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abstract

PURPOSEMetastatic prostate cancer is initially sensitive to androgen receptor inhibition, but eventually becomes
castration-resistant prostate cancer (mCRPC). Early use of more intensive therapies targeting androgen receptor
and other oncogenic drivers in treatment-naı̈ve primary prostate cancer (PC) may be more effective than that in
advanced mCRPC. However, analysis of primary tumors may not reveal targetable metastatic drivers that are
subclonal in the primary tumor or acquired at metastatic sites.

METHODS PC samples spanning one patient’s clinical course: diagnostic biopsies, pre- or post-enzalutamide
metastatic biopsies, and rapid autopsy samples including a patient-derived xenograft (PDX) were analyzed by
targeted exome sequencing followed by phylogenetic analysis.

RESULTS Left- and right-lobe primary PC tumors appeared to diverge, with the right acquiring additional shared
mutations and striking differences in copy number alterations that later appeared in metastatic samples during
the treatment course and at autopsy, whereas the left base tumor maintained a quiet copy number alteration
landscape and partitioned into a dead-end node. RB1 loss, a common finding in advanced castration-resistant
disease, was identified throughout mCRPC samples, but not in the primary tumor. Significantly, a truncal EGFR-
activating mutation (R108K) was identified in the primary tumor and was also found to be maintained in the
mCRPC samples and in a PDX model. Furthermore, the PDX model remained sensitive to the EGFR inhibitor
erlotinib, despite the presence of both RB1 and BRCA2 losses.

CONCLUSION These findings indicate that truncal alterations identified in primary PC can drive advanced
mCRPC, even in the presence of additional strong oncogenic drivers (ie, RB1 and BRCA2 loss), and suggest
that earlier detection and targeting of these truncal alterations may be effective at halting disease progression.
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INTRODUCTION

Localized prostate cancer (PC) can be curable, but
metastatic recurrence is unfortunately common. Met-
astatic PC is initially sensitive to androgen receptor (AR)
inhibition, but eventually becomes castration-resistant
(mCRPC). Early use of more intensive therapies tar-
geting AR and other oncogenic drivers may be more
effective than in advanced mCRPC. However, as on-
cogenic alterations found inmCRPC are less frequent in
treatment-naı̈ve primary PC, analysis of primary tumors
may not reveal targetable metastatic drivers that are
subclonal in the primary tumor or acquired at metastatic
sites. Here, we analyzed PC samples spanning one
patient’s clinical course: diagnostic biopsies, pre- or
postenzalutamide metastatic biopsies, and rapid au-
topsy samples including a patient-derived xenograft
(PDX). Consistent with mCRPC being driven by non-
truncal alterations, we identified RB1 loss throughout
mCRPC samples, but not in the primary tumor.

However, we identified a truncal epidermal growth
factor receptor (EGFR)-activating mutation (R108K)
in the primary that was maintained in mCRPC samples
and the PDX and significantly showed that the PDX still
responded to the EGFR inhibitor erlotinib despite the
presence of both RB1 and BRCA2 losses. These
findings indicate that truncal alterations identified in
primary PC can drive advanced mCRPC, even in the
presence of additional strong oncogenic drivers (ie,
RB1 loss and BRCA2 loss), and suggest that earlier
detection and targeting of these truncal alterations may
be effective at halting disease progression.

RESULTS

Previous autopsy studies have demonstrated the
monoclonal origin of metastatic PC, with oncogenic
driver alterations being relatively conserved across
metastatic sites.1-3 However, most studies have
inferred cancer evolution from autopsy specimens
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alone, without access to longitudinal tissue specimens.
Here, we investigate whether oncogenic drivers of ad-
vanced disease are present in the primary tumor, thus
allowing for early identification of therapeutic targets
without metastatic tissue, especially in men experiencing
biochemical recurrence (rising serum prostate–specific
antigen, without overt metastases) or men who have un-
dergone prostate biopsy and then are discovered to have
metastatic disease on staging imaging.

Following an elevated screening of prostate-specific anti-
gen (PSA), a 68-year-old Black gentleman underwent
prostate biopsy, yielding 9 of 12 cores with Gleason score
(GS) 4 + 4, 4 + 5, and 5 + 4 adenocarcinoma (Fig 1A).
Imaging revealed pathologic pelvic and para-aortic
lymphadenopathy and bone metastases. He received
bicalutamide monotherapy given his preference to avoid
androgen deprivation therapy (ADT) toxicity, followed
11 months later at progression, by conventional ADT with a
gonadotropin-releasing hormone receptor (GnRHR) ago-
nist (per contemporary standard of care; Fig 1B). After only
five months of ADT response, he consented to a clinical trial
of enzalutamide with tumor biopsies acquired before
therapy initiation and at progression, which were both
obtained from a lung metastasis. He progressed after six
months with significant dysgeusia and dysphagia, declined
further therapy, and died seven months later. We per-
formed a rapid autopsy, for which he previously consented,
and collected 15 additional tumor samples from lung, liver,
lymph nodes, and bone metastases.

We isolated DNA from diagnostic prostate biopsies (in-
cluding pathologist-assessed benign areas for matched
normal DNA) and matched lung metastasis biopsies pre-
and post-enzalutamide therapy, rapid autopsy samples,
and two PDXs created from a liver metastasis. We per-
formed targeted sequencing using a single custom
hybrid capture panel of 754 genes altered in cancer
generally5 or PC specifically,6 including baits against

important intronic regions in key genes: AR, including its
upstream enhancer,7,8 ERG (introns 3-4), ERBB2, RB1,
TMPRSS2, and TP53 (Data Supplement). We analyzed
somatic mutations and copy number alterations (CNAs),
and we modeled cancer evolution using a phylogeny
prediction algorithm. Notably, deleterious germline al-
leles of tumor suppressors were not observed. Data are
available in the database of Genotypes and Phenotypes
(dbGaP, accession: phs002398.v1.p1), and a Genomic
Supplement with Variant Call Format (VCF) segmentation
(SEG) files are available on GitHub.9

Broadly, there were evidence of amonoclonal origin of tumor
in the prostate given shared mutations [EGFR (R108K),
PTPRT (H1408L), and ZNF292 (K2093E)] across all diag-
nostic biopsies (Fig 2 and Data Supplement) and evidence of
whole-genome doubling (WGD) by allele-specific copy
number analyses and two copies of the X chromosome in
almost every tumor sample. WGD is an infrequent event in
primary PC.10 However, the left- and right-lobe tumors
appeared to diverge, with the right acquiring additional
shared mutations and striking differences in CNAs that later
appeared in metastatic samples during the treatment course
and at autopsy, whereas the left base tumor only developed a
more focal chromosome 1q gain (Fig 2 and Figs 3A and 3B).
Notably, despite containing high-grade (GS 5 + 4 and 4 + 4)
PC, with a particularly aggressive intraductal pattern, the left
base tumor had a relatively quiet CNA landscape (Fig 3B and
Genomic Supplement),9 and phylogenetic analysis of CNAs
and mutations with consideration of allele-specific somatic
copy number alterations and variant allele frequency indi-
cated that the left-lobe tumor partitioned into a dead-end
node and did not seed the majority of metastases (Data
Supplement). This supports an association between
quiet CNA landscape and indolence and indicates that
additional nontruncal genomic events found in the right-
sided tumor were required to facilitate metastasis and
treatment resistance.

CONTEXT

Key Objective
Can targeted sequencing of hormone-sensitive primary prostate cancer (PC) identify drivers of metastasis that are targetable in

advanced castration-resistant prostate cancer (CRPC)?
Knowledge Generated
Our findings indicate that truncal alterations identified in primary PC (ie, EGFR R108K) can drive advanced metastatic CRPC,

even in the presence of additional strong oncogenic drivers (ie, RB1 loss and BRCA2 loss). Furthermore, the EGFR
(R108K) truncal alteration can be effectively targeted with available therapies to inhibit tumor growth, despite the presence
of additional drivers.

Relevance
These results suggest that earlier detection and targeting of truncal alterations may be effective at halting disease progression

and support the biopsying and clinical sequencing of hormone-sensitive disease from primary PC to identify targetable
drivers of advanced CRPC.
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FIG 1. Clinical course and pathologic assessment of primary prostate cancer in rapid autopsy patient. (A) Representative H + E stains of biopsy
cores sampled from the six regions of the prostate. Two cores were taken per region, and the cumulative GS and percent of core involvement are
described. Prostate diagram created with BioRender.4 (B) (Upper) Timing of patient treatment, clinical biopsies, and rapid autopsy and (Lower) PSA
responses followingmultiple androgen deprivation therapies. GS, Gleason score; GnRHRa, gonadotropin-releasing hormone receptor agonist; PSA,
prostate-specific antigen; TRUS, transrectal ultrasound biopsy.

Einstein et al

1516 © 2021 by American Society of Clinical Oncology



Furthermore, phylogenetic analysis partitioned those au-
topsy samples from the lymph nodes into truncal branches
(Data Supplement, right prostate and node 1), whereas
visceral metastases to the lung and liver partitioned to
separate branches with acquisition of additional genomic
alterations (Data Supplement, Nodes 2 and 3). Clinically,
visceral metastatic PC is known to act more aggressively
than metastases to lymph nodes or bone without visceral
involvement, a distinction made in several clinical trials.11,12

This analysis suggests an association between genomics
and metastatic seeding: on top of the homozygous dele-
tions of tumor suppressors and amplification of AR seen in
nodal metastases, lung involvement was defined by mu-
tations in AR and ITSN1 and liver involvement was defined
by mutations in genes involved in epigenetic regulation,
ARID5B and HIST1H1C. Alterations could have particular
importance in ARID5B, which has been described as a
positive regulator of AR transcription.13

The EGFR (R108K) mutation was present in all meta-
static sites and showed increased variant allelic fre-
quency when comparing left prostate with right prostate
and comparing right prostate with metastases, sup-
porting its role as a truncal driver mutation (Fig 3B and
Data Supplement). Although not previously reported in
PC, this mutation has been found in glioblastoma; it
occurs in the extracellular domain and results in in-
creased basal EGFR phosphorylation targetable by
erlotinib.14,15 This is distinct from the activating kinase
domain mutations seen in lung adenocarcinoma. PTPRT
is a phosphatase that interacts with EGFR,16 and the
novel H1408L mutation resides in a region wherein
mutations may decrease phosphatase activity and thus
potentially further activate EGFR.17 Other novel muta-
tions acquired in the right prostate were present in all
(CDKN2C, WASF3, and SMARCA1) or nearly all (CHD7)
metastatic sites and PDXs.

Multisite Genomic Alterations

Right Side Left Side

R Base R Mid R Apex L Base L Mid L Apex

EGFR (R108K) EGFR (R108K) EGFR (R108K) EGFR (R108K) EGFR (R108K) --

PTPRT (H1408L) PTPRT (H1408L) PTPRT (H1408L) PTPRT (H1408L) — --

— ZNF292 (K2093E) ZNF292 (K2093E) ZNF292 (K2093E) — --

ARHGAP11AHomdel ARHGAP11AHomdel ARHGAP11AHomdel — — --

B2MHomdel B2MHomdel B2MHomdel — — --

CDKN2C (QL20fs) CDKN2C (QL20fs) CDKN2C (QL20fs) — — --

CHD7
(IDQGFASLQPSLHHPST4
3del)

CHD7
(IDQGFASLQPSLHHPST4
3del)

CHD7
(IDQGFASLQPSLHHPST4
3del)

— — --

FMN1Homdel FMN1Homdel FMN1Homdel — — --

GREM1Homdel GREM1Homdel GREM1Homdel — — --

MAPKBP1Homdel MAPKBP1Homdel MAPKBP1Homdel — — --

MGAHomdel MGAHomdel MGAHomdel — — --

NIPA2Homdel NIPA2Homdel NIPA2Homdel — — --

RAD51Homdel RAD51Homdel RAD51Homdel — — --

RTF1Homdel RTF1Homdel RTF1Homdel — — --

SECISBP2LHomdel SECISBP2LHomdel SECISBP2LHomdel — — --

SMARCA1 (R397fs) SMARCA1 (R397fs) SMARCA1 (R397fs) SMARCA1 (R397fs) — --

SPPL2AHomdel SPPL2AHomdel SPPL2AHomdel — — --

WASF3 (P262S) WASF3 (P262S) WASF3 (P262S) — — --

ZNF770Homdel ZNF770Homdel ZNF770Homdel — — --

Site-Specific Genomic Alterations

Right Side Left Side

R Base R Mid R Apex L Base L Mid L Apex

RB1 (R320*) SLCO1C1 (Y704*) RICTOR (splice site) — KDR (Q1137E) —

— CSNK1G1Amp YAP1 (S127A) — — —

FIG 2. Genomics of primary prostate cancer diagnostic biopsies. (Upper) Multisite genomic alterations and those regions of the prostate in which
they were found. Alterations listed in RED were found in biopsied tumor on both the right and left side of the prostate. (Lower) Site-specific genomic
alterations are those alterations found only in biopsy cores from specific regions. Copy number alteration calls are based on estimates from Genome
Identification of Significant Targets in Cancer (GISTIC) version 2.
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(Lung Pre-Enza Bx and Lung Post-Enza Bx) or samples obtained at rapid autopsy (remaining metastatic samples). The last two tracks are BID-PC5-CR
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Metastases were also enriched for deletions in a number of
genes all derived from the right prostate within 15q11-21
(Fig 3B and Data Supplement). In particular, B2M loss has
been described as a mechanism of resistance to
programmed death-1 (PD-1) inhibition in melanoma and
HLA class I antigen–processing machinery alterations more
broadly have been associated with early disease recurrence
in PC,18-20 raising the possibility that this defect resulted in
loss of immune surveillance, even without the selective
pressure of immune checkpoint inhibition. Also notable
was the RAD51 deletion, a predictive biomarker for re-
sponse to poly (ADP-ribose) polymerase inhibitors.21-23

Consistent with previous reports, biallelic alterations to RB1
(homozygous deletion or truncation, R320* with single-
copy loss) were enriched in advanced metastatic samples
(primary: 2 of 10 samples, metastatic: 14 of 15 samples,
Fisher’s exact test P = .001, Fig 3B, Data Supplement).
Notably, RB1 deep deletions were only found in metastatic
sites (10 of 15 samples), and in 3 cases, they were as-
sociated with deletions of BRCA2, which is located in
proximity to RB1 on chromosome 13. However, RB1 was
still functionally lost in the right prostate subclone because
of a truncation mutation in one allele and single-copy loss in
the other. Evidence of WGD appeared before metastasis, as
described above, generating two copies of the mutated
allele, present in somemetastases, and both copies are lost
in others. Thus, although two-copy loss of RB1 is rare in
primary PC, other pathways may lead to its functional loss,
which, in turn, is associated with metastatic potential.

Amplification of AR or its upstream enhancer occurs in
approximately 81% of castration-resistant prostate cancer
(CRPC).24 Although only six metastases had GISTIC-called
AR amplifications, all metastases exhibited broad gains
across the AR locus including the upstream enhancer
(Data Supplement). Significantly, four metastases (Liver 4,
Liver 6A, Pelvic LN 19, and Pelvic LN 6) had amplifications
extending from approximately 800 kb upstream of the locus
to within introns 3, 4, and 6 and encoding the AR hinge
region and ligand-binding domain. This could represent a
genomic rearrangement in the amplified regions facilitating
expression of an AR variant lacking the ligand-binding
domain. Concurrent AR rearrangements and amplifica-
tions occur in approximately 20% of CRPC, leading to
increased AR-V4, AR-V7, and AR-V9 expression.25

We used matched biopsies of a lung metastasis pre-
enzalutamide and at progression to analyze resistance
mechanisms (Data Supplement). Surprisingly, both pre-
and post-enzalutamide samples exhibited two-copy dele-
tion of RB1, suggesting that the broad RB1 loss in most
metastases occurred before enzalutamide exposure, not in
response. The post-enzalutamide sample showed alter-
ations in several receptor tyrosine kinases (RTKs), in-
cluding further gains to NTRK1 and DDR2 and a novel
R1118Q mutation in KDR, also known as VEGFR2, oc-
curring in the kinase domain where gain-of-function

mutations are described (Data Supplement).26,27 Further
gains to MCL1 also appeared. We hypothesize that this
bicalutamide-pretreated tumor had relative enzalutamide
resistance associated with baseline RB1 loss and quickly
developed increased RTK signaling and suppressed apo-
ptotic response (MCL1 gains) on enzalutamide. NTRK1,
DDR2, and MCL1 are all located on chromosome 1q and
are frequently coaltered in CRPC (MCL1 coamplification in
22 of 22 NTRK1-amplified tumors, P , .001, q , 0.001
and in 22 of 27 DDR2-amplified tumors, P , .001, q ,
0.001).28-30 Evidence of a focal amplification comprising
chromosome 1q21-23 on top of pre-existing arm-level
gains of 1q originating in the primary tumor is present in
nearly all metastasis samples (Genomic Supplement).9

Liver metastasis tissue was transplanted subcutaneously
into immunocompromised male mice (intact or castrated),
and a PDX emerged in one of the castrated mice (BID-PC5-
CR). This castration-resistant PDX had a transient partial
response to enzalutamide (Data Supplement). Both the
castration-resistant and subsequent enzalutamide-
resistant PDXs had similar genomic alterations as the
liver metastases and partitioned with the liver metastases in
the phylogenetic analysis (Fig 3B and Data Supplement).
Relative to BID-PC5-CR, the derived enzalutamide-
resistant PDX demonstrated one new mutation AXIN2
(Y187D), increased loss of TSC1,RAB14, ABL1, and SETX,
and further enrichment of gains to MET, CDK6, PIK3CG,
and FOXA1, among others that might have contributed to
resistance (Data Supplement). Importantly, these gained
genomic alterations were distinct from those found in the
post-enzalutamide lung biopsy.

Although the BID-PC5-CR PDX harbored the truncal EGFR
mutation, it did not harbor the PTPRT mutation that we
speculated may further enhance EGFR activity (Fig 3B).
Moreover, relative to the primary tumor, it maintained
additional potent oncogenic alterations found in the me-
tastases, including RB1 loss. Therefore, we next tested
whether the EGFR mutation was a targetable driver in this
PDX. Erlotinib significantly inhibited the growth of BID-PC5-
CR tumors by 48% versus control (Fig 4A, Mann-Whitney U
test P , .05), which was associated with decreased
phosphorylation of EGFR (Y1173) in erlotinib-treated tu-
mors versus control (Fig 4B).

In summary, longitudinal tissue assessment and rapid
autopsy samples revealed genomic alterations associated
with metastasis—or indolence—and treatment resistance
and highlighted the presence of both truncal driver alter-
ations and acquired alterations emerging over the treat-
ment course. One recent report also correlated autopsy
tissue with longitudinal samples,31 and our results support
the conclusions that divergent lineages spatially coexist,
that one dominant lineage of several intraprostatic lineages
seeds most—if not all—subsequent metastases, and that
subsequent heterogeneity arises within the metastatic
lineage, an evolutionary bottle neck. In addition, this case

mCRPC is Dependent on Oncogenic Drivers Found in Primary Tumors
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demonstrates the importance of a truncal EFGR (R108K)
mutation occurring throughout the primary and metastatic
sites. Furthermore, we were also able to characterize a very
high-grade (GS 5 + 4) primary subclone that surprisingly
did not appear to seed metastases, on the basis of CNA
comparison and phylogenetic analysis. The indolent be-
havior of this left base tumor was associated with a quiet
CNA landscape. Conversely, an additional primary sub-
clone with acquisition of deep CNA losses in key genes
(B2M, RAD51, etc) arose on the right side of the prostate
and seeded all sampled metastatic sites. Early on, it lost
RB1 through mutation of one allele and loss of the other,
followed by WGD, whereas treatment-resistant metastases
acquired two-copy RB1 loss. In a subset of metastases and
in the BID-PC5-CR PDX, RB1 loss was accompanied by
BRCA2 loss, a phenotype associated with particularly ag-
gressive behavior.32 Visceral involvement was defined by
additional alterations compared with nodal metastases.

Despite dual RB1/BRCA2 loss, we found that the BID-
PC5-CR was responsive to EGFR inhibition with erloti-
nib, indicating that subsequent advanced mCRPC was
still EGFR-dependent despite its acquisition of multiple
additional potent oncogenic events. These findings
show that early genomic testing of primary PC can
identify truncal driver alterations that remain targetable
vulnerabilities in metastatic sites, despite acquisition of
additional potent oncogenic events. This suggests that
early analysis of primary tumors and subsequent
biomarker-selected targeted therapies to treat men with
biochemical recurrence, or men who present with de
novo metastatic disease, may prevent or markedly delay
disease progression. In addition, genomic markers may
define intrapatient subclones of varying aggressiveness,
differentiating those with metastatic potential from those
without and those with visceral involvement from nodal
involvement.
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