
endothelial serum-free medium (hESFM; Life Technologies) supplemented with 20 ng/ml (bFGF, Peprotech) 
and all-trans retinoic acid (RA, 10 mM; Sigma), was added. Cells were then gently dissociated and seeded into 
PDMS channels after being incubated with Accutase for 30 to 35 min. iBMECs were then grown without bFGF 
and RA in endothelial cell medium.

Device seeding and electrochemical impedance spectroscopy (EIS).  Microfluidic position sens-
ing devices were seeded with induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like 
cells (iBMECs) at 14–20 × 106 cells/mL. The high density is necessary for the size of the channel and to ensure a 
complete monolayer of cell coverage for confluency testing. Cells were grown and monitored until they reached 
desired confluency. Following seeding, the establishment of a monolayer was visually monitored. Lower densi-
ties were previously shown to result in suboptimal cell coverage30,31. Unattached cells were washed away. Experi-
ments were performed on six independent devices. Presented Nyquist plots are representative of these repeats. 
Devices termed “ECM control” are empty devices (devoid of cells) with ECM coated gold electrodes. The empty 
device serves as a baseline and was measured up to four times (with the shortest electrode distances) and meas-
ured on different incubation days. The baseline devices were treated as if cells were present. They were kept in 
an incubator for the same amount of time as the devices containing cells and tested with the same cell media. 
Impedance measurements were taken 1–3 days after seeding. Potentio Electrochemical Impedance Spectroscopy 
was performed with a VSP-300 potentiostat from Biologic Scientific instruments (Cliax, France). Impedance 
spectra was analyzed with the provided EC-Lab software v11.32. Impedance measurements were taken between 
different pairs of gold electrodes along the length of the microfluidic channel with frequencies between 0.5 HZ 
and 1 MHz and a modulation (AC) voltage of 50 mV. Impedance measurements were taken in an incubator 
within a faraday cage at 37 °C for 1.5 min per electrode combination.

Impedance data was normalized to corresponding electrodes coated with ECM but not seeded with cells for 
each electrode pair by dividing cell absolute impedance values by ECM absolute impedance values and subtract-
ing one from the quotient. Negative values (a left shift from ECM controls in Nyquist plots) indicate the presence 
of cells. Any positive values, corresponding to traces shifted to the right of ECM controls, were set to zero because 
traces moved toward bare gold electrode trace profiles. We suspect that the system is detecting areas where some 
cells have unattached AND removed ECM in the process. All data sets were tested using one-way ANOVA with 
Tukey’s post-hoc test for multiple comparisons.

Immunocytochemistry and imaging.  After two days of growth and EIS measurements, cells were fixed 
for staining. They were washed twice with Dulbecco’s Phosphate-Buffered Saline (DPBS), then fixed in 4% para-
formaldehyde for 20 min at room temperature. 1% bovine serum albumin combined with 0.1% triton x-100, was 
used as a blocking solution for membrane permeabilization. Cells were then incubated in a blocking solution 
with primary antibody Glucose transporter 1 (GLUT-1) (1:300, Thermo Fisher, MA5-11315); Zonula Occludens 
1 (ZO-1) (1:100, Thermo Fisher, Zy-617300), overnight at 4 °C. After washing with DPBS, the cells were incu-
bated for two hours at room temperature with fluorescently labeled secondary antibodies (1:500; Invitrogen). 
Samples were imaged using a ZEISS LSM 900 microscope.
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