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Inclusion of genetic variants 
in an ensemble of gradient 
boosting decision trees does 
not improve the prediction 
of citalopram treatment response
Jason Shumake1*, Travis T. Mallard1, John E. McGeary2 & Christopher G. Beevers1*

Identifying in advance who is unlikely to respond to a specific antidepressant treatment is crucial to 
precision medicine efforts. The current work leverages genome-wide genetic variation and machine 
learning to predict response to the antidepressant citalopram using data from the Sequenced 
Treatment Alternatives to Relieve Depression (STAR*D) trial (n = 1257 with both valid genomic and 
outcome data). A confirmatory approach selected 11 SNPs previously reported to predict response 
to escitalopram in a sample different from the current study. A novel exploratory approach selected 
SNPs from across the genome using nested cross-validation with elastic net logistic regression with 
a predominantly lasso penalty (alpha = 0.99). SNPs from each approach were combined with baseline 
clinical predictors and treatment response outcomes were predicted using a stacked ensemble of 
gradient boosting decision trees. Using pre-treatment clinical and symptom predictors only, out-of-
fold prediction of a novel treatment response definition based on STAR*D treatment guidelines was 
acceptable, AUC = .659, 95% CI [0.629, 0.689]. The inclusion of SNPs using confirmatory or exploratory 
selection methods did not improve the out-of-fold prediction of treatment response (AUCs were .662, 
95% CI [0.632, 0.692] and .655, 95% CI [0.625, 0.685], respectively). A similar pattern of results were 
observed for the secondary outcomes of the presence or absence of distressing side effects regardless 
of treatment response and achieving remission or satisfactory partial response, assuming medication 
tolerance. In the current study, incorporating SNP variation into prognostic models did not enhance 
the prediction of citalopram response in the STAR*D sample.

There is substantial variability in response to depression treatment. On average, 30–40% remit following initial 
treatment, although over time remission rates can climb as high as 70% with additional forms of  treatment1. An 
efficient health care system would ideally deliver the most effective treatments as soon as possible and minimize 
trial and error. Thus, developing data-driven guidance about which treatments are most likely to work for patients 
with specific attributes is a high  priority2.

Response to depression treatment is likely complex and  multifactorial3. It is often posited that genetic variation 
may be an important individual difference that could predict response to depression treatment. Indeed, prior 
studies suggest that response to depression treatment is heritable. For instance, variation in common single nucle-
otide polymorphisms (SNPs) are estimated to explain 42% (SE = 0.180) of the variance in citalopram  response4. 
This effect is likely highly polygenic, as chromosome length was associated with proportion of variance attribut-
able to the chromosome. Moreover, other work has demonstrated that the heritability of citalopram response 
was not attributable to genetic variants commonly associated with serotonergic and dopaminergic  signaling5.

Although treatment response appears to be heritable, this does not necessarily indicate that genetic variation 
will be a useful predictor of treatment response. While heritability determines associations between genetic 
variation and phenotypes at a population level, prediction relies on individual differences in genetic variation to 
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predict treatment response. Indeed, attempts to identify specific genetic biomarkers of antidepressant treatment 
response, particularly when using candidate gene approaches, have had decidedly mixed  results6,7.

Traditional genome-wide methods have been used to identify specific SNPs associated with depression symp-
tom response following treatment with citalopram in the STAR*D  trial8. Although no SNP reached genome-wide 
threshold for statistical significance, a recent study reported that three SNPs (rs6966038, rs6127921, rs809736) 
approached significance (p values less than 1 × 10–5). Thirty-nine additional SNPs had p values < 0.00019. Other 
work identified eleven SNPs and six clinical variables in a training dataset that also predicted depression remis-
sion in response to escitalopram in an independent validation dataset with an area under the curve of 0.77 
(95% CI; 0.66–0.88)10. Further, a polygenic score used to estimate antidepressant treatment response in one 
trial (GENDEP) did not predict response to antidepressant treatment response in a second trial (STAR*D) and 
vice  versa11. Thus, despite the apparent heritability of antidepressant treatment response, the usefulness of SNP 
variation for the prediction of antidepressant treatment response remains unclear.

The current study examined whether the inclusion of SNPs in a machine learning stacked ensemble could 
improve the prediction of treatment response above and beyond the contribution of more standard clinical pre-
dictors in the STAR*D trial. Indeed, it has been speculated that the inclusion of genetic or brain-based predictors 
could further enhance the prediction of treatment response in this  dataset12.

Building on prior work, we used two different approaches to select genetic predictors of treatment response. 
First, we selected the same SNPs (or proxy SNPs if the identical SNPs were unavailable) previously shown to 
predict response to escitalopram (the S-enantiomer of citalopram) in a different clinical  trial10. (Given that the 
antidepressant effect of citalopram is due to the S-enantiomer13,14, predictors of response to escitalopram should 
be highly relevant to citalopram response as well.)

Second, we used a nested cross-validation approach with elastic net logistic regression to identify the most 
promising SNPs from across the genome to be used in the prediction models. No prior studies using data with 
the STAR*D trial have used this approach to select genetic variants for use in multivariate prediction models of 
treatment response.

For each approach to SNP selection we utilized between-clinic cross-validation (i.e., used data from 13 clinic 
sites to predict outcome in the 14th site and then repeated for each site) to provide a rigorous test of model gen-
eralizability. This allows for the examination of how well a prediction model derived from all but one clinical 
site generalizes to an unseen (i.e., out-of-fold) clinical site. This is akin to standard k-fold cross-validation, only 
the folds are determined by clinical site rather than random selection. For each approach to SNP selection, we 
examined whether the inclusion of the genetic variants improved the prediction of treatment response beyond 
model performance achieved by using pretreatment clinical and sociodemographic predictors only.

Methods
Participants. The current study involved participant data from the publically available STAR*D  study15,16. 
Participants in the STAR*D trial met DSM-IV criteria for nonpsychotic major depressive disorder at study entry, 
were 18–75 years of age, not pregnant, not breastfeeding, and had not previously received any protocol treatment 
within the first two treatment steps of the study. Exclusion criteria included participants diagnosed with active 
suicidal ideation or substance use that required acute hospitalization, a primary diagnosis of bipolar, psychotic 
obsessive–compulsive and/or eating disorders, those with general medical conditions that precluded protocol 
medications and those who had shown nonresponse or intolerance to protocol medications within the current 
depressive episode prior to study enrollment. The current study used the Level 1 data from STAR*D. Written 
informed consent was obtained by STAR*D investigators from all participants during the STAR*D trial. In the 
current analysis of the publically available STAR*D data, all methods were carried out in accordance with rel-
evant guidelines and regulations and approved by the Internal Review Board at the University of Texas at Austin.

Of the 4041 participants initially enrolled in STAR*D, 1948 provided DNA samples for genotyping. There were 
slight differences between the STAR*D participants who provided DNA samples and participants who did not. 
Genotyped participants were older, better educated, had higher household incomes and were more likely to be 
retired or married; however, depression scores did not significantly differ between groups [for more detail,  see17].

Analyses were completed with the full sample who provided DNA with valid outcome data (n = 1663; n = 285 
with missing outcome data) and sensitivity analyses were conducted on a sub-sample limited to participants of 
European-ancestry (identified via genomic principal component analyses; please see supplementary materials 
for more detail) (n = 1127). When SNPs were combined with clinical predictors, we further limited the sample 
to patients who received their baseline clinical assessment prior to starting citalopram (all ancestries N = 1257 
and European-ancestry N = 827; ns = 406 and 300, respectively, who received their baseline clinical assessment 
after starting citalopram) because there is evidence that early clinical improvement predicts the likelihood of 
ultimate treatment response (The STAR*D trial also allowed patients to enroll if they were already taking citalo-
pram, provided they had started no more than 2 weeks prior to enrollment.). Thus, limiting the sample to those 
who were assessed prior to starting citalopram ensures that the clinical indicators purely reflect pre-treatment 
differences and are not conflated with early post-treatment symptom change, which may have more to do with 
treatment expectancies. See Supplemental Materials Section 1 for additional information about sample selection.

Primary treatment response outcome. The aim was to classify participants as having had an adequate 
or inadequate response to treatment. We used the STAR*D treatment guidelines to guide the definition of treat-
ment response. Specifically, these guidelines indicated that treatment should continue for at least 6 weeks, with 
sustained remission (defined as QIDS-C16 ≤ 5) for 2 weeks before moving a patient into follow-up. Patients who 
met this criterion were classified as having had an adequate response. At 9 weeks, if there was no response to 
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treatment (defined as QIDS-C16 ≥ 9), the patient was moved to the next treatment level, and we classified these 
patients as having had an inadequate response.

If there was a partial response to treatment (defined as QIDS-C16 between 6 and 8), the clinician could either 
increase the dose or advance the patient to the next treatment level. If the patient still had a partial response but 
did not remit by 12 weeks (or 14 weeks if the clinician felt that remission could be achieved with an additional 
2 weeks of treatment), then patients could either continue citalopram monotherapy (if they were satisfied with 
their improvement) or advance to the next treatment level (if they were not satisfied). Any patient who ultimately 
achieved QIDS-C16 ≤ 5 during this period was classified as having an adequate response, and any patient who 
regressed to having QIDS-C16 ≥ 9 was classified as having had an inadequate response. For those who remained 
in the ambiguous QIDS-C16 6–8 range, we based the classification on whether or not they were satisfied with 
their treatment outcome (entered follow-up = adequate response) or dissatisfied with treatment (entered next 
treatment level = inadequate response). For additional rationale regarding our definition of treatment response, 
please see Supplemental Materials Section 2.

Secondary outcomes. We identified two-related secondary outcomes: (1) Achieving remission or satisfac-
tory partial response, assuming medication tolerance. This analysis excludes patients who exited Level 1 early 
because of intolerable side effects; otherwise, the outcome is defined the same as the primary outcome above. 
This definition of outcome is arguably more comparable to what has been used in previous studies and there-
fore may be the fairest test of the previously discovered  SNPs10. (2) The presence or absence of distressing side 
effects, regardless of treatment response. In addition to withdrawing or level switching because of an adverse drug 
reaction, this outcome was defined as reporting, at the last clinic visit, at least one distressing side effect on the 
Patient Related Inventory of Side Effects (PRISE), or an overall intensity or burden of side effects that was at least 
“marked” on the Frequency, Intensity, and Burden of Side Effects Ratings (FIBSER).

Candidate predictors. The goal was to identify as many potentially useful demographic, symptom, clini-
cal, and genetic predictors of treatment response as possible. Total score and subscale scores if available (or 
individual items if not) were used as potential candidate predictors for self-report questionnaires. Prior to inclu-
sion, all potential predictors were screened and eliminated for excessive (> 20%) missingness or near-constant 
values, defined as a single value observed for more than ~ 95% of cases (> 50 fewer than the total number of 
non-missing values). This criterion for near-constancy was chosen such that the data available for training the 
machine learner  following data partitioning for nested cross-validation (~ 80% of original sample) and ran-
dom subsampling (~ 50% of that subsample) would be expected to contain at least 20 examples (40% of 50) of 
the minority value(s) for any candidate predictor. This led to the exclusion of 1 variable for excessive missing-
ness and several variables for near-constant values (more in the European-ancestry sample owing to its smaller 
sample size) for a final total of 164 predictor variables for the all-ancestry sample and 149 for the all-European 
sample. (The smaller sample size of the European-ancestry sample caused more variables to be excluded that 
had an insufficient number of contrasting examples. This obviously included the variables that identified race 
and ethnicity, as well as those that had insufficient examples of the following: (1) not experiencing anhedonia 
at enrollment, (2) comorbid panic or social phobia disorder, (3) visiting the ER for psychiatric reasons, and (4) 
several medication classes for those taking non-study meds.) Candidate predictors included age, race/ethnicity, 
depression symptoms measured with self-report (QIDS-SR) and interview (HRSD), MDD duration, antidepres-
sant history, psychiatric comorbidity measured with the PDSQ, psychiatric history, family psychiatric history, 
physical illness, insurance status, disability, and mechanism of action of concomitant medication treatment. See 
Supplemental Table SM2 for a list of included variables and the proportion of missing values for each. Note that 
missing values were not imputed but rather passed “as is” to the machine learners.

Genotyping procedures, imputation, variant reduction. Genetic data were obtained from the 
Center for Collaborative Genomic Studies on Mental Disorders (http://www.nimhg eneti cs.org). Genotyping for 
500,453 markers on the 1948 subjects was conducted on two platforms. Nine hundred sixty-nine subjects were 
genotyped at Affymetrix on the Human Mapping 500 K Array Set. The remaining 979 samples were genotyped 
using the Affymetrix Genome-wide Human SNP Array 5.0. Validation using twelve samples genotyped on both 
the 500 K and 5.0 Arrays showed greater than 99% concordance in genotyped markers across the  platforms9,18.

Quality control of the genotypic data was completed using PLINK v1.919. SNPs were excluded if more than 
2% of genotype data was missing. The threshold for minor allele frequency (MAF) was applied after phasing 
and imputation, as variant-level filtering has been shown to have a deleterious effect on imputation  quality20. 
Moreover, we did not filter SNPs based on Hardy–Weinberg Equilibrium (HWE), as departures from HWE may 
be expected in a case-only sample. Samples were excluded on the basis of poor call rate, discordant self-reported 
and chromosomal sex, excessive autosomal heterozygozity, and relatedness. More detail about selecting the 
European subsample are provided in the Supplemental Materials Section 3.

Untyped variants were imputed on the Michigan Imputation Server (https ://imput ation serve r.sph.umich 
.edu). Typed variants were phased with Eagle v2.421 prior to imputation with Minimac4 v1.0.022, using the 1000 
Genomes Project Phase 3  v523 as a reference panel. Following phasing and imputation, PLINK  v219 was used 
to apply further quality control to the imputed dosage data. SNPs with a MAF < 0.005 or imputation quality 
score < 0.90 were excluded from all statistical analyses. These high-quality SNPs were then pruned for linkage 
disequilibrium (LD) using PLINK v1.9, which identified a set of 371,868 approximately independent SNPs with 
a R2 threshold of 0.25, window size of 50 SNPs, and step size of 5 SNPs.

http://www.nimhgenetics.org
https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
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A priori selection of SNPs. Prior work in an independent sample of 280 individuals identified 11 SNPs 
associated with depression response to  escitalopram10. While only 4 of these 11 SNPs were available in the 
STAR*D dataset after implementing quality control procedures described above, we were able to recover up to 9 
of the 11 SNPs by lowering the imputation quality score filter to < 0.30 (see Table 1). For the two SNPs that could 
not be recovered in STAR*D (rs151139256, rs2704022), we identified proxy SNPs that were in very strong LD 
with each missing variant (r2 > 0.98) using the European populations in 1000 Genomes Project Phase 3 v5 as the 
reference panel. Thus, in sum, we selected a priori 11 SNPs for the prediction models based on the prior work 
by Iniesta et al.10.

Selection of SNPs with elastic net logistic regression. As described above, candidate SNPs were first 
reduced to a set of 371,868 SNPs after removing highly correlated SNPs and SNPs with low variance. We then 
used an elastic net with predominantly lasso penalty (alpha = 0.99) to reduce the data to a smaller set of variants 
to combine with all other patient variables. Alpha was chosen to be near 1 on the assumption that only a small 
percentage of the 300,000 + SNPs would be relevant to prediction and that most of the coefficients are truly 0. 
This was done within a nested cross-validation procedure, so a potentially different set of SNPs was selected for 
each combination of 13 (14, minus 1 holdout) STAR*D centers (regional groupings of clinic sites) used as the 
training data.

Learning algorithms and tuning parameters. To predict treatment outcome, we implemented a type 
of ensemble learning called stacking or super  learning24. Stacking trains a second-level meta-learner to build an 
ensemble prediction based on the first-level predictions of a diverse set of base learners. More detail about the 
machine learning parameters are provided in the Supplemental Materials Section 4.

Meta-learner. A stacked ensemble of 100 Gradient Boosted Machines (GBMs) was trained, each with a ran-
domly selected combination of tuning parameters, with predictions integrated by ridge regression.

Prediction metrics and cross-validation. An important aspect of model performance is how well it 
performs on cases that it was not trained on. We used 14-fold cross-validation to estimate model performance, 
which reflects the mean predictive performance of the model in previously unseen data. In this case, we used 
14-fold cross-validation because there were 14 geographic regional centers identified in the STAR*D trial data-
set. Thus, the models were trained on 13 of the regional centers and then tested in the one hold-out center, essen-
tially examining how well models trained on one set of study centers generalizes to a new study center, which 
may have more ecological validity for estimating how well the model will perform when implemented in a novel 
clinical setting. This process was repeated 14 times, with each regional center taking turns as the holdout sample, 
and then averaged across the repetitions.

Differences between the current modeling approach and prior work with the STAR*D sam-
ple. There are a number of differences between the current modeling approach to prediction and prior work 
with the STAR*D sample that are important to highlight. First, while at least three studies have applied machine 
learning methods to the prediction of STAR*D outcomes, only one has predicted response to citalopram 
 specifically12,25,26; the other two predicted treatment resistance more  broadly12,25,26, defined as a failed response 
to citalopram (“Level 1”) plus one of several additional treatments (“Level 2”).

Another important distinction is that we excluded data that was collected after a patient started citalopram. 
This exclusion criterion has not been previously  applied12,25,26. One study explicitly incorporated predictors col-
lected 2 weeks after starting treatment; the other studies ostensibly aimed to identify pre-treatment predictors 
of treatment response but did not take into account the fact that patients were allowed to enroll in the STAR*D 

Table 1.  A priori SNPs  from10 shown to predict escitalopram response and the corresponding SNPs used 
in the STAR*D sample. Proxy LD refers to R2 between the Iniesta SNP and the proxy SNP, as calculated by 
 LDlink47 (https ://ldlin k.nci.nih.gov/). As the majority of the STAR*D sample is of European ancestry, we used 
the European populations in 1000 Genomes Project Phase 3 v5 as the reference panel.

Iniesta SNPs In STAR*D? Best proxy Proxy LD

rs1392611 Yes N/A N/A

rs10812099 Yes N/A N/A

rs1891943 Yes N/A N/A

rs151139256 No rs62181046 1

rs11002001 Yes N/A N/A

rs62182022 Yes N/A N/A

rs28373080 Yes N/A N/A

rs7757702 Yes N/A N/A

rs76557116 Yes N/A N/A

rs9557363 Yes N/A N/A

rs2704022 No rs1693558 0.9801

https://ldlink.nci.nih.gov/
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study after having already started citalopram and could therefore receive their “baseline” assessment as much 
as two weeks after starting treatment. Including clinical variables obtained after treatment initiation could be 
influenced by early symptom change, which has been shown to predict treatment  response27, and may artificially 
inflate prediction accuracy.

We also used nested cross-validation based on regional center holdouts. It is important to understand that 
cross-validation has two uses in machine learning: to inform the optimization and selection of models and to 
provide an estimate of test error (out of sample generalization). Notably, if cross-validation error is used to opti-
mize models, it no longer provides an unbiased estimate of test error. Nested cross-validation avoids this bias 
by nesting the cross-validation used for model optimization within a cross-validation used for estimating test 
error. Moreover, by basing the cross-validation folds on regional centers, we more closely mimic the expected 
test error when generalizing to an independent clinic.

Prior work aimed at predicting citalopram response used a feature selection step that appears to have been 
based on the entire STAR*D data set and reports classification metrics based on the same internal cross-validation 
used to optimize model  parameters12. Consequently, while this study obtained an unbiased assessment of their 
model by testing it on an independent sample from a different clinical trial, the performance stats reported for 
the STAR*D sample are likely inflated, perhaps accounting in part for the large drop-off in performance between 
their cross-validation estimate and their independent estimate.

The studies predicting multi-treatment resistance did provide an unbiased estimate of site-to-site generali-
zation by splitting the regional centers into independent samples for training and  testing25,26. However, both 
these studies evaluated a single split whereas we evaluated the average of 14 such splits. In addition to assessing 
a different outcome on a more restricted sample and excluding predictors collected after the start of treatment, 
our validation strategy helped us to avoid reporting a fortuitous data partition; Table SM1 shows that while the 
average split performs worse than these prior models, 4/14 such splits would have performed almost as well or 
much better.

Data analysis software. All analyses were implemented in R (version 4.0). Our code made extensive use 
of the tidyverse28 packages dplyr, purrr, and tidyr for general data extraction and transformation. The SnpStats29 
and glmnet30 packages were used for processing and selecting SNP data, and H2O31 was used to implement the 
machine learning ensembles.

Results
Primary outcome: prediction of treatment response. The stacked ensemble model with pretreat-
ment clinical predictors but no genetic variants had acceptable overall model performance, AUC = 0.659 (see 
Table 2). Notably, the stacked ensemble model with pre-treatment predictors plus the genetic variants selected a 
priori did not improve treatment outcome prediction beyond the stacked ensemble with only the clinical predic-
tors—the 95% CIs were highly overlapping for both models (see model performance metrics in Table 2).

Similarly, the model that included the SNPs selected via elastic net also did not improve prediction beyond the 
clinical predictors model. Across the k-folds, the number of SNPs selected ranged from 0 to 71 with an average 
of 18 SNPs selected. Among the folds that did retain candidate predictor SNPs, a total of 227 unique SNPs were 
selected. However, none were observed in more than 4 of the folds (rs12371750 and rs1537728 were retained 
in 4 of the folds). In sum, there was very little consistency in which SNPs were retained during the selection 
process and the addition of these SNPs to the clinical predictors did not improve the prediction of treatment 
outcome. Model performance across the STAR*D geographic site locations is presented in the Supplemental 
Materials Section 5.

Secondary outcome: prediction of distressing or intolerable side effects. We tested the same 
three models as before but with a different treatment outcome: the occurrence of distressing or intolerable side 
effects. (We did not include results from the a priori SNPs because they were not selected for the prediction 
of side effects.) The stacked ensemble model with pretreatment clinical predictors but no genetic variants had 
adequate performance, AUC = 0.618. Notably, the stacked ensemble model with pre-treatment predictors plus 
the genetic variants selected by elastic net did not improve prediction beyond the clinical predictors model (see 
Table 3).

Table 2.  Model performance for baseline features predicting treatment outcome. Clinical predictors model 
includes sociodemographic and pre-treatment symptom variables only. The model in the second row adds 
SNPs selected a priori based on work  by10 to the clinical predictors model. The model in the third row adds the 
SNPs identified by the elastic net feature selection to the clinical predictors model. For threshold-dependent 
metrics (accuracy, sensitivity, specificity), a probability threshold of 0.5 was used for classification.

Model AUC (95% CI) Accuracy % Sensitivity Specificity R2

Clinical predictors .659 (.629, .689) .615 .623 .607 .057

Clinical predictors + a priori SNPs .662 (.632, .692) .628 .642 .613 .059

Clinical predictors + elastic net SNPs .655 (.625, .685) .609 .623 .594 .049
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Secondary outcome: prediction of treatment response given no distressing or intolerable 
side effects. The stacked ensemble model with pretreatment clinical predictors but no genetic variants had 
acceptable model performance, AUC = 0.663 (see Table 4). Notably, the stacked ensemble model with pre-treat-
ment predictors plus the genetic variants selected a priori did not improve treatment outcome prediction beyond 
the stacked ensemble with only the clinical predictors. Similarly, the model that included the SNPs selected via 
elastic net also did not improve prediction beyond the clinical predictors model. Thus, the addition of genetic 
variants to the clinical predictors did not improve the prediction of treatment outcome when distressing and 
intolerable side effects were removed from the definition of treatment outcome. Or, conversely, whether or not 
we included people with distressing and intolerable side effects as part of the operationalization of treatment 
outcome did not appear to strongly impact the results. The primary and secondary analyses were repeated in 
the subset of participants with European ancestry and are presented in Supplemental Materials Section 6. The 
conclusions were very similar to the main analyses.

Sensitivity analyses: SNP only prediction of outcomes. It may be that genetic variation was not a 
robust predictor of treatment outcome because it predicts variance in outcome that is redundant with the clinical 
variables. To address this possibility, the final analysis used the a priori SNPs and the SNPs selected by elastic net 
to predict the primary outcome in the absence of clinical predictors. The a priori SNPs only model did not per-
form well in the full sample (AUC = 0.481, 95% CI [0.454, 0.509]) or the European-ancestry sample AUC = 0.503, 
95% CI [0.469, 0.537]. Similarly, the elastic net selected SNPs only model did not predict treatment response well 
in the full sample (AUC = 0.496, 95% CI [0.468, 0.524]) or the European-ancestry sample (AUC = 0.473, 95% CI 
[0.439, 0.507]).

Conclusion
The current study builds upon prior work predicting treatment outcome in STAR*D by incorporating genetic 
variation and by using a stacked ensemble meta-learner algorithm to predict clinically relevant treatment out-
comes in response to citalopram treatment. The main finding from this work is that common SNP variation, as 
implemented in the current study, did not improve prediction of response to citalopram in the STAR*D trial 
over and above the prediction provided by demographic and clinical variables.

We examined two methods for identifying potentially useful genetic variants—a priori selection of SNPs 
previously shown to predict treatment response to citalopram and an elastic-net approach to identify the most 
promising SNPs. Neither approach improved the prediction of treatment response—in fact, the inclusion of 
genetic variants tended to slightly impair model performance. The best performing stacked ensemble GBM that 
only used pre-treatment clinical and sociodemographic predictors had an AUC of 0.663 and model accuracy was 
61.7%. This model performance is in line with prior work using a different machine learning approach, which 
reported an AUC of 0.700 and model accuracy of 64.6% for the prediction of treatment response (final score 
QIDS-SR16 < 6 at week 12 or week 14) in the larger STAR*D sample (not restricted to participants who provided 
DNA) using pre-treatment clinical predictors. Thus, there is quite a bit of room for prediction improvement; 
unfortunately, common SNP variation does not appear to offer any improvement. Indeed, the genetic variant 
only model (i.e., without any clinical predictors) did not outperform chance.

Table 3.  Model performance for baseline features predicting distressing or intolerable side effects treatment 
outcome. Clinical predictors model includes sociodemographic and pre-treatment symptom variables only. 
The model in the second row adds the SNPs identified by the elastic net feature selection to the clinical 
predictors model. For threshold-dependent metrics (accuracy, sensitivity, specificity), a probability threshold of 
0.5 was used for classification.

Model AUC (95% CI) Accuracy Sensitivity Specificity R2

Clinical predictors .618 (.587, .649) .577 .541 .611 .030

Clinical predictors + elastic net SNPs .608 (.577, .639) .583 .547 .617 .024

Table 4.  Model performance for baseline features when people that experienced distressing and intolerable 
side effects were removed from the treatment outcome. Clinical predictors model includes sociodemographic 
and pre-treatment symptom variables only. The model in the second row adds SNPs selected a priori based on 
work  by10 to the clinical predictors model.The model in the third row adds the SNPs identified by the elastic 
net feature selection to clinical predictors model. For threshold-dependent metrics (accuracy, sensitivity, 
specificity), a probability threshold of 0.5 was used for classification.

Model AUC (95% CI) Accuracy Sensitivity Specificity R2

Clinical predictors .663 (.632, .694) .617 .734 .470 .056

Clinical predictors + a priori SNPs .661 (.629, .692) .623 .740 .474 .055

Clinical predictors + elastic net SNPs .656 (.625, .688) .616 .723 .480 .048
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Given that citalopram treatment response appears to be modestly heritable, approximately 40% in this sam-
ple4,5, why did the inclusion of SNPs not improve the prediction of treatment response? It has been estimated that 
for complex traits, accurate prediction at the individual level is dependent on the heritability and prevalence of 
the complex trait. Simulations suggest that accurate prediction may require the genetic variants to capture a large 
proportion of the heritability in order to obtain an acceptable AUC 32. Further, the effects of SNPs for this complex 
phenotype may be so small that they are difficult to estimate with high accuracy unless a very large discovery 
sample is  used33. Although prior work identified SNPs that improved prediction of escitalopram response with 
much smaller samples (e.g., training set N = 280 and a validation set of N = 150  in10), that work did not report 
the results of a SNPs-only model or a clinical-predictors only model, so the additive value of the SNPs to their 
model is unknown. Further, they combined data from nine clinic sites and randomly partitioned it into a single 
train-test (65% / 35%) set; thus the problem of clinic-to-clinic generalization was not assessed. Results from the 
current study unfortunately suggest that their promising results may not generalize to other datasets.

Unfortunately, given the curse of dimensionality, there is likely no selection technique, including machine 
learning techniques such as those used in the current study, that avoids needing exceedingly large sample sizes to 
identify SNPs that provide a signal that will generalize out of sample. Indeed, there was high variability in SNPs 
selected by the elastic-net during the k-fold cross-validation procedure. Other work taking a candidate  gene6,7, 
candidate system  approach5, or polygenic risk  scores11 have generally found similarly disappointing results for 
the prediction of antidepressant treatment response. Thus, genetic variation may be most useful for investigat-
ing the etiology of treatment response between groups of patients (e.g., responders vs non-responders) but may 
currently not be useful for deriving personalized predictions of treatment  response34. Other areas of research, 
such as educational attainment, have arrived at similar  conclusions35.

One alternative method for potentially improving individual-level prediction of baseline models is to add 
additional features beyond SNP variation. Future data-mining work may benefit from exploring more continuous 
measures of molecular variation, such as methylomic  variation36,37 or hormonal  profiles38, perhaps in combina-
tion with other neurobiological  data39–41. However, psychosocial or behavioral data with strong psychomet-
ric  properties42 should not be ignored, as they too could explain unique variance in antidepressant treatment 
response above and beyond neurobiological  data43.

There are several limitations of this study that should be noted. First, without comparable data from an 
alternative intervention, we have no way of gauging the extent to which this model is predicting response to 
citalopram specifically versus response to interventions more generally. Notably, prior predictive modeling has 
shown some specificity to citalopram, as using the prognostic model developed for citalopram did not predict 
beyond chance response to a different antidepressant  medication12. Second, in order to recapture most of the a 
priori  SNPs10 and only use two high-LD proxy SNPs, we used a relatively low imputation threshold (< 30%). This 
low imputation threshold could partly account for why these SNPs did not improve treatment response predic-
tion in this sample. In addition, Affymetrix arrays used in STAR*D tend to underperform compared with arrays 
produced by other  manufacturers44 and imputation of non-genotyped SNPs may be  suboptimal45. This could 
have contributed to the poor performance for the confirmatory SNPs selected based on prior  work10. Finally, 
there are many published studies involving STAR*D participants, although none taking a similar approach to 
identify genetic variants and using them in the prediction of treatment outcome.

The STAR*D trial demonstrates what can be accomplished when large, multi-site trials are openly shared with 
other scientists for secondary  analyses46. Open datasets of large pharmacologic and psychosocial interventions 
trials would greatly facilitate further development of treatment outcome algorithms for a variety of treatments. 
This could lead to the development of a database of algorithms that clinicians and patients could use to help 
make clinical treatment decisions. Making such data widely available could therefore promote a more efficient 
mental health care system by helping clinicians optimize treatment delivery to specific patients with the goal of 
receiving the treatment with the best likelihood of a successful response as quickly as possible. Currently, the 
usefulness of SNP variation for tailoring treatment to patients appears uncertain, as reliable SNP predictors of 
antidepressant treatment response have yet to be identified.
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