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Abstract

Ca2+ influx via GluR2-lacking Ca2+-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic
efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage
of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate
the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus.
Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms
of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols,
including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated
form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of
plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on
postsynaptic Ca2+ ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key
protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the
induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and
staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent
LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and
U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light
chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that
distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-
AMPARs are important facilitators of synaptic plasticity in the brain.
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Introduction

The a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) subtype glutamate receptors are the principal mediators

of the fast excitatory synaptic transmission in the mammalian CNS

and are important for the expression of various forms of long-

lasting synaptic plasticity, including long-term potentition (LTP)

[1–3]. AMPA receptors (AMPARs) are heteromeric complexes

assembled from four distinct subunits (GluR1–4), of which GluR2

is particularly interesting because it dictates a number of important

biophysical and biochemical properties [4–7]. Hence, AMPARs

lacking edited GluR2 are Ca2+ permeable (CP-AMPAR) with

higher conductance and inwardly rectifying I/V relationships.

These GluR2-lacking CP-AMPARs are widely expressed in the

CNS (including interneurons, stellate and glial cells) where they can

contribute to synaptic transmission and changes in synaptic efficacy

[8] as well as induce multiple forms of synaptic plasticity, including

LTP [9–15]. Subunit composition switching from GluR2-lacking to

GluR2-containing AMPARs was demonstrated as fundamental to

plasticity in cerebellar stellate cells [13] and the ventral tegmental

area [16]. CP-AMPARs were also shown to mediate the induction

and expression of LTP at neuron-glia synapses [17]. At interneuron

synapses, CP-AMPARs are believed to play a crucial role in an

unusual form of anti-Hebbian LTP [18].

Recent studies have also indicated that CP-AMPARs are

expressed in cortical and hippocampal pyramidal neurons [8]. At

developing hippocampal mossy fiber-pyramidal synapses, the

selective loss of CP-AMPARs underlies a depolarization-induced

form of LTD [19]. Additionally, mossy fiber-interneuron synapses

were shown to demonstrate concomitant forms of LTD from

either NMDARs or CP-AMPARs that were dependent on Ca2+

influx [20], suggesting that both types of calcium permeable

receptors could work in parallel to collectively contribute to

synaptic plasticity in regions where they coexist. Of particular

relevance to the present study is the finding that CP-AMPARs are

transiently recruited to CA1 synapses by LTP-inducing stimula-

tions where they are involved in the consolidation of this

NMDAR-dependent LTP [22–24, but see 21, 25]. Finally, the
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expression of CP-AMPARs and the resultant Ca2+ influx are also

associated with a number of pathophysiological states, including

ischemia, epileptic seizures and drug addiction [15,26–29].

Despite the importance of CP-AMPARs in synaptic regulation

and pathology, the molecular processes activated by Ca2+ influx

through these receptors is unknown. In this study, we took

advantage of genetically altered mice lacking GluR2 (GluR22/2)

or having a reduced level of GluR2 (GluR2+/2) to present

evidence that a distinct synaptic signaling underlies this CP-

AMPAR-dependent LTP.

Results

CP-AMPAR-dependent LTP at CA1 synapses
We have previously demonstrated that GluR2 mutants exhibit

high Ca2+ permeability and inward rectification as well as an

enhanced form of plasticity at CA1 synapses facilitated by Ca2+ influx

through both NMDARs and CP-AMPARs [10,30]. The utilization

of an NMDAR antagonist such as D,L-AP5 allowed us to specifically

isolate plasticity induced through CP-AMPARs, and thus investigate

the molecular mechanisms underlying long-lasting synaptic increases

induced by Ca2+ influx through these receptors. Therefore, in the

present study we used hippocampal slices prepared from these mice

to investigate CP-AMPAR-induced synaptic plasticity by performing

both field and whole-cell patch-clamp recordings at the CA1

synapses. In wild-type animals, a brief high frequency stimulation

(HFS, 2 trains of 100 Hz lasting 1 second) produced a long-lasting

increase in field excitatory postsynaptic potentials (fEPSPs) that could

be completely blocked by application of 100 mM D,L-AP5

(vehicle = 14965.1%; D,L-AP5 = 10361.6%; P,0.001) during the

induction phase, indicating that this form of LTP was completely

NMDAR-dependent (Figure 1A). In contrast, a significant amount of

LTP was generated with the same induction protocol in GluR22/

2mice (16668%; P,0.001) despite the presence of 100 mM D,L-

AP5 (Figure 1B). To test whether this NMDAR-independent LTP

could be induced by other stimulation protocols, we utilized theta

burst stimulation (TBS), which is considered to be more physiolog-

ically relevant. As shown in Figure 1C,D, this protocol generated a

significant amount of LTP during both extracellular (14163.1%;

P,0.001) and whole cell recordings (229610.5%; P,0.001) in

knockout slices in the presence of the NMDAR antagonist, in stark

contrast to wild-type animals (Figure S1; control = 21768.6%; D,L-

AP5 = 102614%; P,0.001). To determine the persistence of LTP

induced through CP-AMPARs, we delivered multiple trains of HFS

(4 trains of 100 Hz at 20 second intervals), which are commonly used

induce a long-lasting (or a late phase) LTP (L-LTP). Utilizing this

protocol, a CP-AMPAR dependent L-LTP (Figure 2B) was

prominent in D,L-AP5-perfused GluR22/2slices (228620%;

P,0.001). One potential problem with the above experiment was

that all the AMPARs in GluR22/2mice lack the GluR2 subunit,

which may rarely occur under normal physiological or pathological

conditions. GluR22/2mice may also suffer developmental com-

pensations that could lead to changes in neuronal signaling processes.

Therefore, we utilized the GluR2+/2(heterozygous) mice, where the

level of total GluR2 protein is reduced and both GluR2-containing

and GluR2-lacking AMPARs are expressed at CA1 synapses. In

addition, GluR2+/2mice are completely indistinguishable from the

wild-type animals in growth and behavioral responses as opposed to

GluR22/2mice, which have multiple deficits [10]. As shown in

Figure 2B, long-lasting L-LTP was also clearly generated in GluR2+/

2mice in the presence of 100 mM D,L-AP5 (14966.2%; P,0.001).

This CP-AMPAR dependent L-LTP shared the characteristic

dependence of longer-lasting forms of plasticity on the formation of

new proteins [31], where plasticity induced in both wild-type (vehicle

treated = 186612.1%; anisomycin = 13367.3%; P = 0.006) and

GluR2+/2slices (D,L-AP5+vehicle = 163610.8%; D,L-AP5+aniso-

mycin = 10667.3%; P = 0.002) was significantly reduced

(Figure 2C,D) under the administration of the protein synthesis

inhibitor anisomycin (25 mM). These results indicate that CP-

AMPARs can induce various types of long-lasting synaptic plasticity

at CA1 synapses, including a previously undemonstrated form of

protein synthesis-dependent L-LTP that is NMDAR-independent.

Induction of CP-AMPAR-dependent plasticity exclusively
requires CP-AMPARs

To exclude the possibility that other receptor subtypes (such as

high voltage activated calcium channels) may play a role in the

induction of CP-AMPAR-dependent plasticity, we decided to test

whether this form of potentiation was susceptible to the selective

CP-AMPAR inhibitor IEM-1460 [21,32]. Administration of

100 mM IEM-1460 significantly reduced basal transmission in

GluR22/2slices (pre-treatment = 223610.7%; treated = 1056

1.8%; P,0.001) and completely blocked the subsequent induction

of CP-AMPAR-dependent LTP by 2 trains of 100 Hz (Figure 3A)

in the presence of D,L-AP5 (D,L-AP5+IEM-1460 = 10164.7%).

Accordingly, administration of 100 mM IEM-1460 in GluR2+/

2slices completely inhibited CP-AMPAR-dependent L-LTP

induced by 4 trains of 100 Hz (Figure 3B) in the presence of

D,L-AP5 (D,L-AP5 = 157610.1%; D,L-AP5+IEM-1460 = 1026

3.7%; P,0.001). These results confirm that CP-AMPAR-depen-

dent plasticity is induced exclusively through CP-AMPARs in our

GluR2 knockout mouse model.

Requirement of calcium ions in CP-AMPAR-dependent
LTP

To investigate the mechanisms underlying this CP-AMPAR-

dependent form of potentiation, we compared paired pulse

facilitation (PPF) before and during 2 trains of 100 Hz LTP

(GluR22/2with D,L-AP5; P = 0.91) and 4 trains of 100 Hz L-

LTP (GluR2+/2with D,L-AP5; P = 0.97), but found no significant

differences (Figure 4A,B), suggesting that presynaptic involvement

was not altered following the induction of this plasticity.

Therefore, we concentrated our analyses on postsynaptic mech-

anisms. To test whether postsynaptic calcium ions are important,

we performed whole-cell patch-clamp recordings with or without

the high affinity Ca2+ chelator BAPTA (30 mM) in the intra-

cellular solution. As shown in Figure 4D, TBS induced a persistent

increase in the amplitude of excitatory postsynaptic currents

(EPSCs) that could last during the entire recording period.

However, in the presence of BAPTA, the CP-AMPAR dependent

LTP was completely blocked (D,L-AP5 = 228622.7%; D,L-

AP5+BAPTA = 120613.9%; P = 0.001). These results indicate

that Ca2+ ions in the postsynaptic neurons are crucial triggers for

CP-AMPAR-dependent LTP, similar to their role in traditional

NMDAR-dependent forms of plasticity (Figure 4C; con-

trol = 236620.8%; BAPTA = 9569.5%; P,0.001).

Independence of Ca/CaM-dependent kinase II (CaMKII)
In NMDAR-dependent LTP at CA1 synapses, Ca2+ influx from

NMDARs activate CaMKII to trigger a number of downstream

events, including AMPAR trafficking to the synapse that

ultimately result in an increase in synaptic transmission [1,33–

35]. Therefore, CaMKII is the key Ca2+-activated protein kinase

indispensable for the induction of NMDAR-dependent LTP. To

test whether CaMKII also plays a role in CP-AMPAR-dependent

LTP induced by 2 trains of 100 Hz, we first utilized the broad

spectrum CaMKII inhibitor staurosporine [36,37]. Administration

CP-AMPAR Dependent LTP
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of 100 nM staurosporine drastically reduced NMDAR-dependent

LTP (Figure 5A) in the wild-type animals (vehicle treat-

ed = 16066.9%; staurosporine = 11667.5%; P = 0.002), but sur-

prisingly had no effect on the amount of CP-AMPAR dependent

LTP (Figure 5B) induced in the presence of D,L-AP5 (D,L-

AP5+vehicle = 14966.4%; D,L-AP5+staurosporine = 14863;

P = 0.97). To confirm these findings, we performed further

investigations by including the CaMKII specific inhibitor KN-62

in the perfusion solution. Accordingly, we found that KN-62

(15 mM) also had no effect on CP-AMPAR-induced LTP in

GluR22/2mice. As shown in Figure 5D, the magnitude of LTP

was indistinguishable with or without KN-62 (D,L-AP5+vehi-

cle = 15564.2%; D,L-AP5+KN-62 = 14866.8%; P = 0.42). The

lack of KN-62 effect on CP-AMPAR-dependent LTP was not due

to the ineffectiveness of the drug because it could effectively block

NMDAR-dependent LTP (Figure 5C) in wild-type animals

(vehicle treated = 17464.8%; KN-62 = 102612.1%; P,0.001)

and also significantly inhibited the enhanced LTP in GluR22/

2mice (Figure 5E) in the absence of D,L-AP5 (vehicle treat-

ed = 221612.4%; KN-62 = 170613.4%; P = 0.02). These results

indicate that CaMKII is not required for CP-AMPAR-dependent

LTP, and suggest that a distinct synaptic signaling cascade must be

operating during this form of LTP.

Requirement for mitogen-activated kinase (MAPK)
cascade and phosphoinositide 3-kinase (PI3-kinase)

Recent studies suggest that both MAPK and PI3-kinases are

involved in NMDAR-dependent LTP and AMPAR trafficking in

Figure 1. GluR2-lacking mice are capable of robust long-lasting LTP in the presence of the NMDA antagonist D,L-AP5. (A, B) D,L-AP5
completely inhibited NMDAR-dependent LTP induced by 2 trains of 100 Hz (as indicated by arrow) in (A) GluR2+/+slices (vehicle, n = 5; D,L-AP5, n = 5;
P,0.001) but not CP-AMPAR-dependent LTP in (B) GluR22/2slices (D,L-AP5, n = 6; P,0.001). (C, D) Robust LTP induced in GluR22/2slices by TBS (as
indicated by arrow) in the presence of D,L-AP5 in (C) field EPSP recordings (D,L-AP5, n = 6; P,0.001) and (D) whole-cell recordings (D,L-AP5, n = 6;
P,0.001). All field EPSP recordings of CP-AMPAR-dependent LTP in GluR2 mutants involved the addition of 100 mM D,L-AP5 to perfusate 15 minutes
prior to induction, lasting until 5 minutes post-induction, while all whole-cell studies of CP-AMPAR dependent LTP involved 100 mM D,L-AP5 being
perfused during the entire recording period. Error bars represent SEM.
doi:10.1371/journal.pone.0004339.g001

CP-AMPAR Dependent LTP
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the hippocampus [38–44]. Therefore, we tested whether they are

also important in CP-AMPAR-dependent LTP induced by 2 trains

of 100 Hz by comparing the effects of MEK and PI3-kinase

inhibitors. Utilization of the PI3-kinase inhibitor LY294002 (20 mM)

completely blocked both NMDAR-dependent LTP (Figure 6A) in

the wild-type animals (vehicle treated = 16367%; LY294002 =

11065.2%; P,0.001) and CP-AMPAR-dependent LTP (Figure 6B)

in GluR22/2mice (D,L-AP5+vehicle = 15064.4; D,L-AP5+
LY294002 = 10764.6; P,0.001). Accordingly, administration of

wortmannin (1 mM), another PI3-kinase inhibitor that is structurally

unrelated to LY294002, also attenuated CP-AMPAR dependent

LTP in knockout slices (D,L-AP5+vehicle = 15064.4; D,L-AP5+-
wortmannin = 11763.5; P,0.001; Figure 6B). In a similar manner,

the use of MEK (MAPKK or ERK kinase) inhibitor PD98059

(50 mM) strongly suppressed LTP (Figure 7A,B) in both wild-type

(vehicle treated = 16267.4%; PD98059 = 10764.3%; P,0.001)

and GluR22/2mice (D,L-AP5+vehicle = 15066.3%; D,L-

AP5+PD98059 = 10064.6%; P,0.001). The involvement of the

MAPK cascade in CP-AMPAR dependent plasticity was further

demonstrated by the suppression of LTP in knockout slices (D,L-

AP5+vehicle = 15066.3%; D,L-AP5+U0126 = 12566%; P = 0.02;

Figure 7B) by the PD98059-structurally unrelated MEK inhibitor

U0126 (35 mM). These results indicate that both PI3-kinase and

MAPK signaling pathways are required for CP-AMPAR-dependent

LTP.

Role of MAPK in the induction of plasticity
To further elucidate the role of the MAPK signaling cascade in

CP-AMPAR dependent plasticity, we tested whether the MEK

inhibitor PD98059 (50 mM) would attenuate potentiation when

perfused during the maintenance phase of CP-AMPAR dependent

L-LTP induced by 4 trains of 100 Hz. We first demonstrated that

the administration of this inhibitor (Figure 8A) prior to and during

the induction of L-LTP in wild-type slices largely inhibited

potentiation (vehicle treated = 192611.2%; PD98059 = 1376

6.7%; P = 0.002), while having no significant effect when

introduced during the maintenance phase (Figure 8C) of this

NMDAR-dependent plasticity (vehicle treated = 206612.5%;

PD98059 = 204612.7%; P = 0.9). In a similar manner, the

presence of PD98059 in GluR2+/2slices significantly blocked

CP-AMPAR dependent L-LTP in the inductory (D,L-AP5+ve-

hicle in induction phase = 171610%; D,L-AP5+PD98059 in

induction phase = 12966.3%; P = 0.009) but not the maintenance

phase (D,L-AP5+vehicle in maintenance phase = 15566.3%; D,L-

AP5+PD98059 in maintenance phase = 15465.5%; P = 0.83) of

this form of potentiation (Figure 8B,D). These results suggest that

Figure 2. CP-AMPARs are capable of inducing long-lasting and protein-synthesis dependent forms of L-LTP. (A, B) D,L-AP5 completely
blocked NMDAR-dependent L-LTP induced by 4 trains of 100 Hz (as indicated by arrow) in (A) GluR2+/+slices (vehicle, n = 5; D,L-AP5, n = 5; P,0.001)
but not CP-AMPAR-dependent L-LTP in (B) GluR22/2(D,L-AP5, n = 5; P = 0.002) and GluR2+/2slices (D,L-AP5, n = 5; P,0.001). (C, D) L-LTP induced by
4 trains of 100 Hz (as indicated by arrow) is dependent on protein synthesis in both (C) GluR2+/+slices (vehicle, n = 5; anisomycin n = 5; P = 0.006) and
(D) GluR2+/2slices (vehicle, n = 5; D,L-AP5+anisomycin, n = 5; P = 0.002). CP-AMPAR-dependent L-LTP recordings in GluR2 mutants involved the
addition of 100 mM D,L-AP5 to perfusate 15 minutes prior to induction, lasting until 5 minutes post-induction. 25 mM anisomysin was added to
perfusate 15–20 minutes prior to L-LTP induction and washed away 5 minutes post-induction. Error bars represent SEM.
doi:10.1371/journal.pone.0004339.g002

CP-AMPAR Dependent LTP
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Figure 3. Induction of CP-AMPAR-dependent plasticity is blocked by the CP-AMPAR inhibitor IEM-1460. (A, B) Administration of IEM-
1460 in (A) GluR22/2slices significantly reduced basal synaptic response as well as completely attenuated CP-AMPAR-dependent LTP (D,L-AP5+IEM-
1460, n = 6; P = 0.44) induced by 2 trains of 100 Hz (as indicated by arrow). (B) In a similar fashion, CP-AMPAR-dependent L-LTP induced by 4 trains of
100 Hz (as indicated by arrow) in GluR2+/2slices was also completely blocked by IEM-1460 (D,L-AP5, n = 5; D,L-AP5+IEM-1460, n = 5; P,0.001). All CP-
AMPAR-dependent LTP field EPSP studies in GluR2 mutants involved adding 100 mM D,L-AP5 to ACSF perfusate 15 minutes prior to induction until
5 minutes post-induction. 100 mM IEM-1460 was added to the ACSF perfusate 25 minutes prior to LTP induction in GluR22/2slices and was present
throughout the entire recording period, while 100 mM IEM-1460 was added to the ACSF perfusate 15–20 minutes prior to L-LTP induction in GluR2+/
2slices up until 5 minutes post-induction. Error bars represent SEM.
doi:10.1371/journal.pone.0004339.g003

CP-AMPAR Dependent LTP
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the MAPK signaling cascade is an essential component in the

induction but not maintenance of both NMDAR- and CP-

AMPAR dependent forms of plasticity.

Partial requirement of receptor trafficking
Ample results have indicated that AMPAR trafficking at the

synapse is critical for synaptic changes [1,34,35]. Thus, expression of

NMDAR-dependent LTP is dependent on increased AMPAR

insertion through regulated exocytosis. To determine whether this

process plays a role in CP-AMPAR-dependent LTP, we examined

the effect of the exocytosis-inhibiting tetanus toxin light chain

fragment (TeTx) on plasticity by including the toxin in the

intracellular recording solution. Consistent with previous reports

[45], TeTx (75 nM) completely blocked NMDAR-dependent LTP

(Inactive TeTx = 237626.7%; active TeTx, 75 nM = 107618.9%;

P = 0.003) induced by TBS (Figure 9A) in the wild-type animals. In

GluR22/2slices, the magnitude of CP-AMPAR dependent TBS-

LTP in the presence of D,L-AP5 was also significantly reduced (D,L-

AP5+inactive TeTx = 241612%; D,L-AP5+active TeTx, 75 nM =

15166.4%; P,0.001) by 75 nM TeTx (Figure 9B). However, unlike

NMDAR-dependent LTP, plasticity induced through CP-AMPARs

was not completely abolished in the presence of the toxin, including

when the concentration of TeTx was increased to 250 nM (D,L-

AP5+active TeTx, 75 nM = 15166.4%; D,L-AP5+active TeTx,

250 nM = 14766.6%; P = 0.62; Figure 9B,C). These results suggest

that exocytosis plays at least a partial role in plasticity induced

through CP-AMPARs.

Discussion

In this study, by using GluR22/2and GluR2+/2mice, we were

able to induce and investigate the underlying mechanisms of synaptic

plasticity caused by CP-AMPARs in the CA1 region of the

hippocampus. We demonstrated that these receptors can induce a

Figure 4. Plasticity induced through CP-AMPARs is completely dependent on Ca2+ influx. (A, B) Paired pulse facilitation (PPF) revealed no
significant difference in presynaptic involvement in CP-AMPAR-dependent plasticity induced by 2 trains of 100 Hz (as indicated by arrow) in (A)
GluR22/2slices (D,L-AP5, n = 3; P = 0.91) and by 4 trains of 100 Hz (as indicated by arrow) in (B) GluR2+/2slices (D,L-AP5, n = 5; P = 0.97) in a manner
similar to NMDAR-dependent potentiation induced in wild-type controls. (C, D) Potentiation induced by TBS (as indicated by arrow) in whole cell
recordings (as indicated by arrow) is completely dependent on Ca2+ influx in both NMDAR-dependent LTP in (C) GluR2+/+slices (untreated, n = 5;
BAPTA, n = 5; P,0.001) and CP-AMPAR-dependent LTP in (D) GluR22/2slices (D,L-AP5, n = 6 ; D,L-AP5+BAPTA, n = 8; P = 0.001). CP-AMPAR-
dependent LTP field EPSP studies in GluR2 mutants involved adding 100 mM D,L-AP5 to ACSF perfusate 15 minutes prior to induction until 5 minutes
post-induction. Whole-cell recordings of CP-AMPAR dependent LTP involved the presence of 100 mM D,L-AP5 throughout the recording period.
30 mM BAPTA was included in the intracellular solution for Ca2+ studies. Error bars represent SEM.
doi:10.1371/journal.pone.0004339.g004

CP-AMPAR Dependent LTP
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long-lasting enhancement in synaptic strength that is Ca2+

dependent, but surprisingly independent of CaMKII, a crucial

regulator of NMDAR-dependent LTP. Instead, this form of LTP

requires both the PI3-kinase and MAPK signaling cascades, as well

as exocytosis. These results indicate a unique synaptic signaling

process during CP-AMPAR-induced synaptic plasticity.

Figure 5. CaMKII is not involved in long-term potentiation induced through CP-AMPARs. (A, B) Contrasting effects of the broad spectrum
inhibitor staurosporine where NMDAR-dependent LTP induced by 2 trains of 100 Hz (as indicated by arrow) was significantly attenuated in (A)
GluR2+/+slices (vehicle, n = 6; staurosporine, n = 5; P = 0.002) but not CP-AMPAR-dependent LTP in (B) GluR22/2slices (vehicle, n = 5; D,L-
AP5+staurosporine, n = 5; P = 0.97). (C, D) Contrasting effects of the CaMKII-specific inhibitor KN-62 where LTP induced by 2 trains of 100 Hz (as
indicated by arrow) was completely blocked in (C) GluR2+/+slices (vehicle, n = 5; KN-62, n = 5; P,0.001) but not in (D) GluR22/2slices (vehicle, n = 5;
D,L-AP5+KN-62, n = 5; P = 0.42). (E) However, KN-62 significantly inhibited LTP induced in GluR22/2slices (vehicle = 6; KN-62 = 5; P = 0.02) in the
absence of D,L-AP5. (F) Summary graph of the means of the last 10 minutes of potentiation seen in KN-62 treatment studies. All CP-AMPAR-
dependent LTP recordings in GluR2 mutants involved the administration of 100 mM D,L-AP5 to perfusate 15 minutes prior to induction, lasting until
5 minutes post-induction. 100 nM staurosporine and 15 mM KN-62 were added to perfusate 15–20 minutes prior to LTP induction and washed away
5 minutes post-induction. Error bars represent SEM. * denotes P,0.05.
doi:10.1371/journal.pone.0004339.g005

CP-AMPAR Dependent LTP
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We also demonstrated that a number of protocols were able to

induce CP-AMPAR-dependent LTP. These include TBS

(Figure 1, 4, 9) that is often used to induce NMDAR-dependent

LTP at resting membrane potentials, suggesting that CP-AMPAR-

dependent synaptic plasticity may occur under physiological

conditions. Additionally, we also presented the first ever

demonstration of the capability of CP-AMPARs to induce and

sustain a longer-lasting protein synthesis dependent form of L-LTP

in the CA1 region of the hippocampus, previously thought to be a

hallmark of NMDARs alone.

CP-AMPAR-dependent LTP was completely blocked by

postsynaptic inclusion of 30 mM BAPTA, indicating that calcium

ions in the postsynaptic neurons are required (Figure 4). Consistent

with this, we and others have previously shown that GluR2-lacking

AMPARs exhibit significant Ca2+ permeability [7,10] that is

similar to that of NMDARs; therefore, the Ca2+ influx from these

receptors is likely sufficient to trigger Ca2+-dependent events in the

postsynaptic neurons. Ca2+ transients resulting from synaptically

activated CP-AMPARs have also been demonstrated in the cortex

and shown to amplify the transient amplitude when co-expressed

with NMDARs, suggesting the presence of mechanisms that allow

the proportional scaling of each receptor type independent of

presynaptic miniature-release factors [46].

Since CP-AMPAR-dependent LTP was also inducible in the

presence of high voltage activated calcium channel blockers [10],

the most likely calcium source in this form of plasticity is the Ca2+

influx from CP-AMPARs. This notion was confirmed by our

results showing that CP-AMPAR-dependent plasticity induced by

either 2 trains or 4 trains of 100 Hz was completely blocked by the

selective CP-AMPAR inhibitor IEM-1460 in GluR22/2and

GluR2+/2mutants respectively (Figure 3). In contrast to

GluR22/2animals, the same concentration of IEM-1460

(100 mM) had a small but non-significant effect on the basal

synaptic response in GluR2+/2slices, suggesting that CP-

AMPARs may not play an important role in basal transmission

at CA1 synapses, and reinforces the idea that Ca2+ influx from

newly recruited forms of these receptors may help consolidate

previously induced plasticity in the region [22–24, but see 21, 25].

Given the critical role for Ca2+ in CP-AMPAR-dependent LTP,

it is therefore surprising to discover that CaMKII is not required

for this form of LTP as the CaMKII-specific inhibitor KN-62 had

no effect (Figure 5). In addition, the general kinase inhibitor

staurosporine, which is also known to block the actions of PKC,

PKA, and protein tyrosine kinases in addition to CaMKII [36,37],

also had no inhibitory effects on CP-AMPAR-dependent LTP.

The lack of effect of these two inhibitors is not due to the

ineffectiveness of the drugs because they strongly inhibited

NMDAR-dependent LTP in slices prepared from wild-type

littermate animals (Figure 5A,C). Additionally, the enhanced

LTP (comprising of both NMDAR- and CP-AMPAR-dependent

components in the absence of D,L-AP5, Figure 5E) seen in

GluR22/2mice [10] was also significantly, but not completely,

attenuated in the presence of KN-62. This would suggest that the

CaMKII inhibitor worked only towards blocking the NMDAR-

dependent component of the enhanced LTP induced in GluR22/

2mice when D,L-AP5 was not present, while not affecting the CP-

AMPAR-dependent component, corresponding with our pharma-

cological inhibitor results in wild-type and mutant animals

respectively. It is also important to note that the expression and

targeting of CaMKII is not altered in GluR22/2or GluR2+/

2mice (data not shown). These results indicate that Ca2+ influx

from CP-AMPARs initiates a distinct synaptic signaling process

that is different from the activation of NMDARs. Interestingly,

CaM and CaMKII are associated with the NMDAR but not

AMPAR complex [47–49].

In contrast to CaMKII, our results provide evidence for the

involvement of the PI3-kinase (Figure 6) and MAPK signaling

cascades (Figure 7) in CP-AMPAR dependent plasticity. This was

accomplished through the utilization of two separate pairs of

structurally unrelated inhibitors geared towards each of these kinase

systems (LY294002 and wortmannin for PI3K; PD98059 and

U0126 for MAPK respectively). The varying degrees of attenuation

of CP-AMPAR-dependent LTP by the above-mentioned drugs was

probably due to differences in concentration and the modalities of

action of these individual inhibitors. It is interesting to note that CP-

AMPAR dependent L-LTP was not completely inhibited by the

same concentration of PD98059 (Figure 8B) that abolished CP-

AMPAR dependent LTP in knockout slices (Figure 7B). This could

be explained by the possibility that the stronger stimulation protocols

utilized for L-LTP need a longer period of time for plasticity to

completely decay, requiring an extended period of post-inductory

recording. Additionally, mechanistic differences between LTP and

L-LTP have been previously described [31], suggesting that the

induction of the latter form of plasticity may recruit additional

biochemical pathways that are distinct and insensitive to MAPK

inhibitors. These notions are supported by the fact that L-LTP

induced in wild-type slices was also not completely blocked by the

same concentration of PD98059 in a similar time period (Figure 8A),

in comparison to the total abolishment of LTP induced by 2 trains of

100 Hz in the same animals (Figure 7A).

The involvement of the PI3-kinase and MAPK cascades in this

form of plasticity is of particular interest as both have also been

shown to be important for NMDAR-dependent LTP [39,40]. We

therefore hypothesize that these two signaling pathways may serve

as a common target for both NMDAR- and CP-AMPAR-

dependent LTP. Since CP-AMPAR-dependent LTP is indepen-

dent of CaMKII, our model suggests that CP-AMPARs may act

downstream of NMDARs and CaMKII, consistent with the idea

that CP-AMPAR-activated signaling process may serve as a

mechanism for the consolidation of NMDAR-dependent LTP

[22]. To support this notion, a recent study implicated another

member of the CaMK family (CaMKI) in the specific synaptic

recruitment of CP-AMPARs during TBS-LTP in the CA1 region

[24]. Furthermore, the shared dependence of both NMDAR- and

CP-AMPAR-induced types of L-LTP on new protein synthesis

may suggest that Ca2+ influx through newly recruited GluR2-

lacking receptors could also be an important facilitator of

traditional longer-lasting forms of plasticity in the hippocampus.

Our results are consistent with the hypothesis that the

expression mechanisms of CP-AMPAR-dependent LTP are

Figure 6. PI3-kinase is required for CP-AMPAR-dependent long-term potentiation. (A) The specific PI3-kinase inhibitor LY294002
significantly attenuated NMDAR-dependent LTP induced by 2 trains of 100 Hz (as indicated by arrow) in GluR2+/+slices (vehicle, n = 6; LY294002,
n = 5; P,0.001). CP-AMPAR-dependent LTP elicited by 2 trains of 100 Hz (as indicated by arrow) in (B) GluR22/2slices was also strongly suppressed in
the presence of the structurally unrelated PI3K inhibitors LY294002 (vehicle, n = 5; D,L-AP5+LY294002, n = 5; P,0.001) and wortmannin (vehicle, n = 5;
D,L-AP5+wortmannin, n = 5; P,0.001). (C) Summary graph of the means of the last 10 minutes of potentiation seen in LY294002 and wortmannin
treatment studies. CP-AMPAR-dependent LTP recordings in GluR2 mutants involved the addition of 100 mM D,L-AP5 to perfusate 15 minutes prior to
induction, ceasing at 5 minutes post-induction. 20 mM LY294002 and 1 mM wortmannin were added to ACSF perfusate 15–20 minutes prior to LTP
induction up until 5 minutes post-induction. Error bars represent SEM. * denotes P,0.05.
doi:10.1371/journal.pone.0004339.g006
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postsynaptic. This is based on the findings that PPF does not

change after LTP induction (Figure 4) and that postsynaptic

injection of exocytosis-inhibiting tetanus toxin (75 nM) largely

blocks this form of LTP (Figure 9). However, since the inhibiting

effect of tetanus toxin is not complete even at higher concentration

levels (250 nM; Figure 9B,C), other mechanisms independent of

receptor trafficking may also contribute to CP-AMPAR-depen-

dent LTP. These may include changes in receptor protein

phosphorylation and subunit composition. It is known that

multiple postsynaptic mechanisms exist for NMDAR-dependent

LTP at CA1 synapses [35]. The requirement of AMPAR insertion

for CP-AMPAR-dependent LTP is also consistent with the above

model that CP-AMPAR-induced LTP is downstream of

NMDAR-dependent LTP. This mechanism has been postulated

to consolidate synaptic enhancement as newly inserted GluR2-

lacking CP-AMPARs are gradually replaced by GluR2-containing

receptors [22–24], a process that likely depends on exocytosis.

In summary, we have identified a unique signaling pathway

underlying long-lasting synaptic enhancement triggered by Ca2+ influx

through CP-AMPARs at CA1 synapses. We suggest that this synaptic

signaling process may provide an important and general mechanism

for synaptic plasticity at synapses where the expression of GluR2 is

dynamically regulated under various circumstances, including devel-

opment, synaptic plasticity and pathological conditions.

Figure 7. The MAPK signaling cascade plays an essential role in long-term potentiation induced through CP-AMPARs. (A) The specific
MEK inhibitor PD98059 attenuated LTP elicited by 2 trains of 100 Hz (as indicated by arrow) in GluR2+/+slices (vehicle, n = 5; PD98059, n = 6; P,0.001).
CP-AMPAR-dependent LTP induced by 2 trains of 100 Hz (as indicated by arrow) was also significantly inhibited in (B) GluR22/2slices by the
structurally unrelated MEK inhibitors PD98059 (vehicle, n = 6; D,L-AP5+PD98059, n = 5; P,0.001) and U0126 (vehicle, n = 6; D,L-AP5+U0126, n = 5;
P = 0.02). (C) Summary graph of the means of the last 10 minutes of potentiation seen in PD98059 and U0126 treatment studies. CP-AMPAR-
dependent LTP recordings in GluR2 mutants involved the addition of 100 mM D,L-AP5 to perfusate 15 minutes prior to induction, ceasing at
5 minutes post-induction. 50 mM PD98059 and 35 mM U0126 were added to ACSF perfusate 15–20 minutes prior to LTP induction lasting until
5 minutes post-induction. Error bars represent SEM. * denotes P,0.05.
doi:10.1371/journal.pone.0004339.g007

Figure 8. The MAPK signaling cascade plays a role in the induction but not maintenance of plasticity induced through CP-AMPARs.
(A, B) Administration of the MEK inhibitor PD98059 during the induction phase of L-LTP significantly attenuated potentiation induced by 4 trains of
100 Hz (as indicated by arrow) during both NMDAR-dependent L-LTP in (A) GluR2+/+slices (vehicle, n = 5; PD98059, n = 6; P = 0.002) and CP-AMPAR-
dependent L-LTP in (B) GluR2+/2slices (vehicle, n = 5; D,L-AP5+PD98059, n = 5; P = 0.009). (C, D) However, administration of PD98059 during the
maintenance phase of L-LTP induced by 4 trains of 100 Hz (as indicated by arrow) had no significant effect on both (C) GluR2+/+slices (vehicle, n = 5;
PD98059, n = 5; P = 0.9) and (D) GluR2+/2slices (vehicle, n = 5; D,L-AP5+PD98059, n = 5; P = 0.83). All CP-AMPAR-dependent L-LTP recordings in GluR2
mutants involved adding 100 mM D,L-AP5 to perfusate 15 minutes prior to induction until 5 minutes post-induction. For MAPK L-LTP induction
studies, 50 mM PD98059 was added to ACSF perfusate 15–20 minutes prior to induction lasting until 5 minutes post-induction. For MAPK L-LTP
maintenance studies, 50 mM PD98059 was added to the ACSF perfusate 20–30 minutes post-induction. Error bars represent SEM.
doi:10.1371/journal.pone.0004339.g008
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Materials and Methods

GluR2 knockout mice
GluR2 knockout mice were created and bred as previously

described [10,30]. For genotyping of GluR2 knockout mice, a

standard protocol for Taqman PCR was used. A common reverse

primer 59-TCGCCCATTTTCCCATATAC-39 and forward prim-

ers 59-GGTTGGTCACTCACCTGCTT-39 and 59-TCGCCC-

ATTTTCCCATATAC-39 were used to detect wild-type allele

and the neomycin resistance cassette in knockout mice respectively.

All studies with mutant animals (GluR22/2or GluR2+/2) were

performed alongside wild-type littermates (GluR2+/+) for controls.

Experimental protocols were approved by The Hospital for Sick

Children Animal Care Committee.

Extracellular fEPSP electrophysiological recordings
The preparation of brain slices has been previously described

[10,30]. Briefly, hippocampal slices (400 mm) were obtained from 3

to 6 month old adult mice and allowed to recover in a submerged

holding chamber for at least 1 hour. A single slice was then

transferred to the recording chamber and submerged and superfused

with 95% O2-5% CO2 saturated artificial cerebral spinal fluid

(ACSF, 2 ml/min) at a temperature of 28uC. The ACSF contained

(in mM) 120 NaCl, 2.5 KCl, 1.3 MgSO4, 1.0 NaH2PO4, 26

NaHCO3, 2.5 CaCl2, and 11 D-glucose. For field EPSPs, the

recording pipette (3 MV) was filled with ACSF solution.

Synaptic responses were evoked by bipolar tungsten electrodes

placed 200–400 mm from the cell body layer in the CA1 area.

fEPSPs were measured by taking the slope of the rising phase

between 5% and 60% of the peak response. All data acquisition and

analysis were done using pCLAMP 7 software (Axon instruments).

After a stable baseline period, LTP was induced by high-frequency

stimulation (HFS) using 2 trains of 100 Hz at 10 second intervals

(with each train lasting 1 s) or a TBS protocol (total 60 pulses) while

late-phase LTP (L-LTP) was induced by 4 trains of 100 Hz at

20 second intervals (with each train lasting 1 s). Paired-pulse

facilitation (PPF) was recorded prior to and following induction of

LTP (with the first and second responses being separated by an

interval of 50 ms). The ratio of the slope of the second response to

the slope of the first response was subsequently calculated. All drugs

for field EPSP recordings were purchased from Sigma Aldrich

(Oakville, Canada), Tocris (Missouri, U.S.A.) and LC Laboratories

(Massachusetts, U.S.A.). D,L-AP5 and IEM-1460 were dissolved in

distilled water. Staurosporine, KN-62, PD98059, U0126,

LY294002, wortmannin and anisomycin were dissolved in DMSO.

For tests of inhibition of LTP, drugs were added to ACSF perfusate

15–20 minutes before the LTP induction protocol was initiated (with

staurosporine, KN-62, PD98059, U0126, LY294002, wortmannin

and anisomycin having a maximum final concentration of 0.1%

DMSO or less after being added to ACSF). For experiments

concerning the maintenance phase of L-LTP, PD98059 was added

to the ACSF perfusate 20–30 minutes post-induction. Vehicle

treatments were performed with 0.1% DMSO and/or distilled

water depending on the drug/drugs perfused. All inhibition studies

with mutant animals (GluR22/2 or GluR2+/2) were performed

alongside wild-type littermates (GluR2+/+) for controls. For

comparison of the magnitude of LTP between different groups,

the last 5–10 minutes of recordings were compared statistically. n

represents the number of hippocampal slices used in each

experiment. Normally, one slice per mouse was used for experi-

ments. When average data was plotted, data was normalized to the

average of the baseline responses unless indicated otherwise. The

representative traces were averages of four successive sweeps during

recording. All data was statistically evaluated by Student’s t-test.

Experimental protocols were approved by The Hospital for Sick

Children Animal Care Committee.

Whole-cell voltage-clamp recordings
Acute hippocampal slices of 300 mm thickness were prepared

from GluR2 knockout mice and littermates at 20–30 days of age.

Slicing and recovery procedures are the same as in fEPSP

recordings. Electrodes (3–4 M V) contained (in mM) 120 Cs-

methanesulfonate, 5 NaCl, 1 MgCl2, 0.5 EGTA, 2 Mg-ATP, 0.1

Na3GTP, 20 HEPES, pH 7.2, 280–300 mOsm. Picrotoxin

(100 mM) was used in ASCF to eliminate GABAergic transmissions.

D,L-AP5 (100 mM) was administrated in perfusate throughout all

CP-AMPAR dependent LTP experiments. The internal solution for

BAPTA (30 mM) experiments was separately made. For tetanus

toxin (TeTx) experiments, stock solution was prepared at 1,0006of

final concentration (75 nM, 250 nM) and was added to internal

solution just prior to recordings. The same amount of tetanus toxin

was boiled for 5 minutes prior and used as inactive control. Test

pulses were given at 0.1 Hz and neurons were clamped at 265 mV

during basal level recording and LTP recording. Whole-cell mode

was briefly switched to current-clamp mode to allow depolarization

induced by theta burst stimulation (15 bursts with 200 msec interval

of 4 pulses at 100 Hz). A 23 mV step was given 250 msec after each

test pulse to monitor membrane and access resistances. Data

acquisition and analysis were done using pCLAMP 8. Only

recordings with a drift of access and membrane resistances less than

20% were included for statistical analysis by Student’s t-test. For

comparison of the magnitude of LTP between different groups, the

last 5 minutes of recordings were compared statistically. n represents

the number of hippocampal slices used in each experiment, with

normally only one slice per mouse used for experiments. The

representative traces were averages of five successive sweeps during

recording. All drugs for whole-cell recordings chemicals were

purchased from Sigma Aldrich (Oakville, Canada). Tetanus toxin

light chain fragment was a generous gift from Dr. William Trimble.

Experimental protocols were approved by The Hospital for Sick

Children Animal Care Committee.

Supporting Information

Figure S1 Figure demonstrating that the administration of D,L-

AP5 in the ACSF perfusate blocks TBS-LTP in wild-type slices

during whole-cell recordings.

Found at: doi:10.1371/journal.pone.0004339.s001 (0.05 MB PDF)

Figure 9. Receptor trafficking plays an important role in plasticity induced through CP-AMPARs. (A) Synaptic plasticity induced by TBS
(as indicated by arrow) was significantly attenuated in the presence of the exocytosis-inhibiting tetanus toxin (TeTx, 75 nM) during NMDAR-
dependent LTP in GluR2+/+slices (inactive toxin, n = 6; 75 nM TeTx, n = 6; P = 0.003). (B) CP-AMPAR-dependent LTP elicited by TBS (as indicated by
arrow) in GluR22/2slices was also significantly reduced in the presence of 75 nM TeTx (D,L-AP5+inactive toxin, n = 7; D,L-AP5+75 nM TeTx, n = 5;
P,0.001) and 250 nM TeTx (D,L-AP5+inactive toxin, n = 7; D,L-AP5+250 nM TeTx, n = 5; P,0.001) respectively to statistically similar levels (D,L-
AP5+75 nM TeTx, n = 5; D,L-AP5+250 nM TeTx, n = 5; P = 0.62). (C) Summary graph of the means of the last 5 minutes of potentiation seen in tetanus
toxin treatment studies. Whole-cell recordings of CP-AMPAR dependent LTP involved the presence of 100 mM D,L-AP5 throughout the recording
period. 75 nM and 250 nM TeTx were included in the intracellular solution for exocytosis inhibition studies. Error bars represent SEM. * denotes
P,0.05.
doi:10.1371/journal.pone.0004339.g009
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16. Bellone C, Lüscher C (2005) mGluRs induce a long-term depression in the

ventral tegmental area that involves a switch of the subunit composition of

AMPA receptors. Eur J Neurosci 21: 1280–8.
17. Ge WP, Yang XJ, Zhang Z, Wang HK, Shen W, et al. (2006) Long-term

potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA
receptors. Science 312: 1533–7.

18. Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM (2007) Anti-
Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit.

Science 315: 1262–6.

19. Ho MT, Pelkey KA, Topolnik L, Petralia RS, Takamiya K, et al. (2007)
Developmental expression of Ca2+-permeable AMPA receptors underlies

depolarization-induced long-term depression at mossy fiber CA3 pyramid
synapses. J Neurosci 27: 11651–62.

20. Lei S, McBain CJ (2002) Distinct NMDA receptors provide differential modes of

transmission at mossy fiber-interneuron synapses. Neuron 33: 921–33.
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