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Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large
intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn’s disease). Complications include pain, diarrhoea,
chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially inWesternized countries, being
as high as 1%. As prognosis is poor andmedication often ineffective or causing side effects, additional preventive/adjuvant strategies
are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have
been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative
stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-𝜅B, Nrf-2, Jak/STAT,
andMAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1𝛽, and TNF-𝛼), and boosting the bodies’ own antioxidant
status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia),
short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects
such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of
undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary
actions of polyphenols targeting IBD.

1. Introduction—Preventive Strategies for IBD

1.1. General Aspects. Inflammatory bowel diseases (IBDs) are
on the rise. With annual incidence rate (newly diagnosed
diseases) up to 1‰ and a prevalence of 1% inmany developed
countries [1], this complication is affecting considerably
more people than in the past, for reasons unknown. Crohn’s
disease (CD) and ulcerative colitis (UC) are the main forms
of the disease, with CD resulting in manifestations in the
small and large intestine, while UC is confined to the
colon. Typically, the disease manifests itself before 30 years
of age, and most likely genetic predisposition followed by
autoimmune reactions does play a role in their aetiology,
though concrete reasons or triggers are not understood.
Symptoms include diarrhoea, abdominal pain, cramping,

fever, weight loss, wasting, internal bleeding, and ultimately
cancer. In both diseases, the epithelial lining of the gut is
in part destroyed, resulting in perturbed permeability of the
mucosal barrier, malabsorption of nutrients, and absorp-
tion of compounds by-passing the enterocytes, causing, for
example, allergic reactions, a circumstance often described as
“leaky gut syndrome” [2, 3]. Many subjects present with low
concentrations of essential micronutrients such as vitamins
and minerals, especially zinc, iron, selenium, vitamin B12,
and vitamin D [4–7], possibly (a) due to low dietary intake
and avoidance of many food products expected to cause
digestional discomfort, (b) due to diarrhoea, loss of blood,
andmalabsorption in the inflamed areas, and perhaps (c) due
to enhanced metabolism/turnover of some of these essential
micronutrients (such as antioxidant vitamins).
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1.2. Pathophysiological Description of Condition. Several dif-
ferences between CD and UC exist. First, while CD can affect
both the small and the large intestine (in addition to mouth
and stomach), UC is limited to the colon. However, most
typically, CD affects the lower parts of the small intestine
(distant ileum) and the upper parts of the colon. Second,
another distinction is that while CD may affect the entire
gut wall, UC typically affects only the inner lining (mucosa,
submucosa) of the epithelium. Third, CD may affect certain
areas and leave intermittent parts (“skip areas”) intact, which
is not observed in UC [8]. In CD, crypt inflammation and
abscesses may turn into mucosal oedema, thickening of the
bowelwall, and fibrosis and fistula development (extending to
other organs such as the bladder), among others. UC typically
starts with the rectum, mucosal ulcers are common, and
fistulas and abscesses are absent.

Why the epithelial lining and additional adjacent tissues
are inflicted is not entirely understood, but autoimmune
reactions appear to be involved [9], characterized by local
spots of increased inflammation, including infiltration of
immune cells. Several cell types are involved in this response,
including absorptive enterocytes, mucus-producing goblet
cells, enteroendocrine cells (secreting hormones such as
cholecystokinin), paneth cells (required for bacteria defence),
microfold cells (M-cells, taking up antigens via endocytosis),
and additional infiltrating cells of the immune system, such
as neutrophils. It has been reported that secondary lymphoid
tissues, for example, Peyer’s patches, and tertiary lymphoid
tissues can respond to antigen stimuli, releasing cytokines
and antibodies (IgA, [10]). Cell surface receptors (toll-like
receptors (TLRs) and nod-like receptors (NLRs)), located
on many cells of the immune system, infiltrating to the
diseased tissue, may sense pathogen associated molecules.
Herein lies an important interaction with the gut microbiota,
as certain bacteria such as Bacteroides can interact with, for
example, T regulatory cells and macrophages, stimulating
anti-inflammatory IL-10 production, while other bacteria
may induce T-helper- (Th-) 17 cells, fostering inflammation.

However, this process is characterized not only by local
inflammation (Figure 1), but by a systemic low chronic
inflammation, with increased concentrations of circulating
cytokines, especially IL-8, TNF-𝛼, and IL-1𝛽 [11], and other
general markers of inflammation such as C-reactive pro-
teins (CRP) [12]. It is believed that IBD is mostly trig-
gered and aggravated by TNF-𝛼 released from infiltrating
immune cells (macrophages), followed by increased con-
centrations of the cytokines IL-6 and IL-1𝛽 [13] and pos-
sibly IL-12 (especially for CD) and IL-13 (especially UC)
[14], and reduced concentration of the anti-inflammatory
cytokines IL-10 and IL-4 [15]. Immune cells (neutrophils
and macrophages) also produce a number of reactive oxy-
gen species (ROS) in order to trigger further inflamma-
tion, resulting in reduced plasma antioxidant activity. This
typically goes along with increased levels of myeloper-
oxidase (MPO, producing ROS from hydrogen peroxide
[16]), causing enhanced formation of lipid oxidized prod-
ucts (LOP) such as malondialdehyde (MDA) and advanced
oxidized protein products (AOPP, Figure 2). This in turn
may be accompanied with increased levels of markers of

(nonenzymatic) oxidative stress, such as F2-isoprostanes
[17].

Despite the fact that the precise reasons for the increased
prevalence of IBD are still controversially discussed, certain
environmental aspects appear to play a role (Table 1), such
as smoking, hygiene, certain microorganisms, use of oral
contraceptives (OCPs), nonsteroidal anti-inflammatories
(NSAIDs), antibiotics, appendectomy, breastfeeding, ambi-
ent air pollution [18], the gut microbiota [19], and certain
diet related habits, such as high fat consumption, consump-
tion of refined sugars, and low vitamin D intake, at least
according to some studies [18]. A genetic predisposition has
also been reported [20, 21]. Certain mutations have been
revealed, such as (for CD subjects) the gene encoding for
NOD2 (nucleotide-binding oligomerization domain 2) [14].
A similarity between UC and CD with the aetiology of celiac
disease (CeD) also exists, with themain difference that people
may stay asymptomatic with CeD, as long as the known
antigen triggering the disease, that is, gluten, is avoided [22].

1.3. Strategies for Ameliorating IBD. Strategies to resolve
complications have been including the administration of
nonsteroidal anti-inflammatory drugs [23], steroid anti-
inflammatories, typically targeting TNF-𝛼 reduction [24] or,
for the worst cases, surgical removal of the inflammatory
afflicted areas. A standard therapy is the administration
of 5-aminosalicylic acid (a nonsteroidal anti-inflammatory
drug), which reduces (via cyclooxygenase-2 (Cox-2)) the
formation of leukotrienes and prostaglandins, focussing on
blocking inflammatory processes, that is, their mediators [8].
Nevertheless, drugs usually do not result in complete cure,
and relapse rates, even after operation, remain relatively high.

As a consequence, preventive strategies appear as a
prudent approach to avoid IBD, which is complicated by
the fact that the causes of IBD are not fully understood.
Nevertheless, a diet rich in fruits and vegetables has been
shown to be able to reduce the incidence/prevalence of IBD
[25], perhaps due to positive effects of dietary fiber [26].
Dietary fiber promotes the production of short chain fatty
acids (SCFAs) in the colon, and these have been reported to
possess anti-inflammatory and immunomodulatory effects.
Fibre would also reduce colonic pH, inhibiting the growth
of potential pathogenic microbes. This has been suggested
especially for selected dietary fibers such as prebiotics [27].
Consequently, also probiotics have been promoted to reduce
IBD symptoms; for example, some positive effects were seen
for probiotics and UC [28], maintaining remission, while
effects on CD have not been shown so far.

An additional class of compounds, often affiliated in
the fruit and vegetable matrix with dietary fiber, which has
recently attracted much attention, are polyphenols, the most
abundant secondary plant compounds or phytochemicals.
Polyphenols, sometimes also termed phenolics, constitute
a broad class of compounds, comprising over 7000 com-
pounds.They can further be subdivided into flavonoids (such
as isoflavonoids and anthocyanins) and nonflavonoids (e.g.,
stilbenes, phenolic acids, coumarins, and tannins). Their
concentration in some fruits and vegetables (Table 2) can
be as high as several 100mg/100 g [29], and their per capita
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Figure 1: Factors involved in the origin and progression of IBD, via inflammation and oxidative stress. For abbreviations see footnote of
Table 3.

intake typically ranges around 1 g/d [30]. It is also important
to consider that the majority of polyphenols (possibly as high
as 90–95%) is not absorbed but reaches the colon [31] and
is thus available as a substrate for fermentation. A review on
the most prominent polyphenol containing food items was
published by Pérez-Jiménez et al. [32]. In the following, we
try to summarize the various pathways viawhich polyphenols
could act on the development of IBD. More specifically,
aspects related to

(a) direct and indirect antioxidant,
(b) anti-inflammatory,
(c) gut microflora,
(d) other properties with respect to epithelium protec-

tion, such as their influence on tight junctions,

are discussed, as these appear to constitute major mech-
anisms of action of polyphenols with respect to potential
health benefits targeting IBD prevention or amelioration. In
addition, potential negative effects of polyphenols are also
briefly discussed. For this purpose, searches in PubMed for

all years of English literature were carried out, employing the
search terms “(polyphenol? or phenolic? or flavonoid) and
(IBD or inflammatory bowel disease or Crohn’s disease or
ulcerative colitis)”.

2. Insights from Human Trials

2.1. Epidemiological Insights. A limited number of epidemi-
ological trials have suggested a positive association between
fruit and vegetable consumption and IBD. For example, in a
prospective cohort study with over 170.000 women partici-
pating in the Nurses’ Health Study [115], subjects consuming
the most dietary fiber had a 40% lower risk of developing
CD (OR 0.59, 95 CI 0.39–0.90). Positive influences on the
gut microbiota and the aryl-hydrocarbon receptor (AhR),
mediating protection against xenobiotics, were discussed.
Interestingly, fiber from fruits showed greatest effects, while
fiber from cereals and whole grains appeared not to alter
the risk, which may have been due to additional effects
of polyphenols, as extractable polyphenols are especially
associated with various fruits. It should also be noted that
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Figure 2: Summary of mechanisms via which polyphenols may positively or negatively influence the development of IBD. For abbreviations
see footnote of Table 3.

fiber intake did not appear to influence UC in this study.
Similarly, a systematic review of the literature suggested that
the intake of fiber and high fruit intake was associated with
a decreased risk of CD and high vegetable consumption with
a decreased risk of UC [116]. An additional epidemiological
finding is that newly diagnosed paediatric patients with CD
were reported to have a lower fruit and vegetable intake
compared to healthy subjects [117], though it is not clear
whether this constitutes a cause or rather a consequence of
IBD.

2.2. Intervention Trials with IBD Patients. Unfortunately,
there are only a very limited number of human trials available
that have focussed directly on IBDwith respect to polyphenol
intervention (Table 3). Studies in general have incorporated
only few subjects, as low as 10 per group, lasting from 4 weeks
to 2 years, and included the administration of curcumins,
red wine, blueberries, apples, cacao, and pycnogenol, up to
approx. 2 g/d. A human study by Chiba et al. [76] with
22 CD subjects showed that a semivegetarian diet, richer
in plant foods, and therefore polyphenols, was more suc-
cessful in maintaining remission over 2 years, compared to
an omnivorous diet (94 versus 33%). An earlier trial was
conducted with curcumin, a rather apolar polyphenol of
limited bioavailability. In their randomized, double blind,
placebo controlled multicenter intervention trial, Hanai et al.

[75] administered 2 g of curcumins plus medication per day
over 6 months to 89 UC patients. A significant improvement
in recurrence rate and morbidity parameters associated with
UC (clinical activity index and endoscopic index) was found.
It cannot be excluded that curcumin, in addition to direct
effects, also enhanced the bioavailability of the prescribed
medication, due to interactions either at various efflux pumps
and/or via altered phase I/phase II metabolism [30].

Koláček et al. [78] investigated the effect of administer-
ing pycnogenol, a polyphenolic extract from the maritime
pine (Pinus pinaster) bark, containing 70% procyanidins, at
2mg/kg body weight, over 10 weeks to 15 CD patients in
remission, and compared the effects to 15 healthy controls.
However, controls were not treated, not allowing for an
accurate comparison between the groups. Compared to
healthy controls, CD patients showed higher levels of Cu/Zn
superoxide dismutase (SOD) and increased oxidative damage
of proteins. Markers of inflammation such as calprotectin
(a protein produced by neutrophils and associated with
systemic inflammation) and CRP were negatively associated
with total plasma antioxidant activity (TAC). Following inter-
vention, most parameters, including F2-isoprostanes, CRP,
and reduced glutathione (GSH), remained rather unchanged
when comparing before and after intervention, while lipoper-
oxide levels and AOPP were significantly reduced, and SOD
significantly increased following intervention. Thus, while
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Table 1: Overview of major risk factors and suggested mechanisms involved in the development of IBD.

Risk factor Influence: positive
(+), negative (−) Mechanism Reference

Genetic predisposition +/−
Genes involved in inflammation and oxidative stress
responses and in immune function (histocompatibility
complex)

[19, 33]

Smoking −

Altered blood flow, enhanced cytokine formation,
immunomodulatory, influencing mucus production [18]

Air pollution (NOx, SO
2
. . .) − Unclear: proinflammatory response to air particles? [18]

Enhanced hygiene −

Unclear: reduced exposure early in life to
microorganisms. Reduced IBD prevalence found for
growing up on farms, living in crowded homes,
consuming unpasteurized milk

[18]

Microbiota +/−

Immunomodulatory properties, production of
anti-inflammatory compounds. Some bacteria strains
associated with negative effects (e.g., Clostridia), others
with positive effects, such as Bifidobacteria, possibly
due to enhanced gut barrier properties, production of
SCFA

[34]

Diet, probiotics + Immunomodulatory properties, production of
anti-inflammatory compounds, see microbiota [28]

Diet, prebiotics (fiber) + Favouring healthy microbiota (Bifidobacteria. . .),
production of anti-inflammatory SCFA, lowering of pH [28]

Diet, vitamin D + Immunomodulatory, protection of barrier [35]

Diet, dietary fiber +
Production of anti-inflammatory SCFA, increasing
fecal bulk and lowering concentration of compounds
with adverse effects

[17, 26]

Diet, vitamins C, E +/−
Unclear: antioxidants may reduce ROS parameters,
normalize abnormally low tissue levels in subjects with
IBD

[36]

Diet, PUFAs (𝜔-3) + Anti-inflammatory effects [37]

Diet, polyphenols +
Antioxidant effects (reducing ROS), anti-inflammatory
properties, altering genetic expression via NF-𝜅B, Nrf-2,
improving barrier properties, immunomodulatory

[13, 38–40]

PUFAs: polyunsaturated fatty acids, ROS: reactive oxygen species, and SCFA: short-chain fatty acids.

markers of inflammation remained generally unchanged,
markers of oxidative stress were significantly reduced, mak-
ing this the first study to directly investigate the effects of
hydrophilic polyphenols in IBD patients.

Short-term interventions have also been conducted,
though with rather more questionable results, in part as
inflammation processes are less likely to be altered drastically
during short-term trials. However, children with gastroen-
terological discomfort receiving a novel polyphenol based
prebiotic (2 ounces of Preliva (Goodgut INC, USA), rich
in Japanese honeysuckle, grape, and pomegranate, among
others) within a single dose in a placebo controlled trial
experienced significantly less stomach pain and discomfort
compared to the placebo group, though no bacteria cultures
were measured and no dosing was reported [118]. More
such studies, with preferably mid-long-term administration
of polyphenols, are much desired.

2.3. Studies with Healthy (Non-IBD) Subjects. Other stud-
ies have accumulated somewhat more indirect benefits of

polyphenols with respect to IBD. In a trial by Clemente-
Postigo et al. [79], the effect of red wine (RW), dealco-
holised red wine (DRW), and gin consumption on 10 healthy
adults was investigated in a randomized cross-over trial
over 20 days (272mL/d wine or 100mL/d for the gin).
Endpoints investigated included serum endotoxin and LPS-
(lipopolysaccharide-) binding protein (LBP), in addition to
fecal microbiota. No significant differences were detected
with regard to serum endotoxin and LBP changes with gin
or DRW. However, following RW consumption, numbers
of Bifidobacteria and Prevotella significantly increased and
correlated negatively to LPS levels, emphasizing that soluble
phenolic constituents in their natural (i.e., alcoholic) matrix,
may improve gut flora in terms of the number of healthy
bacteria. However, similar results were obtained in earlier
trials, were a (nonalcoholic) cacao-flavonol drink increased
Bifidobacteria and Lactobacilli numbers in the gut, reducing
CRP (and TG) [77] in the serum, likewise emphasizing
potential prebiotic effects of polyphenols, as higher Bifi-
dobacteria numbers have been associated with increased gut
barrier properties [119], possibly via their production of SCFA
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and effects on the gut barrier, reducing, for example, LPS
formation [120]. That the effect in the cacao-beverage study
was truly attributable to polyphenols is very likely, as a cocoa
drink rich in flavan-3-ol was contrasted to a similar cacao
drink low in flavon-3-ol.

Another study on obese subjects demonstrated that
polyphenols from red wine were able to induce likewise
Bifidobacteria and Lactobacilli growth, as well as butyrate
producing bacteria [83], reducing LPS producers. However,
polyphenols from red wine have also been suggested to
hamper inflammatory cytokines in the gut, as found in a
subset of healthy volunteers with high cytokine levels (6 out
of 34), consuming red wine over 4 weeks (containing ca.
1.76 g/L polyphenols), though the exact amount consumed
was not registered. Similarly, in a study with normal healthy
(non-IBD) subjects consuming a blueberry beverage rich in
polyphenols (375mg anthocyanins and 128mg chlorogenic
acid per d) for 6 weeks, certain Bifidobacteria counts were
more pronounced following the intervention, compared to a
placebo drink [80].

Also the consumption of coffee, being rich in polyphe-
nols (in addition to fermentable fibre), has been suggested
to enhance the number of health beneficial bacteria. For
example, in a study that included administering instant coffee
for 3 weeks (3 cups/d) to healthy subjects, the number of
Bifidobacteria significantly increased compared to the onset
of the intervention [121]. Similar results were obtained for
green tea intake [122], enhancing in tendency the proportion
of Bifidobacteria, though results for black tea were less clear
and did not influence the proportion of Bifidobacteria but
rather decreased overall bacteria population [123], showing
also high variability of the observed results.

A few reviews havemeanwhile also aimed at emphasizing
the potential that polyphenols may play regarding the pre-
vention (or as an adjuvant therapy) in IBD [13, 38–40, 124]
and even other ailments of the digestive tract, starting with
periodontal (gum) applications [125]. In summary however,
far too little data exists regarding human trials employing
polyphenols in longer intervention studies, also with respect
to the kind of polyphenols, dosing, and matrix, to clearly
prove that these compounds may prevent or significantly
ameliorate the progression of disease, though first trials
appear promising.

3. Animal Studies and In Vitro Trials

3.1. Choice ofModel. With respect to animalmodels, typically
mice or rats have been employed due to cost and handling
reasons, with colitis being induced by administration of
proinflammatory chemicals, mostly dextran sodium sulphate
(DSS) or 2,4,6-trinitrobenzenesulfonic acid (TBNA). While
animal models can mimic relatively well the inflammation
(and oxidative stress) in relation to cytokine activation
via molecular targets, the major disparity possibly rests in
the microflora, often being different from humans [126].
However, since only about 35% of bacterial genes have been
reported to be shared even between human individuals, sim-
ulating representatively the microflora is anyhow a difficult
task [14]. In addition, chemical induction may not entirely

reflect IBDs and all the immunological aspects involved.
This may be overcome by the more recent development of
genetically modified rodents, which spontaneously develop
IBD [127], but those have so far found little application, due
to still limited availability.

Regarding in vitro methods, which allow the testing of
many dietary factors within a rather short period of time (due
to risk of bacterial growth and the need to refresh media),
most studies have been conducted with cancer epithelium
cells, especially monolayer-forming Caco-2 cells and HT-29
cells, mostly without previous simulation of gastrointesti-
nal digestion, with occasional exceptions [67]. Disregarding
digestion processes will bear the risk that changes in the
polyphenol profile (see Section 3.2), as well as matrix release,
and thus bioaccessibility, are not or only poorly resembling
the in vivo situation. However, in these models, inflamma-
tion must usually be triggered (due to otherwise very low
secretion of, e.g., cytokines), for which certain stimulants are
added, often TNF-𝛼, IL-1𝛽, or LPS or a mixture thereof, even
though the activation via LPS has been questioned, due to
lack of certain LPS receptors in Caco-2 cells (e.g., TRL4),
according to some reports [128].

Thus, the major limitations of these cellular methods
are that they (a) typically lack the capability of including
the interaction with the colonic microflora, as these are
often incompatible with the epithelial cells involved, (b) do
not normally include immune cells such as macrophages,
which usually do infiltrate inflamed tissues, often aggravating
inflammation, (c) only allow rather short-term exposure due
to the risk of additional microbiological contamination of
the cell models, and (d) do not take into account changes
of the polyphenol profile during preceding digestion. How-
ever, some more sophisticated models have meanwhile been
developed, such as triple-cell culture models encompassing
also macrophage-like cells [67], which have been coupled to
preceding simulated in vitro digestion, and also models that
allow studying the interaction with bacteria and gut cells,
such as themicrofluidicHUMIXmodel [129], which however
requires complete solubilisation of compounds and works
only with small volumes (<100 𝜇L).

3.2. Aspects of Digestion and Further Metabolism. As many
polyphenols are considerably altered in their structure dur-
ing digestion, due to either degradation or further active
metabolism involving host ormicrobiota enzymes, it is worth
mentioning—at least briefly—major pathways and changes
for predominant polyphenols that are consumed. Equally,
an understanding of these processes is important as many
of the metabolites may have altered bioavailability and/or
bioactivity. However, in many in vitro models, such changes
are not accounted for, neglecting potential influences of the
digestion and/or the microflora on the polyphenol profile,
presenting a potential limitation for many investigations.

Following ingestion of the polyphenols, these may or
may not be released from the matrix. Possibly, release of
the “nonextractable polyphenol fraction,” that is, encom-
passing especially polyphenols covalently bound to the food
matrix, cannot be achieved during gastric and small intestinal
digestion but may in part occur in the large intestine [130]
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following further fermentation of the foodmatrix. Additional
food matrix factors influencing polyphenol bioavailability
have been reviewed elsewhere [30]. As many polyphenols are
present in the food matrix as glycosides (e.g., flavonoids),
these are believed to require (prior to their potential absorp-
tion) cleavage by human lactase-phlorizin hydrolase, situ-
ated at the brush-border of the intestinal epithelium [131],
releasing the free aglycones. Alternatively, cleavagemay occur
intracellularly by cytosolic beta-glucosidase [132]. In addi-
tion, low pH of the stomach may likewise cleave a fraction of
the glucosides. Polyphenol esters, such as hydroxycinnamates
and diferulates, have also been hypothesized to be cleaved
by human enzymes, such as carboxylesterase, present on the
brush border or intracellularly within the enterocytes [133].

Regarding bacterial fermentation, which preliminary
takes place in the colon, it has been reported that the
microbiome is able to result in amultitude of transformations
[134], depending on the number and type of bacteria species
present, the foodmatrix, and the type of polyphenols. Mostly,
ring fission of, for example, flavonoids [135], demethyla-
tion, dehydroxylation, decarboxylation, and deglycosylation
and reduction reactions have been reported and have been
reviewed previously [136, 137]. Typical end-products may
include phenolic acids, or other hydroxylated aromatic com-
pounds [138], which may then be taken up by the colon
epithelium. Thus, a number of processes may occur in the
upper and lower intestine, which have implications on the
polyphenol profile, and therefore on the bioactivity profile,
which often are disregarded in simplified in vitro trials.

3.3. Antioxidant Aspects—Direct Effects. As many polyphe-
nols can act as radical scavenging compounds and are
thus able to act as antioxidants [16], their antioxidant
potential has been thoroughly investigated in vitro and in
vivo. Strongest antioxidants appear to be compounds with
multiple hydroxyl groups, such as flavonoids or tannins
[139]. However, bioavailability of many polyphenols may
be low. Upon ingestion, polyphenols can be metabolized
(deglucosylated, glucuronidated, sulphated, and possibly de-
esterified) by human enzymes, with additional changes in
the gut by (typically, colonic) bacteria, which may hydrolyse
glucosides, glucuronides, sulfates, amides, esters, and lac-
tones and further result in ring-fission, in addition to further
reduction, decarboxylation, demethylation, and dehydroxy-
lation, among other reactions [134, 136]. Polyphenols also
are typically pumped rapidly out of the cell, often back
into the gut lumen, via, for example, multidrug resistant
proteins (MRP)1,2,4, P-glycoprotein (P-gp), and breast cancer
cell resistant proteins (BCRP), which further reduce their
bioavailability. As, following absorption, also urinary excre-
tion may occur rapidly, often following phase II metabolism
(sulfation, glucuronidation), this finally results in quite low
levels of detectable circulating polyphenols, especially native
ones. In addition, as many other systems in the human body
can act as radical quenching compounds, including enzymes
such as SOD and GPx, other exogenous compounds (vita-
mins E andC, carotenoids), andmany additional endogenous
molecules (uric acid, albumin), the overall contribution to

direct antioxidant effects therefore appears low [16].However,
polyphenols may have a role either via

(a) their action as antioxidants prior to absorption, that
is, directly in the gut lumen, where their concentra-
tion is comparatively high, quenching ROS occurring
in the gut lumen, or

(b) following absorption, via their influence on nuclear
receptors and gene expression.

Unfortunately, not much is known about their possibility to
quench ROS or reactive nitrogen species (RON) in the gut
lumen prior to absorption, as this has never been systemat-
ically studied. As it is clear and has been demonstrated that
the antioxidant potential of polyphenols prevails, at least in
part, during digestion, depending mostly on release kinetics
and possible solubility, that is, bioaccessibility, polyphenols
can therefore contribute to antioxidant activity [16, 140] in
the lumen of the gut. This may be important, as even for
the extracellular space (i.e., gut lumen), ROS and RON may
be released following inflammatory diseases into the gut,
and quenching these species may reduce further aggravation
of IBD conditions. However, the potential resulting health
benefits in this respect have never been studied and may be
more difficult to distinguish fromeffects following absorption
and to extrapolate to the long-term effects in vivo.

3.4. Antioxidant Aspects—Effects via Altering
Molecular Targets

3.4.1. Animal Trials. In contrast to effects prior to polyphenol
uptake (i.e., their activity in the lumen), effects following
their absorption and their influence on gene expression via
molecular targets (e.g., transcription factors) have been inves-
tigated in more detail [141, 142], with mechanistic insights
from animal and cellular models.

Table 4 gives an overview on frequently applied animal
models. As can be seen, most studies have been finding
positive effects based on intervention with various polyphe-
nols and polyphenol rich sources, such as apples, green
tea, cacao, pomegranate, and grape seeds, regarding the
development of IBD, typically tested by “soft markers,” such
as cytokine formation or other inflammation and oxida-
tive stress related aspects, both locally and systemically,
in conjunction with histological examinations. Regarding
markers of oxidative stress, polyphenols have been shown
to modify the formation of MDA [87, 89, 91], hydrogen
peroxide [98], protein oxidation [91], and several genes in
the mucosa involved in antioxidant defence and detoxi-
fication, including, for example, glutathione peroxidase 1
(GPx-1), NAD(P)H dehydrogenase [quinone-1] (NQO-1),
peroxiredoxin-6 (PRDX-6), superoxide dismutase 1 (SOD-
1), catalase (CAT), and thioredoxinreductase-1 (TXNRD-
1) [87, 95], in various rodent models, also confirmed in
a study with healthy pigs receiving grapeseed and grape-
marc extracts (1% in the diet) for 4 weeks, compared to
control pigs. Mechanisms involved appeared to be related
to the deactivation of further upstream targets, especially
Nrf-2 [95], due to a high antioxidant effect of the extracts;
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at least this mechanism appears plausible. Often however,
Nrf-2 is upregulated following higher doses of individual
polyphenols, especially if oxidative stress levels are high.
This has been corroborated by several studies, for example,
in rats where gut inflammation and oxidative stress were
induced by ketoprofen (nonsteroidal anti-inflammatory),
receiving catechins (35mg/kg per day) for 21 d, resulting in
increased formation of Nrf-2 downstream targets, that is,
glutathione (GSH, reduced form), and also in reduced lactate
dehydrogenase (LDH) leakage and 8-hydroxy-guanosine (8-
OHdG) [96].

The reduction of oxidative stress and inflammation in the
gut has also been reported to have somewhat more systemic
effects. In a study by Cazarin et al. [97], administration of
Passiflora edulis peel rich in fiber and polyphenols for 7 d
at 25 g/kg flour reduced serum antioxidant activity (FRAP),
GPx, thiobarbituric acid reactive substances such as MDA
(TBARS), and glutathione reductase (GR). In another study
with mice, green tea polyphenols given for 10 d (no dose
specified) enhanced blood levels of GSH [85], and green tea
polyphenols or EGCG (epigallocatechin gallate) at 0.25, 0.5,
and 1% added to the diet for 10 weeks improved colonic and
hepatic GSH in a similar model [58].

Typically, doses of polyphenols or extracts have been
ranging between 10 and 20mg/kg body weight of animals,
though lower ones down to 0.5mg/kg and higher ones
up to 100mg/kg or even 500mg/kg for certain extracts
have been administered (Table 3). Strictly up-scaling these
concentrations to humans would result in doses of 700–
1400mg,which is about the daily intake of polyphenols, being
high, but achievable, surely with dietary supplements, while
doses above would represent supraphysiological amounts.
When however taking into account body surface area (BSA),
and applying the human equivalent dose (HED), the typical
dose applied to animals would translate into approx. 190–
380mg [143], given that the HED (mg/kg) equals animal
dose (mg/kg) × (animal Km)/(human Km), with Km being
a conversion factor, typically 57 for a human adult and 3 for
a mouse (6 for a rat). However, it can be stated that most
administered doses are indeed physiologically realistic and
are within the daily human intake. Times of administration
usually ranged from about 1 to 12 weeks or so, reflecting a
considerable lifespan for small rodents.

3.4.2. Cell Culture Studies. The effects observed in ani-
mal models are generally confirmed by cell culture studies
(Table 5). For example, following digestion of a raspberry
extract, the amount of ROS produced due to acrylamide-
induced toxicity on Caco-2 cell mitochondria was signif-
icantly reduced [144]. More specifically, intracellular ROS
generation was lowered, as was mitochondrial membrane
potential (MMP) collapse as well as glutathione (GSH)
depletion.

In a study applying red wine extract rich in catechin B1
and malvidin-3-glucose on HT-29 cells for 24 h, both COX-
2 expression and protein tyrosine nitration, a biomarker of
RON, were significantly reduced [69]. In another study, apple
peel polyphenols (250 𝜇g/mL for 24 h) reduced lipid peroxi-
dation in Caco-2 cells [111]. At least some antioxidant effects

observed in vivo may be ascribed to reduced neutrophil
activity, which may produce several types of ROS, as shown
by decreased production of ROS in neutrophils, following
incubation with the ellagitannin metabolite urolithin B in
vitro [145], possibly via inhibiting myeloperoxidase.

It has to be mentioned that some reports (though the
minority of published results) did not confirm positive effects
of polyphenols on Nrf-2 or downstream targets. In a study
with grapeseed and grape-marc extracts rich in polyphe-
nols, employing (TNF-𝛼 induced) Caco-2 cells exposed for
24 h at 2mg/mL, no effects on Nrf-2 transactivation or
target genes (GPx-2, NOQ1, CP1A1, and UGT1A1) were
found [110]. In contrast, administration of a polyphenol-rich
plum digesta to a Caco-2/HT-29 (apical) and THP-1 like
macrophage (basolateral compartment) model (stimulated
with a mixture of LPS, TNF-𝛼, and IL-1𝛽) for 24 h even
reduced transactivation of Nrf-2, possibly indicating reduced
oxidative stress levels [67] following polyphenol exposure.
These effects could well be concentration dependent, as it has
been suggested that certain antioxidants such as retinoic acid
at high concentrations may trigger Nrf-2 translocation to the
nucleus, while lower, more physiological concentrations, and
perhaps employing stimuli not causing excessive oxidative
stress responses, had no or even opposite effects [146], being
in line with an overall reduced ROS level.

It can thus be speculated that at least in the epithelium
(where concentrations of polyphenols may still be reasonably
high compared to the deeper cell layers of the intestine) both
direct antioxidant effects andmore indirect effects, activating
the cell’s own antioxidant system, may play a role. Again,
concentrations at the basolateral side are possibly lower
due to the efflux of certain polyphenols by the mentioned
transporters back into the lumen. However, it must also be
stated that many studies have been applying relatively high
doses of polyphenols and extracts to the epithelium, often 25
𝜇M (e.g., resveratrol, i.e., ca. 6mg/L) or even up to 100mg/L
for other compounds, reachable perhaps via supplements, but
not easily with regular food items. It may be argued that,
as more long-term effects can normally not be studied with
monolayer cell culture models, higher concentrations may
somewhat counterbalance for shorter exposure times (not
considering additional model limitations such as missing
digestion, form of application, i.e., bioaccessibility), though
again (asmentioned above) effects of polyphenolsmay bewell
concentration dependent.

In conclusion, there is strong evidence from animal trials
and in vitro (cellular) experiments that polyphenols, when
applied in considerable, but still physiologically relevant
doses, do reduce oxidative stress in colonic epithelial cells
and tissues stimulated for oxidative stress/inflammation and
that the mechanism of oxidative stress is, at least in part
related to the transcription factor Nrf-2, influencing further
downstream targets.

3.5. Anti-Inflammatory Aspects

3.5.1. Animal Trials. While antioxidant effects surely do
play a role in the origin and progression of IBD, more
attention has been given to inflammatory aspects, possibly
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as a reduction in inflammation would likely also reduce
ROS, and due to the meanwhile reasonably well under-
stood molecular mechanisms underlying IBD, especially the
involvement of NF-𝜅B and its further downstream targets
(Figure 1). However, also the JAK-STAT (janus kinase and
signal transducer and activator of transcription) pathwaymay
be involved, activated by interleukins/interferons, especially
in cells of the immune system, resulting, for example, in
the activation of apoptotic regulators, such as bcl-XL (b-
cell lymphoma extra-large, a transmembrane molecule in
the mitochondria, acting as a prosurvival protein) of MYC
(encoding for a nuclear phosphoprotein important for cell
cycle progression and apoptosis), or alterations of the p21
antitumor progression gene [147]. A limited number of stud-
ies have included endpoints related to JAK/STAT. Barnett et
al. reported anti-inflammatory activity mediated by multiple
molecular pathways, including PPAR-𝛼 and STAT1, following
administration of 0.6% green tea polyphenols for 12 weeks
to mice [93]. Lychee polyphenols (5mg/kg for 2 weeks)
significantly reduced STAT3 activation in colon tissue ofmice
[91], and also adenoma inhibition was observed (Figure 3).

In addition, the MAPK/ERK (mitogen-activated protein
kinase/extracellular signal-regulated kinase) pathway, where
the phosphorylation of further downstream kinases can
result in the activation of apoptosis or altered cell prolifera-
tion, is also implicated inmany inflammatory related diseases
[146] and has been suggested to result in stimulated cytokine
production by T-cells [148]. However, few studies have
reported MAPK related effects following polyphenol admin-
istration. Some polyphenols have been reported to reduce
MAPK related signalling pathways in animal trials, including
paeonol [149] and genistein [150], while a chalcone derivative
[151] enhanced its activity. In a study by Rosillo et al.
[86], raspberry polyphenols (10–20mg/kg for 10 d) reduced
activation of p38, c-JunN-terminal kinase (JNK), andERK1/2
MAPKs, preventing inhibitory protein I𝜅B-degradation,
inhibiting nuclear translocation of p65 (part of NF-𝜅B).

Many studies have meanwhile been performed on ani-
mal (typically rodent) models of IBD and intervention
with various dietary components, including polyphenol-
rich extracts, but also studies employing pure compounds
(Table 3). Of these pure compounds, particularly ellagic acid
[63, 86], gallic acid [102], naringenin [94], catechin [96], and
EGCG [89] have been investigated and associated with anti-
inflammatory effects. Thus, it appears that, with respect to
anti-inflammatory properties, rather lower molecular weight
polyphenols have attracted attention, as opposed to the more
complex, that is, highermolecular ones which are regarded as
potential prebiotics (see Section 3.5).

However, many extracts and complex food items rich in
polyphenols have also been studied, with a focus on green tea
[84, 85] and grape constituents [90, 95, 100], though many
other food items, including strawberries [87], cranberries
[104], Pepper nigrum [89], sorghum bran [99], and cacao
[105], were also studied. With respect to timing and dosing,
polyphenol concentrations ranged from 0.5 to 100mg/kg
body weight for pure compounds, given over 3 days to 12
weeks, constituting high, but still physiologically relevant
doses.

Both local effects and systemic effects on inflammation
related pathways have been reported. Local effects did include
decreased histopathological scores [58, 90, 100], improved
length of the colon [94] as amarker of reduced severity of IBD
and even reduced weight loss and improved overall survival
[89] and inhibition of various cytokine formations such as
TNF-𝛼 [84, 105], IL-6 [102], IL-10 [101], IL-17 [105], IL-1𝛽
[92, 105], IF-𝛾 [101, 102], often linked to reduced expression
of NF-𝜅B [86, 91, 95], iNOS [90], and COX-2 [86, 102] (as a
prestep to the formation of proinflammatory prostaglandins,
e.g., PGE2) and peroxisome proliferator activated receptor-
(PPAR-) 𝛼 [93], involved in lipid metabolism, in colonic
tissues.

However, reduced cytokine levels in the circulatory
system, including TNF-𝛼 and IL-6 [58], have also been
found. Thus, results are in agreement with the theory
that polyphenols or their degradation products/metabolites
(cleaved aglycones, or glucuronidated and sulfated products)
do act on intracellular signaling cascades in the epithelium
or in infiltrated immune cells such as neutrophils [86] in
the gut, downregulating proinflammatory cytokines, besides
the likelihood that the majority of polyphenols is reexcreted
into the gut lumen [30]. Whether the systemic measured
effects reflect mostly cytokines secreted at the site of the
gut, or whether polyphenols also pose considerably anti-
inflammatory effects at different sites, is not entirely clear.
Since polyphenols have also been reported to reduce inflam-
mation in other chronic inflammation related diseases, such
as diabetes [152], both at least appear to be possible. In a
study by Skyberg et al. [88], it was also verified whether
polyphenols, when given peritoneal, would decrease induced
colitis in mice. Contrarily to apple polyphenols given orally,
no positive effects however were found, highlighting the
importance of oral uptake and direct contact of polyphenols
to the epithelial cells, and/or perhaps the prerequisite of
forming certain degradation products or metabolites during
digestion and/or at the epithelial layer.

The study by Skyberg et al. [88] also highlighted the
involvement of T-cells (chemokine receptor CXCR3 express-
ing TCR𝛼𝛽 cells) for apple polyphenol mediated protection,
as these cells were indispensable for offering protection
against colitis. Previous in vitro studies had already sug-
gested that polyphenols can stimulate natural killer cells
and 𝛾𝛿 T cells (typically found in high abundance in the
mucosa), as these cells can upregulate CD69, CD11b, and IL-
2R proliferation and induce proinflammatory mRNA tran-
scripts [88]. Thus, also specific immunomodulatory aspects
of polyphenols should not be overlooked but have so far
received comparably little attention.This is also underpinned
by studies showing positive effects of polyphenols on toll-
like receptors (TLRs), enhancing the activity of the innate
immune system [153]. Also, the excretion of IgA in rats
fed with extracts of haskap (honeyberry) and aronia fruits
was increased, likewise demonstrating immune-stimulating
effects [154].

3.5.2. Cell Culture Investigations. Though cell culture stud-
ies suffer various drawbacks, such as allowing studying
inflammatory processes only during relatively short-term
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Fecal excretion

Sugar moiety

Polyphenols 
from intestine

Breakdown products:

Various body 
compartments

SCFA
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(i) Anti-
inflammatory

(i) Improved gut
barrier (TEER ↑)

(ii) Growth reduction 
of harmful bacteria 
(pH ↓)

(i) Direct antioxidant properties
(ii) Indirect antioxidant properties: Nrf-2 ↑

(iii) Anti-inflammatory effects (NF-𝜅B ↓, etc.)

Bacteria growth: 
(i) Lactobacilli ↑, Bifidobacteria ↑: xenobiotic degradation ↑?

(ii) Klebsiella ↑, Akkermansia ↑: glucose homeostasis ↑, mucus production ↑
(iii) Clostridiales ↓, Enterobacteriales ↓

Aglycon

Gut barrier, tight junctions ↑:
(i) Occludin, claudin ↑(i) Bioactive: equol. . .

Figure 3: Potential effects of polyphenols on the gut microbiota and possible resulting health effects. SCFA: short-chain fatty acid (butyrate,
propionate, and acetate). TEER: trans-epithelial electrical resistance.

periods, and often lack the complexity of the in vivo epithe-
lium, that is, the interactions between the various cell types
involved in inflammation of the intestine, it is possible to
examine many factors in rather short time periods, yielding
mechanistic insights into the relation of dietary compounds
and inflammatory processes, with or without preceding
digestion.

Employing a triple culture model (with Caco-2/HT-29
MTX cells in the apical and THP-1 like macrophages in the
basolateral compartment) coupled to preceding simulated
gastrointestinal digestion, Kaulmann et al. [67] reported that
digested plum extracts (ca. 1.2 g/L wet weight) were able to
reduce IL-8 production by Caco-2/HT-29 cells, and several
kale extracts reduced IL-6 secretion in THP-1 cells, whichwas
related to reduced NF-𝜅B expression. However, both extracts
rich and poor in polyphenols (and in carotenoids) did exert
positive effects, suggesting that other compounds at least
contributed to the positive effects, such as vitamin C. Romier
et al. [107] investigated a variety of polyphenols and extracts
with respect to inflammatory endpoints when exposed to
Caco-2 cells, finding somewhat ambivalent results. While
chrysin and ellagic acid (50 𝜇M) reduced NF-𝜅B expression,
resveratrol and genistein increased it. Chrysin, ellagic acid,
genistein, and epigallocatechin gallate reduced IL-8 secretion,
while again resveratrol promoted it, pointing out that some
polyphenolsmay show arbitrary effects when ingested at high
concentrations. However, polyphenols did, as inmost studies,
not undergo simulated digestion, which on the other hand
may not have had drastic effects on the compounds inves-
tigated, as these were mostly water soluble (not requiring
solubilisation in form of micelles, except perhaps resveratrol)
and were administered as aglycones.

Another limitation is that colonic fermentation is usually
not coupled to in vitro trials, though possibly strongly
affecting polyphenol profile. The difficulty rests again in the
noncompatibility of the epithelial cells employed and the

bacteria, plus the difficulties to maintain strict anaerobic
conditions. Also, very few studies have included colonic
metabolites. Miene et al. [108] investigated the effect of
quercetin and chlorogenic acid/caffeic acid metabolites
(3,4-dihydroxyphenylacetic acid (ES) and 3-(3,4-dihydrox-
yphenyl)-propionic acid (PS), resp.) on colonic LT97 cells,
finding reduced COX-2 expression. A further difficulty rests
in the fact that many of the colonic metabolites are not
commercially available and therefore remain understudied.

Most cell culture studies have been conducted with pure
polyphenols, including especially curcumin, resveratrol [114],
genistein, chrysin, and EGCG [107], cyanidin-3-glucoside
[112], and catechin, theaflavin, malvidin, cyanidin, and api-
genin [96], though extracts, especially red wine [69, 109],
apple (peel) [111], blueberry [113], and grape [110], have also
been studied. Concentrations of individual compounds, as
stated also above, have ranged from ca. 25 to 100 𝜇M, and of
extracts up to 600 𝜇g/mL, which is considered high but phys-
iologically reachable in the gut. A drawback of most studies,
again, is the missing preceding digestion, which would limit
especially the bioavailability of the more apolar polyphenols,
namely, resveratrol and curcumin, due to missing emul-
sification, that is, solubilisation in mixed micelles. Most
models have included Caco-2 cells or HT-29 cells, whichmay
underestimate the strength of in vivo responses, as immune
cells have mostly not been employed. The majority of these
trials have demonstrated that polyphenols or polyphenol-
rich extracts were able to reduce proinflammatory cytokines,
including typically IL-8 [67, 69, 107, 110, 112], but also PGE-2,
TNF-𝛼, and IL-1𝛽, often both at mRNA expression level and
at protein level, and that this was related to reduced NF-𝜅B
expression (Table 5).

Other studies have focussed on downstream targets of
COX-2. In a study by Serra et al. [112], cyanidin-3-glucose
administered for 24 h at 25 𝜇M reduced PGE-2 expression in
HT-29 cells, possibly as a consequence of influencing COX-2
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expression, which was also detected. Apple peel polyphenols
(250𝜇g/mL) for 24 h also reduced COX-2 activity [111] in
Caco-2 cells.

The fact that also intracellular adhesion molecule-
(ICAM-) 1 was significantly downregulated by, for exam-
ple, red wine polyphenols [109], important for leukocyte
endothelial transmigration, monocyte chemoattractant pro-
tein 1 (MCP-1), and chemokine (C-X-C motif) ligand 1
(CXCL1), also having neutrophil chemoattractant activity,
vascular cell adhesion protein-1 (VCAM-1, promoting adhe-
sion of other immune cells), and platelet endothelial cell
adhesion molecule 1 (PECAM-1, equal to CD31, playing a
role in neutrophil removal), in further studies (Table 4),
also suggests, as do animal studies, that modulation of the
immune system is also a potential important function of
polyphenols. Furthermore, apoptosis may also be influenced,
as shown with soy legume extracts on both T84 colon cells
and macrophages at over 30 𝜇M [106], where inflammation-
related apoptosis in the epithelial cells (induced by peroxyni-
trites) was significantly reduced, while macrophage viability
was compromised.

In conclusion, several cellular trials are in linewith animal
study findings that both polyphenols and polyphenol-rich
products are able to reduce the concentration of proin-
flammatory cytokines, acting via reduced NF-𝜅B expres-
sion and translocation, though additional functions such as
modulation of the immune system, reducing, for example,
leukocyte transmigration, neutrophil attraction, and finally
altered apoptosis, may also play a role.

3.6. Gut Microflora. The importance of the gut microbiota
has recently been highlighted in a study by Schaubeck et al.
[155], where disease associated microbiota was transplanted
in amousemodel, causing CD in the transfectedmice, clearly
demonstrating gut microflora as a causative agent of IBD.

Several studies including cellular, animal, and human
trials have indicated that several polyphenols from fruits or
vegetables may increase the number of potential health ben-
eficial bacteria in the gut [156–158], thus acting as prebiotics.
This in turn is expected to have positive intestinal effects,
including, for example, the formation of SCFA, to enhance
gut barrier properties, and fostering the growth of potentially
less harmful bacteria. Earlier trials in this respect have
shown, for instance, that, in Caco-2 cells, propionate, acetate,
and especially butyrate (2mM) increased the transepithelial
electrical resistance (TEER) by almost 300% [159] after 72 h
of incubation with these SCFAs. As however also DMSO
showed similar effects, it was reasoned that further cell
differentiation played a major role in reducing permeability.
On the other hand, germ-free mice do not develop IBD,
and humans treated with antibiotics appear to result in at
least temporary remission of IBD [15], emphasizing that the
microbiota could act as a double edged sword.

Nevertheless, the question to what extent and via which
mechanisms polyphenols may act as prebiotics is only poorly
comprehended, though the evidence that polyphenols con-
tribute to the number of health beneficial bacteria such as
Lactobacilli and Bifidobacteria is increasing [158, 160], while
suggesting a likewise reduction in orders including potential

pathogenic bacteria such as Clostridiales and Enterobacteri-
ales, and even LPS or toxin producing E. coli strains, such as
O157:H7 [161]. It has also been suggested, based on in vitro
studies, that the effects are rather related to the aglycones
than the glycosides, at least for flavonoids [162], perhaps also
emphasizing the role that bacteria could play in deglycosyla-
tion of the native glycosides. Altering the gut flora can have
percussions on the further degradation of carbohydrates,
including potential probiotics. In an in vitro study by Xue et
al. [163], the plant polyphenols quercetin, catechin, and puer-
arin, when added to the cellular media, downregulated the
ratio of Firmicutes : Bacteroidetes, which altered the degra-
dation of fructooligosaccharides (FOS). Similarly, in a study
with anthocyanin rich strawberry extract [164], the formation
of FOS breakdown products and acidification achieved in the
gut was increased in rat cecal digesta and urine, also empha-
sizing the potential positive effect of additional polyphenols
and their implication in energy metabolism. In addition to
their influence on carbohydrate metabolism, polyphenols
have also been reported to influence lipid and provitamin
metabolism, via their alteration of gut microbiota, and there-
fore could also change human homeostasis [165, 166].

Several in vitro studies have pointed out that polyphenol-
rich extracts, such as from pomegranate, can enhance the
growth of Bifidobacterium and Lactobacillus [167]. Similar
effects in a batch-culture fermentation in vitro model were
observed with coffee with high levels of chlorogenic acid
[168]. Studies in this domain have been impeded by the fact
that many bacteria cannot easily be grown ex vivo, though
models simulating also colonic digestion under realistic,
that is, low oxygen, environmental conditions, such as the
SHIME, have further deepened the understanding of the
interrelation between the diet and the microbiota [169], also
highlighting that polyphenols can provoke a shift of the
microbiota. This included, for example, the growth of Kleb-
siella andAkkermansia spp., with the latter growing especially
in mucus-rich environment, producing SCFA. Particularly
proanthocyanidins, oligomeric flavonoids, rich, for example,
in barks of trees but also in grapes, have been speculated to
foster the growth ofAkkermansia [160], as it increasedmucus
layer thickness, improved glucose homeostasis, and alleviated
metabolic endotoxemia. An additional effect may rest in the
influence Akkermansia appears to exert on branched chain
amino acids (BCAA). A low plasma level of BCAA has been
associated with reduced insulin secretion and lower weight in
obese subjects [170]; however, they may also promote a more
systemic proinflammatory response [171].

In addition to causing a shift toward an alteredmicrobiota
composition, it appears that polyphenols also induce a trans-
formation in bacterial genes toward xenobiotic degradation,
as found in a study on rats receiving blueberry powder for 6
weeks, whereas genes related to BCAA degradation, known
to reduce gut atrophy [172], and those associated with higher
invasiveness were enhanced and reduced, respectively [161],
thus perhaps fostering the deactivation of other harmful
xenobiotic compounds and possibly improving gut barrier
function.

A few in vivo studies, including animals and humans
(see Sections 2 and 3), have confirmed the positive effects
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that polyphenol-rich extracts may exert toward fostering
healthy microflora. In pigs, proanthocyanidins in grape-
seed extract (1%) consumed over 6 d enhanced however
Lachnospiraceae, Clostridiales, Lactobacillus, and Ruminococ-
caceae [173], also showing that effects are surely model
and polyphenol dependent. C57BL/6J mice kept on a high
fat/high sucrose diet receiving either water or cranberry
extract (200 mg/kg) for 8 weeks showed an enhanced popula-
tion ofAkkermansia, in addition to reducing intestinal oxida-
tive stress and inflammation [104]. Similar effects (enhanced
Bacteroidetes/Firmicutes ratio, often associated with less
obese subjects; reduced Bacillus; increased Akkermansia
muciniphila) were also observed when giving resveratrol
(15mg/kg bw.) or quercetin (30mg/kg bw.) to rats for 6
weeks [174], highlighting the effects of pure polyphenols not
associated with dietary fiber. Similarly, administration of a
carbohydrate-free plum or peach extract (430 and 1,270mg
GAE (gallic acid equivalents)/mL, resp.) to obese sugar rats
for 11 weeks resulted in increased abundance of Lactobacillus
and members of Ruminococcaceae, especially in the more
polyphenol-rich plum extract.

In conclusion, several in vitro, animal, and even human
trials have suggested that polyphenols, in physiological doses,
that is, achievable via a diet rich in fruits and vegetables,
or with supplements, over the time-course of a few weeks,
are able to shift the microbiota toward a more presumably
healthy one, with an enhanced population of Bacteroidetes,
producing SCFA, and perhaps being capable of a faster
degradation of certain xenobiotic compounds.

3.7. Epithelium Protection and Other Aspects. In addition
to strengthening intestinal barrier properties via fostering
the growth of health beneficial bacteria (see Section 3.6),
polyphenols have further been proposed to influence directly
the permeability of the mucosa, via acting on the tight junc-
tions, composed especially of occludin and claudin proteins.
In a study by Carrasco-Pozo et al. [175], several polyphenols,
that is, quercetin, epigallocatechin gallate, and resveratrol
(though not rutin), protected tight junction integrity in a
Caco-2 based model, via inhibiting the redistribution of the
zonula occludens- (ZO-) 1 protein induced by indomethacin
and preventing the decreased expression of ZO-1 and
occludin caused by indomethacin, possibly related to the
polyphenol capacity to protect the mitochondria and reduce
ATP depletion. Similarly, in a study employing Ussing cham-
bers and T84 monolayers, polyphenols (ferulic and isoferulic
acid, but not caffeic or p-coumaric acid) reversed the negative
effect of sodium caprate on tight junction functionality
[176], as measured by TEER. This effect was ascribed to the
increased expression of tight junction components of ZO-
1 and claudin-4 transcription and reduced occludin expres-
sion. In a similar study employing T84 cell monolayers, the
negative effects of sodiumcaprate on tight junction associated
genes were counterbalanced by several apple polyphenols
and their presumed intestinal digestion products, including
caffeate, quinic acid, and methyl-p-coumarate [177]. In a
study with Caco-2 cells, quercetin (and its metabolite 3,4-
dihydroxybenzoic acid) enhanced epithelial resistance to
157 (and 119%, resp.), of control TEER values, which was

related to an increased expression rate of claudin-4 [178].
Positive effects on cellular barriers in vitro were also found
following cayenne pepper and paprika exposure (reviewed
by [179]), though these may have contained considerable
amounts of other bioactive compounds, such as vitamin C
and carotenoids.

However, also negative effects on tight junctions have
been reported, for example, when giving ochratoxin together
with polyphenols from (dealcoholised) red wine, via
enhanced intracellular redistribution of claudin-4 [180],
perhaps as a result of increased uptake and/or reduced
excretion and/or metabolism of ochratoxin in the presence
of polyphenols.

These, at least in part, positive findings of polyphenols
are corroborated by animal studies. In a study by Yang et
al. [100], grape seed polyphenols (1% dry weight added to
diet given for 16 weeks) improved claudin-2 protein and
increased barrier forming claudin-1 protein expression in
IL-10 deficient mice, occasionally employed as a model of
IBD. Reduced colonic permeability as measured in everted
colons by a fluorescein dye was found in colitis induced mice
receiving 0.3% naringenin for 9 d in the diet [94]. In a study
on rats, curcumin was able to protect the nephron from the
negative effects of cisplatin, an anticancer drug, improving
stability of tight junctions via enhancing the expression
of adherens junction proteins occludin, claudin-2, and E-
cadherin [181]. Likewise, in a study with rats investigating
neuroprotective effects, subjected to occlusion of the cerebral
artery, receiving green tea polyphenols (400mg/kg and day
for 30 d), decreased mRNA/protein expressions of claudin-5,
occludin, and ZO-1 in microvessels of ischemic tissue were
prevented [182]. Thus, taken together, the results suggest
that polyphenols can improve gene expression related to the
production of proteins required for tight junction integrity,
including possibly claudin-5, occludin, and ZO-1, and that
these effects may not be limited to the gut epithelium only.

An additional effect of barrier protection may also rest in
increasedmucus production or amore stable mucus layer. As
also themucusmay have an important barrier and protection
function, limiting direct contact of potential proinflamma-
tory stimuli with the epithelial cells, mucus production was
likewise investigated in several studies. Rosillo et al. [86]
scrutinized the effect of ellagic acid (10–20mg/kg) in a rat
model with TBNS induced colitis. Among others, enhanced
mucus production by goblet cells in the colon mucosa
was found. Likewise, B proanthocyanidin-rich extracts were
suggested to increase mucus secretion, in turn creating a
suitable environment for Akkermansia, which may further
foster SCFA production [80]. Dietary polyphenols have also
been stated to be able to cross-link mucin, enhancing the
viscoelastic modulus of the mucus layer [183], stabilizing the
mucus layer in the intestine [184]. Nevertheless, more studies
in this domain are required.

4. Potential Arbitrary Effects of
Polyphenols or Absence of Effects

With respect to at least IBD, despite the fact that there
is much evidence accumulating emphasizing the potential
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health benefits of polyphenols, it should not be overlooked
that polyphenols may also have arbitrary effects on the
gut epithelium and the host in general. In addition, there
is still a general paucity with respect to robust human
trials (i.e., placebo controlled randomized intervention trials)
clearly demonstrating positive health effects of polyphenols
regarding IBD development and/or progression. In addition,
several studies have also cast some doubts that polyphenols,
at least alone, are truly the (sole) bioactive agents. For
example, in a study with plums and cabbages with con-
trasting polyphenol and carotenoid profile, concentrations
of these phytochemicals were not related to higher anti-
inflammatory bioactivity in an in vitromodel of digestion and
inflammation, suggesting that other bioactive compounds,
including dietary fiber or vitamin C, may also contribute to
the observed effects regarding, for example, cytokine (IL-
8, IL-6) reduction, NF-𝜅B, and Nrf-2 translocation [67].
Finally, it should also be considered that many trials have
been conducted in vitro with native components, without
preceding digestion and colonic fermentation, which are not
likely to be present in the colon under in vivo conditions,
and not at the rather high concentrations often employed.
Furthermore, polyphenols may, in response to dose and
nature, enact negative effects via the following pathways:

(a) They could act as prooxidants, especially when given
isolated and in high doses.

(b) They may perturb absorption of other bioactive com-
pounds, such as drugs or other phytochemicals.

(c) They may interact and/or saturate pathways related
to phase I/II metabolism, likewise increasing the
concentration of otherwise more highly metabolised
bioactive compounds.

(d) They may have other negative effects following bacte-
rial metabolism.

With respect to acting as prooxidants, it has been highlighted
that especially compounds with several free hydroxyl groups,
such as flavonoids, can, in the presence of free metal ions
such as copper or iron, released, for example, when tissue
is damaged (expected in subjects with IBD), act as proox-
idants, via the Fenton reaction (producing peroxides), as
reviewed previously [16, 185]. For some compounds, such
as for quercetin, adverse effects at higher concentrations
have indeed been shown, especially if reduced glutathione
is already low and ROS level already high, as the oxidized
quercetin-quinone product will then react with other thiol
groups (e.g., from enzymes) [186]. Rat feeding experiments
with quercetin have corroborated these results, showing
decreased hepatic glutathione concentration and glutathione
reductase when receiving 20mg quercetin/day for up to 6
weeks [187]. Thus, type and dosing of polyphenols should be
carefully considered for subjects already showing oxidative
stress, such as for smokers, but maybe also for IBD patients.
It should also not be overlooked that the administration of
other antioxidants, such as beta-carotene, though beingmuch
more apolar, has been suggested to cause detrimental health
effects in human meta-analyses [188].

As stated, it has to be considered that polyphenols may
also block certain efflux transporters in the gut epithelium
[30] and may increase the uptake of toxicological relevant
compounds, therefore constituting a double edged sword.
For example, in a study with Caco-2 cells, dealcoholised red
wine aggravated the permeability of the monolayer when
ochratoxin was also given [180], even though a recent study
on rats did not detect significantly altered toxicokinetics
in rats receiving both ochratoxin and quercetin [189]. The
potential interactions between secondary plant compounds
and other xenobiotics have been highlighted in an earlier
review [190].

Similarly, phenol rich matrices such as grapefruit juice
or green tea extracts have been hypothesized, due to their
high content of polyphenols (naringenin and catechins,
resp.), to reduce certain phase II metabolising enzymes
(e.g., cytochrome P-450 (CYP) 3A4 isoenzyme), increasing
the concentrations of unmetabolized drugs such as statins
or antihistamines [191, 192], though they may in addition
also reduce efflux-transporter activity such as P-gp, likewise
increasing their apparent (absorbed) dose. The same mecha-
nism has been suggested to contribute to high bioavailability
of curcuminoids when piperidine (present in, e.g., black
pepper) is simultaneously administered [193].

Finally, bacterial metabolites of polyphenols have been
reported to also have potential negative effects. Follow-
ing quercetin and rutin metabolism, the produced 3,4-
dihydrophenylacetic acid (DOPAC), which was reported
to show anticancer and anti-inflammatory properties, may
also inhibit mitochondrial respiration, though this has been
rather shown for brain mitochondria [156], nevertheless also
suggesting that the therapeutic window may be limited,
and that higher concentrations of certain compounds or
metabolites could cause enhanced cellular damage. Other
compounds, including resveratrol and genistein, have, when
administered to cell models at high but physiological con-
centrations (50𝜇M), enhancedNF-𝜅B expression, suggesting
proinflammatory behaviour.

5. Conclusions

Many animal and in vitro (cellular) experiments have shown
and emphasized positive effects of polyphenol-rich plants,
their extracts, and also individual compounds, on amelio-
rating the severity and progression of IBD. It appears that
polyphenols may not be the sole constituents with health
beneficial properties in extracts or more complex matrices,
but that other compounds, such as dietary fiber, or vitamin C,
may also have certain effects. Nevertheless, it appears likely
that, by themselves, polyphenols can exert positive effects,
reducing oxidative stress caused by or aggravated by infil-
trating neutrophils and macrophages, and are able to locally
reduce inflammation, most likely via acting on molecular
targets such as NF-𝜅B (related to inflammation) and Nrf-
2 (related to oxidative stress), with the latter mechanism
requiring cellular uptake into the epithelium. In addition,
several studies have suggested prebiotic like effects, fostering
the growth of healthy microflora (e.g., Bacteroidetes), which
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may have anti-inflammatory effects, for example, via SCFA
production, or aiding in stabilizing barrier properties, which
may also occur via direct effects on claudins and occludins or,
alternatively, on the mucus layer.

Nevertheless, administering high doses of polyphenols
may also pose a certain risk to subjects already suffering from
oxidative stress and inflammation, as polyphenols could also
act as prooxidants, perhaps especially when administered in
high individual doses. Finally, due to their efflux-altering
properties and effects on various CYPmetabolising enzymes,
interactions with drugs and other xenobiotics should be
carefully considered. In addition to more sophisticated cellu-
lar models and enhanced commercial availability of colonic
metabolites, more human trials are needed to confirm that
polyphenols could in fact constitute a preventive strategy
and/or supplementary treatment for subjects suffering from
IBD and whether individual polyphenols or rather complex
mixtures such as extracts are more potent and promising in
order to ameliorate this ailment.
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nols and inflammatory markers of cardiovascular disease,”
Nutrients, vol. 6, no. 2, pp. 844–880, 2014.

[50] B. Kim, J. E. Kim, B. Choi, and H. Kim, “Anti-inflammatory
effects of water chestnut extract on cytokine responses via
nuclear factor-𝜅b-signaling pathway,”Biomolecules&Therapeu-
tics, vol. 23, no. 1, pp. 90–97, 2015.

[51] E. Higginbotham and P. R. Taub, “Cardiovascular benefits of
dark chocolate?” Current Treatment Options in Cardiovascular
Medicine, vol. 17, article 54, 2015.

[52] L. Chanudom and J. Tangpong, “Anti-inflammation property
of Syzygium cumini (L.) Skeels on indomethacin-induced acute
gastric ulceration,” Gastroenterology Research and Practice, vol.
2015, Article ID 343642, 12 pages, 2015.

[53] A. B.Cohen,D. Lee,M.D. Long et al., “Dietary patterns and self-
reported associations of diet with symptoms of inflammatory
bowel disease,”Digestive Diseases and Sciences, vol. 58, no. 5, pp.
1322–1328, 2013.

[54] I. A. Ludwig, M. N. Clifford, M. E. J. Lean, H. Ashihara, and A.
Crozier, “Coffee: biochemistry and potential impact on health,”
Food & Function, vol. 5, no. 8, pp. 1695–1717, 2014.

[55] C. Danciu, L. Vlaia, F. Fetea et al., “Evaluation of phenolic
profile, antioxidant and anticancer potential of two main
representants of Zingiberaceae family against B164A5 murine
melanoma cells,” Biological Research, vol. 48, article 1, 2015.

[56] M. S. Baliga, N. Joseph, M. V. Venkataranganna, A. Saxena, V.
Ponemone, and R. Fayad, “Curcumin, an active component of
turmeric in the prevention and treatment of ulcerative colitis:
preclinical and clinical observations,” Food & Function, vol. 3,
no. 11, pp. 1109–1117, 2012.



Oxidative Medicine and Cellular Longevity 25

[57] A. L. de la Garza, U. Etxeberria, A. Haslberger, E. Aumueller,
J. A. Mart́ınez, and F. I. Milagro, “Helichrysum and grapefruit
extracts boost weight loss in overweight rats reducing inflam-
mation,” Journal of Medicinal Food, vol. 18, no. 8, pp. 890–898,
2015.

[58] H. S.Oz, T. Chen, andW. J. S. deVilliers, “Green tea polyphenols
and sulfasalazine have parallel anti-inflammatory properties in
colitis models,” Frontiers in Immunology, vol. 4, article 132, 2013.

[59] L. Schwingshackl, M. Christoph, and G. Hoffmann, “Effects
of olive oil on markers of inflammation and endothelial
function—a systematic review and meta-analysis,” Nutrients,
vol. 7, no. 9, pp. 7651–7675, 2015.

[60] H.-Y. Jang, S.-M. Kim, J.-E. Yuk et al., “Capsicum annuum L.
methanolic extract inhibits ovalbumin-induced airway inflam-
mation and oxidative stress in a mouse model of asthma,”
Journal of Medicinal Food, vol. 14, no. 10, pp. 1144–1151, 2011.

[61] Z. Sun, H. Wang, J. Wang, L. Zhou, and P. Yang, “Chemical
composition and anti-inflammatory, cytotoxic and antioxidant
activities of essential oil from leaves of Mentha piperita grown
in China,” PLoS ONE, vol. 9, no. 12, Article ID e114767, 2014.

[62] L. Rojanathammanee, K. L. Puig, and C. K. Combs,
“Pomegranate polyphenols and extract inhibit nuclear factor of
activated T-cell activity and microglial activation in vitro and
inatransgenic mouse model of Alzheimer disease,” Journal of
Nutrition, vol. 143, no. 5, pp. 597–605, 2013.

[63] M. A. Rosillo, M. Sánchez-Hidalgo, A. Cárdeno et al., “Dietary
supplementation of an ellagic acid-enriched pomegranate
extract attenuates chronic colonic inflammation in rats,” Phar-
macological Research, vol. 66, no. 3, pp. 235–242, 2012.

[64] H. Deußer, C. Guignard, L. Hoffmann, and D. Evers, “Polyphe-
nol and glycoalkaloid contents in potato cultivars grown in
Luxembourg,” Food Chemistry, vol. 135, no. 4, pp. 2814–2824,
2012.

[65] V. Iablokov, B. C. Sydora, R. Foshaug et al., “Naturally occurring
glycoalkaloids in potatoes aggravate intestinal inflammation in
two mouse models of inflammatory bowel disease,” Digestive
Diseases and Sciences, vol. 55, no. 11, pp. 3078–3085, 2010.

[66] Z.-C. Zhang, G.-H. Su, C.-L. Luo et al., “Effects of anthocyanins
from purple sweet potato (Ipomoea batatas L. cultivar Eshu No.
8) on the serum uric acid level and xanthine oxidase activity in
hyperuricemicmice,” Food and Function, vol. 6, no. 9, pp. 3045–
3055, 2015.

[67] A. Kaulmann, S. Legay, Y. Schneider, L. Hoffmann, and T. Bohn,
“Inflammation related responses of intestinal cells to plum and
cabbage digesta with differential carotenoid and polyphenol
profiles following simulated gastrointestinal digestion,”Molecu-
lar Nutrition & Food Research, vol. 60, no. 5, pp. 992–1005, 2016.

[68] S. Hooshmand, A. Kumar, J. Y. Zhang, S. A. Johnson, S. C.
Chai, and B. H. Arjmandi, “Evidence for anti-inflammatory
and antioxidative properties of dried plum polyphenols in
macrophage RAW 264.7 cells,” Food & Function, vol. 6, no. 5,
pp. 1719–1725, 2015.

[69] C. Nunes, E. Ferreira, V. Freitas, L. Almeida, R. M. Barbosa, and
J. Laranjinha, “Intestinal anti-inflammatory activity of red wine
extract: unveiling the mechanisms in colonic epithelial cells,”
Food & Function, vol. 4, no. 3, pp. 373–383, 2013.

[70] L. Helm and I. A. Macdonald, “Impact of beverage intake on
metabolic and cardiovascular health,”Nutrition Reviews, vol. 73,
supplement 2, pp. 120–129, 2015.

[71] H. Tezuka and S. Imai, “Immunomodulatory effects of soybeans
and processed soy food compounds,” Recent Patents on Food,
Nutrition and Agriculture, vol. 7, no. 2, pp. 92–99, 2015.
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