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Abstract: The advantage of low resistivity and inactive binders makes binder-free electrode an
excellent candidate for high-performance energy devices. A simple hydrothermal method was used
to fabricate M11(HPO3)8(OH)6 (M: Ni and Co) (MHP) arrays combined with activated carbon fabric
(ACF) without binder. The structures of MHP can be easily tuned from bouquets to nano-sheets by
the concentration of NaH2PO2. The MHP/ACF composite materials with different structures showed
the typical battery-type characteristic of anodic electrodes. In a three-electrode cell configuration,
the MHP nano-sheet arrays/ACF composite has a higher capacity, of 1254 F/g, at a scan rate of
10 mA/cm2 and shows better cycling stability: 84.3% remaining specific capacity after 1000 cycles of
charge-discharge measurement. The composite is highly flexible, with almost the same electrochemi-
cal performance under stretching mode. The MHP/ACF composite@ACF hybrid supercapacitor can
deliver the highest energy density, of 34.1 Wh·kg−1, and a power density of 722 W·kg−1 at 1 A·g−1.
As indicated by the results, MHP/ACF composite materials are excellent binder-free electrodes,
candidates for flexible high-performance hybrid super-capacitor devices.

Keywords: nickel-cobalt; synthetic conditions; nanostructure; flexible electrode; hybrid super-capacitor

1. Introduction

In recent years, high-efficiency energy-storage systems and devices (photovoltaic
devices, lithium ionic batteries, and other renewable energy-storage systems, etc.) have
attracted lots of attention. In particular, electrochemical super-capacitors (ESCS) have
shown great potential for energy-storage system. They have the advantages of a high charge
and discharge rate, excellent stability, high power density, and so on [1–5]. Transition-
metal-based compounds have been taken as promising materials for energy-storage, due
to the advantages of low cost and high electrochemical activity [6–8].

Great efforts have been dedicated to proving that bi-metallic compounds have better
energy storage performance [9–11]. It is reported that NiCo2O4 possesses an electronic con-
ductivity that is higher than that of a single component metal oxide by at least two orders
of magnitude [12]. Transition metal phosphites are a series of materials first reported in
1993, considered to have potential application values in many fields, like ion-exchange and
catalysis, due to their open-framework structures [13]. Many groups reported the prepa-
ration of transition metal phosphites with certain morphologies, such as NiHPO3·H2O
nano-needle bundles, Co11(HPO3)8(OH)6 with flower-like structures, or Ni11(HPO3)8(OH)6
nano-rods [14–16]. However, a simple strategy for the synthesis of bi-metallic phosphites
is still a challenge. Furthermore, the preparation of transition metal phosphite arrays on a
substrate is a new challenge.
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Ni/Co phosphites nano-particles on conductive substrates such as carbon fabric,
graphene, and carbon nanotube were reported to have a superior electrochemical perfor-
mance [17,18]. Many reports considered that an ordered 1D nanostructure is particularly
favored as an ideal structure for electrode materials because of its fast ion diffusion ca-
pability and large surface area [19]. In this work, Ni/Co phosphite (MHP, M = Co + Ni)
arrays are designed to be deposited on activated carbon fabrics (ACF) to form a composite
material. Compared with traditional metal-foil based material, ACF has the advantages
of low cost, excellent electrical conductivity, and large specific surface area, which make
it one of the most appreciated substrates for self-supporting electrochemical active mate-
rials. Furthermore, ACF’s flexibility is suitable for flexible electronic devices [20,21]. As
reported, the performance of a micro/nano-structured super-capacitor highly depends on
the size, shape, and distribution of particles [22,23]. So far, it is still a great challenge for
the morphology tailoring of MHP arrays on ACF substrates.

Herein, MHP arrays were synthesized on ACF by a simple hydrothermal method,
which, to our knowledge, has not been reported by other research groups. It is found that
the morphology of MHP can be easily tuned from bouquet-like to nano-sheet-like by con-
trolling the concentration of the reactants. Compared with the conventional electrode, the
binder-free MHP arrays/ACF composite electrode exhibits an excellent electrochemical per-
formance. The MHP nano-sheet arrays/ACF electrode has a specific capacity of 1254 F/g
at 10 mA/cm2 and a 84.3% remaining specific capacity after 1000 cycles. The MHP/ACF
composite@ACF hybrid supercapacitor exhibits an energy density of 34.1 Wh·kg−1 and a
power density of 722 W·kg−1 at 1 A·g−1.

2. Materials and Methods
2.1. Synthesis of Carbon Fabric (ACF)

100% cotton fabric was purchased from the market (Hangzhou, Zhejiang, China). It
was cleaned and soaked in 1 M NaF solution at 75 ◦C for 2 h. Then, the cotton fabric was
dried and carbonized at high temperature in a tube furnace in argon atmosphere. The
heating rate was set as 3 ◦C·min−1. The temperature was increased from room temperature
to 350 ◦C for 30 min and then increased to 1000 ◦C for 1 h. The carbonized cotton fabric
was cleaned and dried to achieve ACF [24].

2.2. Synthesis of MHP/ACF Composite Electrode

MHP/ACF composites were prepared by a one-step hydrothermal method. One
millimole Ni(NO3)2·6H2O, 1 mmol Co(NO3)2·6H2O, and 2 or 4 mmol NaH2PO2·H2O were
dissolved in 10 mL deionized water/DMAC (dimethylacetamide) (1:1). After 20 min of
ultra-sonication (KH5200E ultrasonic cleaner, Hechuang Ultrasonic Instrument Co., Ltd.,
Kunshan, Jiangsu, China), the solution was put into a stainless steel autoclave (25 mL). A
1 cm × 1 cm ACF fabric was placed in the solution. The autoclave was heated to 160 ◦C
for 16 h. After the autoclaves cooled down to room temperature, the ACF with active
substance was taken out, cleaned, and then dried at 60 ◦C. MHP/ACF composites with
different morphologies were achieved: the bouquet arrays (2 mmol NaH2PO2·H2O) and
the nano-sheet arrays (4 mmol NaH2PO2·H2O). The weight load density of the electrodes
was 0.017 g/cm2 (bouquet arrays) and 0.018 g/cm2 (nano-sheet arrays), respectively.

2.3. Characterizations

The crystal structure of as-prepared samples was performed on a Burke D8 X-ray
diffractometer with CuKα irradiation (λ: 0.154 nm). The elemental analysis was studied by
EDS (electron dispersive spectroscopy). SEM (scanning electron microscopy) (ULTRA 55,
Carl Zeiss SMT Pte Ltd., Germany) was used to characterize the morphology, crystal size,
and intrinsic structure of all samples. A tensile test was conducted by an INSTRON 3363
electronic universal material testing machine (Xusai Instrument Co., Ltd., Shanghai, China),
with a gauge length of 40 mm and a loading speed at 2 mm/min, respectively, along a
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90◦ direction. The samples for the tensile test were cut with 15 mm in length and 10 mm
in width.

2.4. Electrochemical Measurements

A CHI660A electrochemical workstation was used for the galvanostatic charge-
discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy
(EIS) measurements. A voltage of 5 mV AC (alternating current) was applied for the
EIS measurements (frequency range: 0.01 Hz to 100 kHz). The electrochemical measure-
ments of MHP/ACF composites electrodes were performed in a three-electrode cell (WE:
MHP/ACF composites electrode; CE: a platinum foil; RE: Ag/AgCl/saturated KCl). We
used 3 M KOH as electrolyte solution. For the hybrid device, the MHP/ACF composite
was considered as the positive and the ACF as negative electrode, respectively. We used
1 M KOH as electrolyte.

3. Results

As shown in Figure 1, samples with different amounts of NaH2PO2·H2O have different
morphologies. The uniform bouquet-like morphology in Figure 1a was achieved by the
addition of 2 mmol of NaH2PO2·H2O. The bouquet-like arrays grow radially on the ACF
surface with 1–2 µm in length and about 500 nm in diameter. Each bundle of bouquet
consists of several rods. Figure 1b shows the homogeneous nano-sheet morphology
achieved by the addition of 4 mmol of NaH2PO2·H2O. The sheets are about 1–2 µm in
width and 50 nm in thickness. The cross-section images in Figure 1c,d show that both
arrays grew vertically on the surface of ACF.
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Figure 1. Surface morphology of as-prepared samples: (a) MHP bouquet arrays/ACF (the inset
figure is magnified image of given sample); (b) MHP nano-sheet arrays/ACF (the inset figure is
magnified image of given sample); (c) the image of MHP bouquet arrays/ACF’s cross section; (d) the
image of MHP nano-sheet arrays/ACF’s cross section.

As shown, the morphology of MHP highly depends on the concentration of
NaH2PO2·H2O. DMAC in solution provides a basic environment to favor the dismutation
of H2PO2

− ions to HPO3
2− ions, which may affect the crystal growth by coordinating

with Ni2+ ions and Co2+ ions [25]. When a small amount of NaH2PO2·H2O is used, a
low concentration of the HPO3

2− ion results in a slow growth of the crystal nucleus and
favors the formation of a bouquet-like morphology. As the amount of NaH2PO2·H2O is
increased, the larger amount of HPO3

2− ions might result in more nuclei and a higher
crystal growth rate, which, in turn, causes the formation of nano-sheets. The bouquet or
nano-sheet structure may create a sufficient contact area between the MHP/ACF electrode
and electrolyte, which may lead to an excellent electrochemical performance [26].

As shown in Figure 2, XRD patterns reveal the crystal structures of as-prepared sam-
ples. It can be seen that both bouquet-like and nano-sheet like-arrays have similar diffrac-
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tion patterns, which is in agreement with the monoclinic structure of Co11(HPO3)8(OH)6
(JCPDS NO. 81-1064) and Ni11(HPO3)8(OH)6 (JCPDS NO. 81-1065). The slight shift of
diffraction peaks might be caused by the co-existence of Co and Ni, which indicates the
formation of a monoclinic CoxNi11−x(HPO3)8(OH)6 phase.
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Figure 2. XRD patterns of as-prepared samples of MHP arrays on ACF.

The elemental composition and distribution of MHP/ACF composites were analyzed
by EDS. As shown in Figure 3a,b, the elements Ni, Co, O, and P uniformly distribute in
the two samples with different morphologies. Combined with the XRD (x-ray diffraction)
patterns, it can be inferred that the samples are MHP, with Ni and Co replacing each other
at the same lattice position. The element carbon comes from the ACF substrates. The
(Co + Ni)/P molar ratios of bouquet arrays and nano-sheet arrays are 1.5 and 1.4, which
are close to the atomic ratio of M11(HPO3)8(OH)6 (11:8 = 1.375).
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The electrochemical behaviors of MHP/ACF composites were studied by CV, GCD,
and EIS. CV curves of MHP/ACF composites with different morphologies are given in
Figure 4a,b. The oxidation peak and the reduction peak gradually shift to right and left
with the increasing scan rate, respectively. The shift of redox peaks is mainly due to the
fact that the internal resistance of the active material increases as the scan rates increase.
In Figure 4c, the integrated area of the CV curve of MHP nano-sheet arrays/ACF sample
is larger than that of MHP bouquet arrays/ACF sample. This implies that the composite
electrode composed of nano-sheet arrays has a better electrochemical performance. The
redox peaks correspond to the Co2+/Co3+ and Ni2+/Ni3+ transitions in the MHP nano-
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structure, which demonstrates the cell-type behavior of cobalt/nickel phosphite. The redox
reactions might be as follows [13]:

CoII
11(HPO3)8(OH)6 + OH− ↔ CoIII

11(HPO3)8(OH)7 + e−

NiII11(HPO3)8(OH)6 + OH− ↔ NiIII11(HPO3)8(OH)7 + e−
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GCD curves are shown in Figure 5. The plateau of the GCD curve corresponds to the
redox peak of the CV curve. The specific capacity was calculated according to following
equations [27]:

Cs =
2is ×

∫
Vdt

V/
Vf
Vi

(1)

Cm =
Cs × S

m
(2)
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In Equation (1), CS (F·cm−2) represents the real special capacitance, iS = I/S (A·cm−2)
is the current density, I (A) is the current, S (cm2) is the area of working electrode,

∫
Vdt

(V·s) is the integral current area, V (V) is the potential with initial and final values of Vi (V)
and Vf (V), respectively.

In Equation (2), Cm (F·g−1) represents the galvanostatic specific capacitance, and m (g)
is the mass loading of the working electrode.

The calculated specific capacity is given in Figure 5c. As current density increases,
the ions in the electrolytes do not have enough time to diffuse into the electrode material
and the redox reaction does not occur sufficiently. In addition, the overpotential caused
by physical resistance and electrochemical polarization becomes larger, which causes a
larger actual difference between the charging state of the electrode and the terminal voltage
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and leads to a reduction in capacity. As a result, increasing current density leads to a
rapid decrease of specific capacity with capacity retention of 31.7% (nano-sheet arrays)
and 28.5% (bouquet arrays), respectively. The GCD results demonstrate that composite
electrodes with nanosheet arrays have a better electrochemical performance. However,
this electrode material has a poor electrochemical performance in a high current density
operation environment.

The kinetic analysis is performed to study the relationship between the current at
a particular potential and scan rate. The relation of ν (scan rate) and ip (peak current) is
studied by Equation (3) [28,29] to analyze the mechanism of charge storage and the reaction
dynamics of the composite electrode:

ip = aνb (3)

According to Equation (3), b is the slope of the plot log(ip) vs. log(ν). The property of
charge storage process is surface-limited (capacitive type) or diffusion-controlled (battery
type) as b is equal to 1 or 0.5, respectively. The MHP/ACF electrode with bouquet arrays
has b values of 0.528 and 0.519 for anodic and cathodic scans, as shown in Figure 6a. The
MHP/ACF electrode with nano-sheet arrays has b values of 0.381 and 0.388, as shown in
Figure 6d. Apparently, both composite electrodes show battery-type behavior [30].
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As battery-type materials with nanostructure generally have a large surface volume
ratio, certain non-diffusion-related charge storage processes should be observed, especially
at high scanning rates. Therefore, iV (current response at given potential) may be expressed
by Equation (4) [31,32]:

iV= k1ν + k2ν1/2 (4)

where k1ν refers to surface-confined current and k2ν1/2 refers to diffusion-controlled cur-
rent. Herein, k1 and k2 can be achieved from the slope of the i-v curve and i-v1/2curve,
respectively. Then, the plot of k1ν as a function of v (potential) can be drawn by fitting
the CV curve. The blue region in Figure 6b shows the fitting result for the MHP/ACF
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composite with bouquet arrays at a scan rate of 5 mV/s. The ratio of the blue region area
to the enclosed area of the CV curve suggests that the surface constraint contribution to
the total capacity is 42.51%. The surface constraint contribution increases with the increas-
ing scan rate, as shown in Figure 6c, which indicates that the charge-storage process is
dominated by surface/near-surface related behavior at a high scanning rate [33]. While as
shown in Figure 6e,f, the MHP/ACF composite with nano-sheet arrays exhibits a relatively
lower surface constraint contribution. This may be the reason for its higher performance of
charge storage.

EIS characterization was used to study the impedance performance of the MHP/ACF
composite, and the results are shown in Figure 7a. As shown, the linear plots in the
low frequency region are related to the diffusion resistance (Warburg impedance), which
represents the diffusion of electrolyte in the porous structure of the electrode material and
the diffusion of protons in the substrate material. Nano-sheet array electrode materials
have a high curve slope and good kinetics, which are more favorable for ion transport [34].
The intersection of the curves at the real part Z’(Rs) in the high frequency region shows the
combined resistance of contact resistance, electrolyte ion resistance, and electrode material
intrinsic resistance between the active material and the collector interface. The small Rs
of nano-sheet arrays and bouquet arrays electrode materials indicates the low intrinsic
resistance of the electrode material and the low contact resistance. Similarly, the charge
transfer resistance (Rct) of the nano-sheet arrays (2.8 Ω) and nano-bouquet arrays (3.2 Ω)
is also small, which indicates that the active material grows directly on the surface of
the substrate material with a low interfacial charge transfer resistance [35]. As indicated
by the results in Figure 7b, the MHP/ACF composite with nano-sheet arrays exhibits a
better cycling stability: 84.3% remaining specific capacity after 1000 cycles (82.4% for the
bouquet-like arrays). After long cycling, repeated volume deformation generates internal
osmotic stress leading to active material detachment; the coalescence of nanoparticles and
the gradual collapse of the array structure may be the reasons for the reduction of active
sites and the deterioration of electrochemical properties [36].
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(current density: 10 mA·cm−2).

The obtained MHP/ACF composite is highly flexible, and can be stretched, twisted,
and rolled up repeatedly as shown in the inset of Figure 8a and Figure S1 (Supplementary
Materials). A tensile test was further carried out to test the stress-strain deformation
behavior of the composite. The shape of the stress–strain curve of the MHP/ACF composite
in Figure 8a is similar to our previous work [24], with a maximum load of 3.1 MPa and
a considerable strain of more than 5%. The electrochemical properties of the MHP/ACF
composites with nano-sheet arrays with 20% stretching and without stretching are shown
in Figure 8b. Almost the same electrochemical performance was achieved in tensile mode,
which indicates the potential applications of the MHP/ACF composite as a flexible electrode.
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Figure 8. (a) Stress-strain curves of the MHP nano-sheet arrays/ACF composite (the inset figure
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electrode before and after stretching.

A two-electrode electrochemical cell was fabricated to fully explore the electrochemical
performance of the MHP nano-sheet arrays/ACF composite. The positive electrode was
an MHP nano-sheet arrays/ACF composite, the negative electrode was ACF, and the
electrolyte was 1 M KOH. The CV curves of the hybrid device at different scan rates, from
10 to 50 mV·s−1, are shown in Figure 9a. All the curves display a quasi-rectangular profile
as a result of a collective influence of EDLC (electric double layer capacitor) (ACF) and
faradaic (MHP) activities, which is a distinctive performance of the hybrid supercapacitor.
GCD curves at different specific currents, from 1 to 10 A·cm−1, are shown in Figure 9b.
The specific energy density and the power density were calculated from the GCD curves
according to the following equations [37]:

Ed =
i

3.6× (m+ + m−)

∫
Vdt (5)

Pd= 3600 × Ed
∆t

(6)
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In Equations (5) and (6), Ed is the specific energy density (Wh·kg−1), Pd is the specific
power density (W·kg−1), i is the applied current (mA), m is the total mass of the active
material (mg),

∫
Vdt is the area under the discharge curve of the device, and ∆t is the

discharge time (s). Considering that ACF also contributes to electronic storage, it is regarded
as an active material, so that m+ is the mass of the MHP/ACF composite electrode, which
is 0.0753 g; and m- is the mass of the ACF used as negative electrode, which is 0.0500 g.
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The Ragone plot of the MHP/ACF@ACF hybrid device and some results from other
works are listed in Figure 9c. The MHP/ACF@ACF hybrid device recorded the highest
energy density, of 34.1 Wh·kg−1, and a power density of 722 W·kg−1 at 1 A·g−1, which is
similar or superior to those reported results [13,38–43].

4. Conclusions

In summary, a simple hydrothermal method was adopted to synthesize MHP/ACF
composite materials with tunable array-structure for the applications of flexible high-
performance super-capacitors. The structure of the MHP/ACF composite material could
be simply tuned from bouquet-like to nano-sheet-like by the concentration of NaH2PO2.
MHP/ACF composite materials, especially the nano-sheet-like MHP/ACF electrode, show
an excellent electrochemical performance. The nano-sheet like MHP/ACF electrode has
a higher specific capacity (1254 F·g−1, 10 mA·cm−2) and better long-term stability (84.3%
of capacity maintained after 1000 cycles). The hybrid electrochemical capacitor device
fabricated with MHP nano-sheet arrays/ACF as the positive electrode and ACF as the
negative electrode attained an energy density of 34.1 Wh·kg−1 and a power density a
of 722 W·kg−1 at 1 A·g−1, respectively. The unique nanostructure—nano-sheets directly
grown on the activated carbon fabric (ACF), which has no additives and binders with
higher specific surface areas and electrical conductivity—might be the major factor for
the excellent electrochemical performance. As indicated by the results, the MHP/ACF
composite material with a tunable nanostructure might be a promising candidate material
for a high-performance flexible electrode for energy-storage technology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11071649/s1, Figure S1: Digital images of the MHP/ACT composite under stretching,
wrenching.
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