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Simple Summary: This review proposes the idea that many peculiarities of the cancer cell metabolism
are easier to explain considering the incomplete combustion of fatty acids in the cancerous mitochon-
dria due to their over-reduced redox state. Recent studies indicate that overactivated mitochondrial
β-oxidation may significantly alter the mitochondrial redox state and vice versa. Thus, the impaired
redox state of cancerous mitochondria can ensure the continuous operation of β-oxidation by discon-
necting it from the Krebs cycle and connecting it to the citrate–malate shuttle. This could create a
new metabolic state/pathway in cancer cells, which we have called the “β-oxidation shuttle”. This
artificial pathway is inefficient as an energy source. However, when combined with acetyl-CoA
consuming pathways, such as fatty acid synthesis and mevalonate pathways, it is a source of cata-
plerosis, leading to biomass accumulation, accelerated oxygen consumption, and, ultimately, a source
of proliferation.

Abstract: A considerable amount of data have accumulated in the last decade on the pronounced
mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. As a result, mFAO was found
to coexist with abnormally activated fatty acid synthesis (FAS) and the mevalonate pathway. Recent
studies have demonstrated that overactivated mitochondrial β-oxidation may aggravate the impaired
mitochondrial redox state and vice versa. Furthermore, the impaired redox state of cancerous
mitochondria can ensure the continuous operation of β-oxidation by disconnecting it from the Krebs
cycle and connecting it to the citrate–malate shuttle. This could create a new metabolic state/pathway
in cancer cells, which we have called the “β-oxidation-citrate–malate shuttle”, or “β-oxidation shuttle”
for short, which forces them to proliferate. The calculation of the phosphate/oxygen ratio indicates
that it is inefficient as an energy source and must consume significantly more oxygen per mole of ATP
produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate
pathways. The “β-oxidation shuttle” is an unconventional mFAO, a separate metabolic pathway
that has not yet been explored as a source of energy, as well as a source of cataplerosis, leading to
biomass accumulation, accelerated oxygen consumption, and, ultimately, a source of proliferation.
The role of the “β-oxidation shuttle” and its contribution to redox-altered cancer metabolism provides
a new direction for the development of future anticancer strategies. This may represent the metabolic
“secret” of cancer underlying hypoxia and genomic instability.
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1. Over-Reduced State of Mitochondria and Activation of Fatty Acid Oxidation
in Cancer

Until recently, discussions on the cancer cell metabolism have mainly focused on
glycolysis, as well as on genetic defects found in the Krebs cycle and mitochondria in
general. In the last few years, there has been growing interest in the role of mitoepigenetic
regulation in cancer cells [1]. Recent studies have demonstrated that mitochondrial fatty
acid oxidation (mFAO) is vital for many types of cancer cells, and they cannot exist without
this metabolic pathway [2–5]. This review proposes the idea that many “mysteries” about
the peculiarities of cancer cell metabolism, including respiration and even hypoxia, seem
easier to explain in the light of the incomplete combustion of fatty acids in cancerous
mitochondria. Studies indicate that overactivated mitochondrial β-oxidation may aggra-
vate the impaired mitochondrial redox state and vice versa, whereby the impaired redox
state of cancerous mitochondria can ensure the continuous operation of β-oxidation by
disconnecting it from the Krebs cycle and connecting it to the citrate–malate shuttle. This
could create a new metabolic state/pathway in cancer cells, which we have called the
“β-oxidation-citrate–malate shuttle”, or “β-oxidation shuttle” for short. This pathway
can force them to proliferate. This abnormal, unconventional metabolic state has not yet
been described.

This concept is based on the following findings:

1.1. mFAO Is Activated in Many Types of Cancer Cells

Over the last decade, mFAO has been found to be activated under conditions common
to solid tumors and cancer cells. For example, the loss of expression or activity of acetyl-CoA
carboxylase 2 (ACC2), as well as overexpression of carnitine palmitoyl transferase 1 (CPT1),
have been observed under acidic conditions (as in cancer) or environments enriched with
fatty acids [6]. ACC2 and CPT1 are key regulatory enzymes of mitochondrial β-oxidation
(Figure S1 in the Supplementary Materials). The mechanisms of mFAO expression in cancer
cells suggest that this pathway could be overactivated depending on the energy needs of
the cell. The evidence for this is provided below.

It has been reported that fatty acid synthesis (FAS) is elevated in glioma cells, but the
same is true for mFAO [7–9]. Indeed, mFAO is the best source for production of acetyl-CoA,
which is the main precursor of FAS together with NADPH. FAS and mFAO inhibitors have
been shown to suppress the proliferation of glioma cells [10]. Moreover, some cancer cells
prefer to be located close to adipocytes, the main store of fats [11]. In 2011, Nieman et al.
found that co-culturing ovarian cancer cells with human-derived adipocytes resulted in
increased β-oxidation by activating CPT1 and acyl-CoA oxidase 1 [12]. The rate-limiting
enzyme of FAS (fatty acid synthase) has been found to be overexpressed in ovarian cancer,
whose inhibitors cause growth arrest and apoptosis in the same type of cells [13].

Numerous studies have demonstrated the role of irregularly activated mFAO in the
metabolism and survival of cancer cells [14–17]. In 2013 and 2014, acidosis was reported to
lead to a decrease in glucose consumption by cancer cells and an increase in the anaplerotic
pathways of the Krebs cycle [18,19]. In this case, the activation of mFAO could be suggested
because of decreased glucose consumption. This is a well-known regulation associated
with the “Randle cycle”. In 2014, Schlaepfer et al. demonstrated that the CPT1 inhibitor
suppressed the proliferation of prostate cancer cells and tumor growth in mice [20]. The
authors found that CPT1-knockdown in these cells causes inhibition of their proliferation,
which is accompanied by decreased oxidation of palmitate. In 2016, Corbet et al. discov-
ered that mFAO could be irregularly activated in acidosis-adapted cancer cells via the
deacetylation of histones, which leads to a decreased expression of ACC2 [6]. The authors
also observed a significant non-enzymatic acetylation of mitochondrial proteins, caused
by elevated levels of acetyl-CoA. In turn, this leads to the acetylation and inactivation of
complex I in the mitochondrial electron transport chain (ETC). This relationship between
acidification and β-oxidation was known as the “Corbet–Feron effect” [10], which hints
at its universality. Recently, Luis et al. reported that, under certain conditions, such as
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obesity-mimicking status, cancer cells can spend lipids and amino acids to synthesize
glucose from lactate via gluconeogenesis [21]. The authors have called this phenomenon
“Warburg effect inversion”. They cultured breast cancer cells in three different media: high
glucose concentration, low glucose concentration, and high concentration of fatty acids
released by adipocytes. Medium containing adipocytes significantly increases the viability
and proliferation of breast cancer cells, as well as their migration rate and aggression.
Cancer cells in a high-fat environment excrete significant amounts of glucose, pyruvate,
and acetate. Here, it is important to note that a distinctive feature of activated mFAO (in
this case) is the increased consumption of lactate and glutamine.

Another mechanism for the overactivation of mFAO in cancer cells is through the
modulation of ACC2 activity by hydroxylation [22]. Prolyl hydroxylase 3 has been found
to hydroxylate and activate ACC2, whose malonyl-CoA product inhibits mFAO. Prolyl
hydroxylase 3 is an oxygen sensor, known as the deactivator of hypoxia inducible factor
1-alpha (HIF-1α) [23]. This enzyme is essential for the regulation of hypoxia. In the presence
of oxygen, prolyl hydroxylate 3 hydroxylates HIF-1α and deactivates it by directing it to
ubiquitination. The finding that prolyl hydroxylase 3 also hydroxylates and activates the
metabolic enzyme ACC2 means that, at normal oxygen levels, mFAO should be inhibited.
However, in acute myeloid leukemia cells, the level of prolyl hydroxylase 3 has been
found to be low and thus potentiates their dependence on mFAO in normoxia [22]. Other
mechanisms for downregulating ACC2 have also been described [24].

The studies mentioned above demonstrate that mFAO can be overactivated by sup-
pressing ACC2 under acidic conditions, decreasing the activity of prolyl hydroxylase
3 in hypoxia, or by increasing the availability of fatty acids, which are very important
factors in cancer metabolism. This mechanism appears to be universal given that the
acidic environment of cancer cells and hypoxia are common features of tumors and can
activate mFAO.

At present, it is difficult to predict the number of cancers that are dependent on mFAO.
Most likely, these are cancers that have been shown to be dependent on oxidative phos-
phorylation (OXPHOS). Amoedo et al. identified two subgroups of lung carcinomas: high
and low OXPHOS expressing tumors [25]. High OXPHOS expressing tumors poorly incor-
porated [18F]fluorodeoxy-glucose and had an increased expression of the mitochondrial
trifunctional fatty acid oxidation enzyme (TFP), particularly TFP subunit alpha, compared
to the paired adjacent tissue. The genetic and pharmacological inhibition of the TFP subunit
alpha affects tumor growth in vivo. Trimetazidine, an approved drug inhibitor of TFP used
in cardiology, disrupts the interaction between TFP and complex I of the ETC, leading to a
cellular redox and energy crisis [26].

Mitochondrial FAO is considered an important factor in the growth of cancer cells, as
well as an important target in the development of new drugs for various cancers, such as
pancreatic, prostate, leukemia, lymphoma, and ovarian [11,15,25,27–29].

Although studies on mFAO do not cover many different types of cancer, publications
on this phenomenon have increased enormously over the last decade, and mFAO inhibitors
have been successful in treating cancer cells [30–34].

Accumulating evidence of overactivated mFAO in cancer cells, in addition to abnor-
mally activated metabolic pathways, such as FAS and pentose phosphate pathway (PPP),
suggest the existence of a metabolic cycle in which FAS coexists with mFAO. This cycle is
prohibited during normal cellular metabolism under normal conditions.

1.2. Mitochondrial β-Oxidation May Inhibit Pyruvate Combustion and Complex I via Acetylation
of Mitochondrial Proteins

It is well known that β-oxidation leads to the accumulation of high concentrations of
acetyl-CoA (Figure S1 in the Supplementary Materials). Thus, the abnormal expression
of β-oxidation in cells activates the non-enzymatic acetylation of mitochondrial proteins.
In many pathologies, including cancer, this acetylation can lead to severe mitochondrial
dysfunction if mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5) are not expressed and acti-
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vated simultaneously. This acetylated type of mitochondrial dysfunction is characterized
by the minimal conversion of pyruvate to acetyl-CoA and decreased activity of complex I.

In terms of the evidence for these assumptions, over the last decade, a high-fat diet
has been shown to decrease SIRT3 expression, impair mitochondrial function, and decrease
reliance on glycolytic substrates [35–39]. Furthermore, in 2007, Koves et al. found that
obesity-related insulin resistance and a high-fat diet are characterized by excessive β-
oxidation in skeletal muscles and impaired transition to a carbohydrate substrate during
the fasting-to-diet transition [37]. The authors reported that factors inhibiting the import of
fatty acids in mitochondria protect against lipid-induced insulin resistance.

In 2011, Choudhury et al. subjected mice to a chronic high-fat diet and observed
decreased SIRT3 activity in the liver and a three-fold decrease in hepatic NAD+ levels [35].
The authors identified 193 proteins that were preferably acetylated in mice on a high-fat
diet compared to controls on a normal diet. SIRT3-deficient mice have been found to show
even greater hyperacetylation of gluconeogenic and mitochondrial proteins in a high-fat
diet. In addition to increased acetylation, SIRT3-deficient mice exhibited disruption of
mitochondrial complexes II, III, and V.

In 2015, Lantier et al. demonstrated that muscles in SIRT3-deficient mice exhibit
profound mitochondrial dysfunction with decreased reliance on glycolytic substrates and
increased reliance on fatty acid substrates [36]. The authors observed that respiration
decreases in the muscle fibers of SIRT3-deficient mice when malate-glutamate substrate is
used, while oxygen consumption is significantly higher with malate palmitoyl-carnitine
substrate. These studies are consistent with the idea that fatty acid catabolism could
antagonize glucose catabolism by acetylating mitochondrial proteins. This is a further
development of Randle’s postulates [40], who stated that the provision of lipid fuel pro-
motes β-oxidation and suppresses glycolysis and oxidation of pyruvate due to inhibition of
hexokinase, phosphofructokinase, and pyruvate dehydrogenase (PDH). Decreased SIRT3
expression when fatty acids are high in availability may cause a permanent dependence
of cells on fatty acids as a fuel and compromise the transition of their metabolism to
glucose combustion.

Recently, it has also been reported that the antagonism between fatty acid catabolism
and glucose catabolism in a high-fat diet does not depend only on decreased SIRT3 ex-
pression and/or activity [37–39]. The acylcarnitine system has been found to be involved
in the acetylation of mitochondrial proteins and in the antagonism of fatty acids versus
glucose. Koves et al. emphasized that acylcarnitine may play a role in insulin resistance,
and acylcarnitine production is considered a detoxifying system that allows mitochondrial
efflux of excess acyl-groups [37]. This suggestion is based on their own data and Ram-
say’s study [37,38]. Ramsay proposed that the role of the carnitine system is to maintain
homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant
even under conditions of very high acyl-CoA turnover [38]. Davies et al. demonstrated
that carnitine acetyltransferase (CrAT) could be responsible for elevated levels of acetyl-
CoA and the acetylation of mitochondrial proteins, which is associated with metabolic
dysfunction [39]. CrAT is an enzyme that buffers the mitochondrial pool of acetyl-CoA by
converting short-chain acyl-CoAs to their membrane-permeable acylcarnitine analogues.
CrAT-deficiency increases tissue acetyl-CoA levels and susceptibility to diet-induced lysine
acetylation of broad-spectrum mitochondrial proteins, which is accompanied by decreased
whole-body glucose control [39]. CrAT was found to be responsible for the export of excess
acetyl-CoA from the mitochondrial matrix, and CrAT-knockout mice (CrAT−/−) showed a
similar over-acetylated phenotype as SIRT3-knockout mice (SIRT3−/−).

1.3. Over-Reduced State of Mitochondria Can Inhibit the Krebs Cycle but Not the “β-Oxidation”

Under hypoxic conditions, as well as under rest conditions, the NADH/NAD+ ratio
in mitochondria increases to maximal levels [41–43]. At high NADH levels, the process of
mitochondrial β-oxidation cannot be easily suppressed based on the principle of feedback.
In contrast, the enzymes of the Krebs cycle, α-ketoglutarate dehydrogenase (α-KGDH) and
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isocitrate dehydrogenase 3 (IDH3), are very sensitive to NADH and are inhibited by these
reducing equivalents not only in hypoxia but also when a cell contains high amounts of
ATP [44,45]. Evidence for these statements is briefly described below.

When pyruvate is combusted to CO2 and H2O in the Krebs cycle, there are no substan-
tial end products of the overall reaction that can inhibit this process other than ATP. This is
a prerequisite for mitochondrial ATP to directly inhibit pyruvate combustion by inhibiting
respiration. It should be noted that, in this case, the cell relies entirely on mitochondrial
ATP as a feedback mechanism, and this is the only factor that controls the Krebs cycle
and the assimilation of pyruvate. The feedback regulation of glucose metabolism by ATP
involves inhibition of the Krebs cycle by NADH, which is not consumed by complex I. We
propose that elevated levels of ATP and NADH do not have the ability (power) to inhibit
mFAO itself, specifically the part of mFAO preceding the Krebs cycle—β-oxidation. This
hypothesis is based on the studies described below.

The regulation of mitochondrial β-oxidation is entrusted mainly to AMP-activated
protein kinase (AMPK) and the mitochondrial ACC2—AMPK-ACC2 mechanism (Figure S1
in the Supplementary Materials). This mechanism should stop mFAO at normal and high
glucose concentrations, respectively, and normal and high ATP levels when AMPK is
deactivated (Figure S1A in the Supplementary Materials). However, the AMPK-ACC2
mechanism should activate the mFAO when glucose was depleted, ATP/ADP ratio de-
creased, APM appeared, and AMPK was activated (Figure S1B in the Supplementary
Materials). Therefore, we assume that, if the AMPK-ACC2 mechanism is compromised,
mitochondrial β-oxidation can get out of control and be functional even when: (i) the cell
contains a large amount of ATP, (ii) the mitochondrial matrix contains a high amount of
NADH, and (iii) the Krebs cycle is inhibited in certain segments.

The complete oxidation of one molecule of saturated acyl-CoA, such as palmitoyl-
CoA, must go through a series of chain-length specific enzymes, including acyl-CoA
dehydrogenases (ACADs), enoyl-CoA hydratases (EHs), 3-hydroxyacyl-CoA dehydroge-
nases (3HADs), and 3-ketothiolases (KATs), to catalyze the cyclic release of acetyl-CoA
units [46]. Only two of the four reactions are oxidative. The reactions catalyzed by FAD-
dependent ACADs cannot be directly inhibited by ATP, high transmembrane potential, or
high levels of FAD, which is a prosthetic group in these enzymes. No ATP binding sites
have been reported for these enzymes. They are not proton pumps and are independent of
the transmembrane potential.

The 3HAD enzymes that catalyze the second step of β-oxidation are NAD+-dependent,
and, because NAD+ and NADH are cofactors, their concentrations may affect their enzy-
matic activity. In 1998, Eaton et al. investigated the sensitivity of isolated mitochondrial
TFP activity to different concentrations of NADH and acetyl-CoA, two end-products
of β-oxidation [47]. The authors found that the TFP was relatively insensitive to the
NAD+/NADH ratio. The inhibition of its enzyme activity begins at an NAD+/NADH
ratio of less than 1 or 2.5 (when NADH increases above 50 to 60%). Sahlin and Katz
demonstrated that mitochondrial NADH in skeletal muscles at rest does not exceed 60%,
while, in active heart muscle, it does not exceed 13% [42]. Therefore, it can be concluded
that the TFP cannot be inhibited at physiological concentrations of NADH. In comparison,
α-KGDH, a key enzyme in the Krebs cycle, is almost completely inhibited by 50% of NADH
and its activity decreases more than two-fold at 25% of NADH [48,49]. The inhibition of
NAD-dependent IDH is even more pronounced [50]. The IC50 values for different isoforms
of NAD-dependent IDH vary between 7.8% and 9.4% of NADH versus NAD+ and reach
almost complete inhibition at 35 to 40% of NADH [50].

If the concept that ATP and NADH do not have enough power to inhibit the spi-
ral process of mitochondrial β-oxidation is right, the result from its overactivation will
be an accumulation of four main products: reduced coenzyme Q10 (Q10H2), succinate,
more NADH, and acetyl-CoA, as reported by Randle, as well as in more recent studies
(Figure 1A) [31,51,52]. High levels of NADH and/or acetyl-CoA will inhibit the Krebs
cycle, PDH, and complex I.
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Figure 1. (A) Possible consequences of the overactivated β-oxidation in mitochondria: high
Q10H2/Q10 ratio and accumulation of acetyl-CoA and succinate. This could lead to high lev-
els of NADH and acetyl-CoA that inhibit the Krebs cycle, PDH, and complex I of the mitochondrial
ETC. The green arrows indicate accumulated metabolites. The red blunt ends indicate the inhibition
of a particular enzyme. (B) NNT-catalyzed conversion of NADH to NADPH in mitochondria and
reductive carboxylation of α-ketoglutarate to isocitrate, catalyzed by IDH1 and IDH2. Abbreviations:
ETC: electron transport chain; α-KG: α-ketoglutarate; IDH: isocitrate dehydrogenase; NNT: NAD(P)
transhydrogenase; OAA: oxaloacetate; Q: Coenzyme Q10 (oxidized form); QH2: coenzyme Q10
(reduced form); PDH: pyruvate dehydrogenase; PC: pyruvate carboxylase; Succ: succinate; Succ-CoA:
succinyl-CoA; TFP: trifunctional protein; VLCDH: very long chain acyl CoA dehydrogenase.

Recently, Guarás et al. found that the shift from glucose to fatty acid metabolism
increases electron flux through FAD-dependent enzymes, which saturates the Q-pool and
leads to reverse electron transport (RET) through complex I [52]. In addition, this is accom-
panied by the downregulation of complex I. It is not clear whether this downregulation
occurs through the direct destruction of complex I by increased production of reactive
oxygen species (ROS) or by ROS-mediated regulatory pathways. Their results support
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the idea that the coenzyme Q10 redox state acts as a metabolic sensor that fine-tunes the
mitochondrial ETC configuration to adjust the electron flux to the FADH2/NADH ratio.

The excretion of oncometabolite succinate from cancer cells is considered an important
signal that stimulates their migration, invasion, and metastases [53–55]. Many dysregula-
tions of succinate dehydrogenase (SDH) in cancer cells are discussed [53].

Recently, Li et al. reported that the stimulation of cardiomyocytes with palmitate
increased mFAO, which led to the intracellular accumulation of succinate and its release in
the extracellular space [56]. Interestingly, the authors found that accumulated succinate
induces a hypoxia-like condition via increased HIF-1α expression, as well as impaired
PDH activity via the upregulation of pyruvate dehydrogenase kinase 4 (PDK4) expression.
It should be noted that increased succinate has also been found in the blood of humans
and mice with obesity [57,58]. It is well known that, in obese individuals, the level of free
fatty acids in the blood is markedly high [59]. In turn, this provides strong support of a
relationship between overactivated β-oxidation and SDH inhibition.

1.4. Reductive Carboxylation, Over-Reduced State of Mitochondrial Matrix, and Krebs
Cycle Impairments

In cancer cells, overactivated β-oxidation, characterized by a compromised AMPK-
ACC2 mechanism, could be combined with acetylated mitochondria, hypoxia, and/or
impaired ETC function. The combination of these factors could further increase the pres-
sure of NADH in the mitochondrial matrix. NADH, which is not consumed by complex
I, is oxidized and converted to NADPH by mitochondrial nicotinamide nucleotide tran-
shydrogenase (NNT) to increase the reductive carboxylation of α-ketoglutarate (α-KG)
(Figure 1B). The reductive carboxylation of α-KG was found to be activated in many types
of cancer cells, and the driving force is the reduced state of the matrix in the form of
NAD(P)H [60–62]. At such a redox state, the Krebs cycle is at least partially inhibited. This
raises the question: is it possible for β-oxidation to work at an inhibited Krebs cycle?

Defects in complex I and complex III directly support reductive carboxylation in the
normal direction of the Krebs cycle. While Gameiro et al. noted that the source(s) of
NADPH contribution to reductive carboxylation in mitochondria is/are unknown, the
authors also found that the NNT enzyme is an important intermediate of the driving force
that causes reductive glutaminolysis [60]. Another study demonstrated that cancer cells
with defective mitochondria use glutamine-dependent reductive carboxylation rather than
oxidative metabolism as the major pathway for citrate formation [61]. The authors found
that the reductive glutamine-dependent pathway is the dominant mode in the metabolism
of cancer cells (renal carcinoma) derived from patients with mutations in fumarate hy-
dratase, as well as in cells with normal mitochondria subjected to acute pharmacological
inhibition of ETC [61]. They assumed that the cause and driving force of this mechanism is
the increased NADH/NAD+ ratio in the mitochondrial matrix because of the decreased
oxidative capacity of the Krebs cycle. According to their results, the NADH/NAD+ ra-
tio could be partially dissipated by NAD(P)-transhydrogenase, which transfers reducing
equivalents from NADH to NADPH and, in turn, can cause NADPH-dependent reduc-
tive carboxylation by isocitrate dehydrogenases (IDH1 and IDH2) (Figure 1B). In hypoxic
melanoma cells, the reverse flux of the Krebs cycle through IDH1 and IDH2 has been found
to also be required for lipogenesis and viability [63]. Although this is a good model to
explain the mechanism of reductive carboxylation, it is incomplete. It is worth noting
that the inhibition of ETC may increase the NADH/NAD+ ratio for a short time and may
decrease the oxidative capacity of the Krebs cycle. This means that the Krebs cycle is
inhibited and can no longer produce NADH. Therefore, other processes that can produce
NADH will need to be examined.

Another decisive factor in this regulation is defects in the Krebs cycle. Such defects are
common in cancer cells. Mutations have been found in several key enzymes of the Krebs
cycle, including IDH, fumarate hydratase (FH), and SDH [53,61,62,64]. Furthermore, α-
KGDH is known to be downregulated in some cancers [45,65]. Recently, the citrate–malate
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shuttle was found overexpressed in cancer cells with an impaired Krebs cycle [66]. Although
the activity of mFAO has not been studied in cancer cells containing simultaneously
mutations in the Krebs cycle, it is worth asking: how can mFAO work with a disrupted
Krebs cycle due to mutations in SDH, FH, and/or a-KGDH? In fact, the β-oxidation
pathway, in combination with such impairments in the Krebs cycle, may work well together
with the citrate–malate shuttle. Such an unconventional metabolic pathway can be used as
an energy source, which is an alternative to glycolysis and standard mFAO. When acetyl-
CoA cannot be completely oxidized, citrate leaves the mitochondria, causing enormous
cataplerosis. The energy efficiency of such a metabolic pathway has not yet been considered
compared to other cellular energy sources, but it is quite unique, as described below.

2. Definition of the “β-Oxidation Shuttle” and Its Components: Energy Efficiency

When β-oxidation is overactivated due to an impaired AMPK-ACC2 mechanism
or the high availability of fatty acids, it may change the redox state of mitochondria in
favor of an increased NADH/NAD+ ratio because the mitochondrial trifunctional protein
is less sensitive to inhibition by an NADH-dependent feedback mechanism [47]. If the
ATP demand of the cell is low, it will further alter the reduced state of the mitochondrial
matrix and increase NADH. Effects such as ETC dysfunction and partial hypoxia, capable
of changing the redox balance of the mitochondrial matrix in the direction of a high
NADH/NAD+ ratio, could also be combined with overactivated mitochondrial β-oxidation
and could inhibit certain enzymes of the Krebs cycle. Mutations in some enzymes of the
Krebs cycle increase the ability of β-oxidation to function without part of the Krebs cycle.
If β-oxidation is not connected to the Krebs cycle but rather to the citrate–malate shuttle, it
forms a separate and independent metabolic pathway, which has its own energy efficiency,
oxygen consumption, and impact on other metabolic pathways. We denoted this metabolic
state “β-oxidation shuttle” to distinguish it from the other metabolic states, as well as
from the standard mitochondrial β-oxidation working with the functional Krebs cycle
(Figure 2A). The “β-oxidation shuttle” brings a major advantage to the cell related to the
export of citrate and NADPH from the mitochondria into the cytoplasm and supports all
anabolic processes (Figure S2 in the Supplementary Materials).

The “β-oxidation shuttle” is able to maintain the NADH/NAD+ ratio at the highest
possible level in the mitochondrial matrix. The dissipation of this reduced state occurs
by transferring reducing equivalents from NADH to NADP+ via NNT and by exporting
reducing equivalents, such as NADPH, from the mitochondrial matrix to the cytoplasm.
NNT is located on the inner mitochondrial membrane and is an energy-dependent enzyme.
It is driven by the mitochondrial proton motive force (∆p), and its activity is directly
dependent on the respiratory state of the mitochondria [67,68].

The significance of NNT overexpression in cancer progression has been described
in several studies [69–71]. Lactate dehydrogenase (LDH), which produces cytoplasmic
NAD+, is able to dissipate this pressure by decreasing the import of cytoplasmic reducing
equivalents into the matrix via the malate–aspartate shuttle [72]. Thus, activating LDH in
cancer cells that are addicted to the “β-oxidation shuttle” should act as a compensatory
mechanism to decrease the irregularly changed redox state of the mitochondrial matrix.
Pyruvate can be eliminated from the metabolism by other reactions, such as transamination
into alanine, if pyruvate is not required for ATP production in the mitochondria. Alanine
could be easily excreted by cells and be used by the liver in the glucose–alanine cycle.
However, cancer cells prefer to remove excess lactate through LDH and face a low pH. We
assume that the goal of increased anaerobic glycolysis in the cell over the need for pyruvate
in the mitochondria is not only to produce ATP but also to compensate the redox state of
the mitochondrial matrix through LDH expression. Some types of cancer cells also produce
additional pyruvate through the malic enzyme [73]. This may also be a compensatory
mechanism for decreasing the NADH/NAD+ ratio.
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Figure 2. (A) Schematic representation of the “β-oxidation shuttle” in mitochondria: the relation
between β-oxidation, the citrate–malate shuttle, and the formation of a separate and independent
metabolic pathway, which has its own energy efficiency, own oxygen consumption, and own influence
on other metabolic pathways. The green arrows indicate the metabolic flux from fatty acids. The
red arrows indicate the metabolic flux from glucose. The red blunt ends indicate the inhibition of
a particular enzyme. The blue arrows indicate the citrate-malate shuttle. (B) Phosphate/oxygen
(P/O) ratio and oxygen consumption in the combustion of glucose and palmitate in the “β-oxidation
shuttle” and other metabolic pathways—a comparison. Abbreviations: ACLY: ATP citrate lyase; CIC:
mitochondrial citrate carrier; CTP1 and CTP2: carnitine palmitoyl transferases 1 and 2; F6P: fructose-6-
phosphate/fructose-1,6-bisphosphate; G6P: glucose-6-phosphate; GAP: glyceraldehyde-3-phosphate;
α-KG: α-ketoglutarate; MAS: malate–aspartate shuttle; MPC: mitochondrial pyruvate carrier; NNT:
NAD(P) transhydrogenase; OAA: oxaloacetate; PDK: pyruvate dehydrogenase kinase; PDH: pyruvate
dehydrogenase; PC: pyruvate carboxylase; PFK1: phosphofructokinase-1; PK: pyruvate kinase; PEP:
phosphoenolpyruvate; Succ: succinate.

We propose that the “β-oxidation shuttle” consists of mitochondrial β-oxidation and
a citrate–malate shuttle. In turn, the citrate–malate shuttle consists of a transmembrane
transporter, mitochondrial citrate/isocitrate carrier (CIC), and several enzymes, includ-
ing ATP-citrate lyase (ACLY) and malate dehydrogenases 1 and 2 (MDH1 and MDH2)
(Figure 2A). What is the impact of these components in the context of carcinogenesis?
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Citrate is at the crossroads of many metabolic pathways and is an indispensable
source of carbons in the mitochondria and cytosol, a key substrate for the generation of
energy, as well as an allosteric modulator of several enzymes (Figures S1 and S2 in the
Supplementary Materials). When glucose is abundant, the majority of intracellular citrate
comes predominantly from the oxidative decarboxylation of pyruvate in the mitochondria.
It is then exported to the cytoplasm via the CIC in exchange for malate. CIC plays an
important role in lipogenesis and is also a key component of the isocitrate–oxaloacetate
and citrate–malate shuttles. Numerous studies have demonstrated the pro-inflammatory
and pro-oncogenic effects of CIC, as well as its participation in reversing the Warburg
effect [74–78]. The fundamental role of CIC and its upregulation in cancer, inflammation,
and beyond are well known. High levels of CIC in tumors are thought to allow for
adaptation to nutritional stress and resistance to mitochondrial respiration injury [75]. It is
interesting to note that CIC expression is also regulated by diet. For example, starvation
and a diet enriched with polyunsaturated fatty acid could significantly downregulate the
expression of this transporter protein [79]. Decreased expression of proteins involved in
FAS, including CIC, is also relevant to the loss of adipose tissue mass in cancer-bearing
animals subjected to chemotherapy [80].

ACLY is a key metabolic enzyme that catalyzes the conversion of citrate to acetyl-CoA
in the cytoplasm. ACLY is upregulated in cancer cells and is required for their growth [81].
ACLY overexpression has been associated with increased tumor progression in many
cancers, including breast, lung, brain, colorectal, hepatocellular, and others [82–88]. ACLY
expression and inhibition have also been associated with other chronic diseases, such as
diabetes, obesity, non-alcoholic fatty liver disease, cardiovascular diseases, inflammatory
disorders, and neurodegenerative diseases [81].

An important circumstance related to the “β-oxidation shuttle”, which has not been
discussed so far, is its dependence on mitochondrial MDH2. MDH2 is part of the Krebs
cycle, and the catalyzed reaction is referred to as reversible, although its standard Gibbs free
energy is positive, and the backward reaction is preferred under standard conditions [89].
However, MDH2 is allosterically regulated by three metabolites: citrate, malate, and
oxaloacetate [90]. These three metabolites inhibit MDH2 activity in the backward direction
from NADH to NAD+. They may also inhibit MDH2 activity in the forward direction
from NAD+ to NADH, but only at low concentrations of malate and NAD+ as substrates.
In contrast, citrate, malate, and oxaloacetate activate MDH2 in the forward direction
from NAD+ to NADH at higher substrate concentrations. It was noted above that the
mitochondrial NADH in skeletal muscles at rest is between 36% and 60% [42]. Therefore, it
can be concluded that NAD+ in the mitochondrial matrix should be sufficient to prevent
the inhibition of the forward reaction. However, the presence of malate and citrate in the
matrix should activate the enzyme in the forward direction.

This model of regulation of the activity of MDH2 also suggests that higher amounts of
enzyme in the mitochondria will accelerate the forward reaction (in the direction of NADH)
and will support the existence of the “β-oxidation shuttle” in cancer cells. Recently, the
level of MDH2 in urine was found to be higher in patients with non-small-cell lung cancer
compared to the same parameter in the healthy population [91]. The same study reported
that MDH2 knockdown in lung cancer cell lines inhibits cell proliferation.

Hanse et al. demonstrated that cytosolic MDH1 can activate glycolysis by producing
NAD+ in the cytoplasm as an alternative to LDH as a supplier of NAD+ in various cancer
cell lines [92]. The amplification of MDH1 occurs with an impressive frequency in human
tumors and correlates with a poor prognosis. On the other hand, if additional processes
producing NADH in the cytoplasm are activated in cancer cells, they will increase the
NADH/NAD+ ratio and MDH1 will decrease the additional reductive pressure in the
cytoplasm. Cytosolic aldehyde dehydrogenases (ALDHs) and the polyol pathway for the
synthesis of fructose from glucose have also been discussed as providers of NADH in the
cytoplasm and have been found to be abnormally activated in cancer (Figure S3 in the
Supplementary Materials) [93–96]. Both factors (ALDHs and polyol pathway) appear to
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be important for cancer cell survival. Thus, additional suppliers of the cytoplasm with
reducing equivalents, such as NADH, could be interpreted as accelerators of MDH1 for
malate production and for increasing the availability of malate in mitochondria, which
could activate mitochondrial MDH2.

Interesting results have recently been published by Sullivan et al. [97]. They observed
that changing the redox state using ETC inhibitors and other redox alterations may affect the
synthesis of aspartate. Cancer cells, whose growth was suppressed by ETC inhibitors, died
from aspartate deficiency (not from ATP deficiency) and could be saved by the addition of
aspartate [97]. The second finding is that ETC inhibitors could inhibit the malate–aspartate
shuttle and increase the cytoplasmic NADH/NAD+ ratio. This can lead to the inhibition of
glycolysis and ATP depletion. Although this study showed that mitochondrial function
is important for the survival of cancer cells, this does not mean that the production of
mitochondrial ATP is the only vital factor. MDH2 and cytoplasmic MDH1 are part of the
citrate–malate shuttle, but they are also part of the malate–aspartate shuttle [72]. The malate–
aspartate shuttle transfers reducing equivalents from the cytoplasm to the mitochondria
and is also involved in the pathways for aspartate synthesis.

Our hypothesis is that the “β-oxidation shuttle” is expressed when the redox state
of the matrix reaches the point of inhibition of α-KGDH and NAD-dependent IDH (or at
least NAD-dependent IDH only), but MDH2 is not inhibited. A further increase in the
NADH/NAD+ ratio may inhibit MDH2, which will simultaneously stop three processes:
the malate–aspartate shuttle, the synthesis of aspartate, and the citrate–malate shuttle. With
regard to which of these three processes is the most important for the survival of cancer
cells, surprisingly, it seems that this is not the provision of reducing equivalents for ATP syn-
thesis but the synthesis of aspartate [97]. Cancer cells require many biochemical processes
to grow and survive. Two of them are essential and are provided by mitochondria, namely
(i) the synthesis of citrate, which is a precursor for the synthesis of lipid ingredients (phos-
pholipids, sphingolipids, coenzyme Q, and cholesterol), and (ii) the synthesis of aspartate,
which is a precursor for the synthesis of purines, pyrimidines, and, ultimately, DNA.

Partial defects in mitochondrial complexes I and III should exert pressure on the
Q10H2/Q10 ratio and increase the inhibitory effect of β-oxidation on SDH. The inhibition
of ETC will also increase the NADH/NAD+ ratio to inhibit α-KGDH and NAD-dependent
IDH (Figure 1). In fact, some mutations in the subunits of complex I that are responsible for
its deficient (altered) activity lead to the stimulation of tumor growth and metastasis [65].
However, further inhibition of ETC could cause problems, even for cancer cells that are
completely addicted to glycolysis and do not rely on mitochondria for ATP synthesis [65].
Although the “β-oxidation shuttle” can provide ATP to the cell, the main function of this
metabolic pathway seems to provide cytoplasmic citrate for lipid synthesis and to support
aspartate synthesis and DNA synthesis, respectively, which is crucial for the survival of
cancer cells [97].

Assuming that the “β-oxidation shuttle” is a key characteristic of some types of cancer
cells, we should be able to compare its energy efficiency with that of glycolysis when
combined with the combustion of pyruvate in the Krebs cycle. The energy efficiency
and oxygen consumption of the “β-oxidation shuttle” can be calculated by following the
generally accepted opinions and approaches for calculating the phosphate/oxygen (P/O)
ratio from NADH and FADH2 [98].

The comparison between the “β-oxidation shuttle” with the standard “β-oxidation +
Krebs cycle” shows that the partial combustion of palmitate in the “β-oxidation shuttle”
produces 26 moles of ATP, while its combustion in the “β-oxidation + Krebs cycle” produces
98 moles of ATP from 1 mole of palmitate (Figure 2B). Therefore, 3.76 times less ATP is
produced in the “β-oxidation shuttle” compared to the “β-oxidation + Krebs cycle”. A
comparison between the “β-oxidation shuttle” and the standard glucose combustion in the
“glycolysis + Krebs cycle + malate–aspartate shuttle” shows that the oxygen consumption
per mole of ATP is 0.269 moles of oxygen in palmitate partial oxidation versus 0.1875 in
glucose oxidation, which is approximately 1.43 times higher oxygen consumption in the
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“β-oxidation shuttle”. The “β-oxidation shuttle” shows the lowest P/O ratio of 1.86. More-
over, in the cycle “β-oxidation shuttle + FAS”, when NADPH is coming only from PPP, the
oxygen consumption is 0.64 moles per mole of ATP. Therefore, “β-oxidation shuttle + FAS”
consumes approximately 3.4 times more oxygen per mole of ATP than “glycolysis + Krebs
cycle + malate–aspartate shuttle”.

We need to clarify that these calculations are approximate and need to be refined
because of the existence of the final product in each metabolic pathway, such as acetyl-
CoA used in fatty acid synthesis. To calculate the actual energy efficiency and the ac-
tual oxygen consumption in a metabolic pathway that has a final product, the energy
required to utilize this product must also be included in the equations. However, this
did not significantly change the differences between the four combinations of metabolic
pathways described in Figure 2B.

Theoretically, we can consider the coexistence of the two processes, “β-oxidation
shuttle + FAS”, as a separate metabolic cycle when β-oxidation is overactivated and the
Krebs cycle is inhibited (even partially). This artificial process is energetically possible
and relies only on NADPH availability. This NADPH could be produced in PPP or reduc-
tive glutaminolysis if combined with NADPH-dependent IDH and isocitrate-dependent
NADPH exporting shuttle.

The ability of cancer cells to express both metabolic pathways simultaneously, namely
FAS and mFAO, seems strange. We are accustomed to assuming that it is not energetically
profitable for the cell to synthesize a substance and decompose it simultaneously. Typically,
much more energy is used for synthesis than is released during the decomposition of the
same compound. However, this rule does not apply when energy comes from NADPH.
The cycle “β-oxidation shuttle + FAS” is energetically beneficial to some extent because
β-oxidation of palmitate produces more ATP compared to the amount of ATP spent on
its synthesis. The difference in energy is covered by NADPH, which can be produced in
several ways. Thus, the artificial cycle “β-oxidation shuttle + FAS” could be considered as
a process for converting NADPH energy into energy of some amount of ATP.

3. Conclusions

In this article, we did not discuss whether the “β-oxidation shuttle” really exists or
in how many cancer cells it is expressed. Our goal was to use this model to calculate
the energy efficiency and oxygen consumption in irregularly activated mitochondrial
β-oxidation when the Krebs cycle is inhibited and the final product acetyl-CoA is used in
the synthesis of fatty acids.

There are several reasons why this cycle may not occur. For example, the lipotoxicity
of palmitate and stearate could be an important factor. This may explain why some cancer
cells are addicted to extrinsic fats. However, this does not prevent the coexistence of the
two metabolic pathways, FAS and “β-oxidation shuttle”. Acetyl-CoA produced in the
“β-oxidation shuttle” must be consumed, and the cost should be paid. This cost is the
energy consumed for the utilization of acetyl-CoA, which could be the energy for FAS. In
2020, it was reported that inhibitors of fatty acid binding proteins, a family of proteins
that transport fatty acids across the membranes, suppressed tumor growth by regulating
fatty acid metabolism [99]. This suggests that cancer cells appear to be more dependent on
external fatty acids than on their own.

It should be noted that the “β-oxidation shuttle” fits well with the Warburg effect,
which has not yet been convincingly explained. When cancer cells are removed from their
natural hypoxic environment, they may have normal oxygen consumption, but they still
prefer to convert glucose anaerobically. The increased oxygen demand of the “β-oxidation
shuttle”, combined with the inhibited activity of PDH and partially inhibited β-oxidation
enzymes, can lead to seemingly normal oxygen consumption combined with lactate pro-
duction, inefficient mitochondrial ATP synthesis, and huge cataplerosis. This explains the
Warburg effect, as well as uncontrolled growth and proliferation. In this context, glycolysis
and OXPHOS should not be antagonized because OXPHOS can coexist with anaerobic
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glycolysis when the “β-oxidation shuttle” is expressed. The possible inefficient synthesis
of ATP in the “β-oxidation shuttle” provides conditions for some tumors to be dependent
simultaneously on OXPHOS and glycolysis (such as gliomas) [7–9]. The synthesis of mito-
chondrial ATP becomes more inefficient in relation to the “β-oxidation shuttle” as more
cancer cells should depend on glycolysis.

The main role of the “β-oxidation shuttle” should be the export of citrate and huge
cataplerosis, the main characteristic of cancer cells. On the other hand, we consider that the
over-reduced mitochondrial matrix is a major cause of the expression of β-oxidation outside
the Krebs cycle, and, at the same time, it is a consequence of overactivated mitochondrial
β-oxidation. LDH helps cancer cells to decrease the reduced state of the mitochondrial ma-
trix by producing NAD+. This explains anaerobic glycolysis as a compensatory mechanism
not only for ATP production but also for mitigating the consequences of the enormously
increased redox state of the mitochondria.

The calculations show that the “β-oxidation shuttle” is inefficient as an energy source
and must consume at least two to four times more oxygen per mole of ATP produced when
combined with acetyl-CoA consuming pathways, such as FAS and the mevalonate pathway
(Figure 2B). This could be a clue to a new potential source of hypoxia in cancer.

The “β-oxidation shuttle” could be expressed to some extent under control in non-
cancerous proliferating cells, as well as in certain types of immune cells and embryonic
cells. However, this expression should be reversible, whereas, in cancer cells, it should
be irreversible. The “β-oxidation shuttle” may be tightly connected with some chronic
diseases, such as diabetes 2, obesity, fatty liver disease, and cardiac hypertrophy, but it is
difficult to predict whether this “weird” metabolic pathway is reversible in these diseases.
These assumptions require experimental validation, and whether it is possible to restore
the normal functionality of mitochondria after they fall into this metabolic dysfunction will
need to be clarified.

Thus, the role of the “β-oxidation shuttle” in impaired cancer metabolism should be
investigated in future studies. This artificial cycle may hold the key to elucidating the
metabolic mechanism by which cancer contributes to hypoxia and genomic instability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14040871/s1, Figure S1: Regulation of FAS and mFAO
by AMPK at normal or high ATP/ADP ratio or low ATP/ADP ratio: AMPK-ACC2 mechanism;
Figure S2: Links between the “β-oxidation shuttle”, malate–aspartate shuttle, and glutaminolysis;
Figure S3: Polyol pathway in solving the redox equation of the “β-oxidation shuttle”.
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Abbreviations

ACAD acyl-CoA dehydrogenase
ACC1 acetyl-CoA carboxylase
ACLY ATP-dependent citrate lyase
ALDH aldehyde dehydrogenase
AMPK adenosine monophosphate-activated protein kinase
CIC citrate/isocitrate carrier
CPT carnitine palmitoyl transferase
CrAT carnitine acetyltransferase
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EH enoyl-CoA hydratase
ETC electron transport chain
mFAO mitochondrial fatty acid oxidation
FAS fatty acid synthesis
FH fumarate hydratase
3HAD 3-hydroxyacyl-CoA dehydrogenase
HIF-1α hypoxia inducible factor one alpha
IDH isocitrate dehydrogenase
KAT 3-ketothiolases
α-KG alpha-ketoglutarate
α-KGDH alpha-ketoglutarate dehydrogenase
LDH lactate dehydrogenase
MCD malonyl-CoA decarboxylase
MDH malate dehydrogenase
NNT nicotinamide nucleotide transhydrogenase
OXPHOS oxidative phosphorylation
PDH pyruvate dehydrogenase
PDK pyruvate dehydrogenase kinase
PPP pentose phosphate pathway
Q10 and Q10H2 coenzyme Q10 (oxidized and reduced forms)
RET reverse electron transport
ROS reactive oxygen species
SDH succinate dehydrogenase
SIRT sirtuin
TFP mitochondrial trifunctional fatty acid oxidation enzyme
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