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� Abstract
A multistage clustering and data processing method, SWIFT (detailed in a companion
manuscript), has been developed to detect rare subpopulations in large, high-
dimensional flow cytometry datasets. An iterative sampling procedure initially fits the
data to multidimensional Gaussian distributions, then splitting and merging stages use
a criterion of unimodality to optimize the detection of rare subpopulations, to con-
verge on a consistent cluster number, and to describe non-Gaussian distributions.
Probabilistic assignment of cells to clusters, visualization, and manipulation of clusters
by their cluster medians, facilitate application of expert knowledge using standard flow
cytometry programs. The dual problems of rigorously comparing similar complex sam-
ples, and enumerating absent or very rare cell subpopulations in negative controls,
were solved by assigning cells in multiple samples to a cluster template derived from a
single or combined sample. Comparison of antigen-stimulated and control human
peripheral blood cell samples demonstrated that SWIFT could identify biologically sig-
nificant subpopulations, such as rare cytokine-producing influenza-specific T cells. A
sensitivity of better than one part per million was attained in very large samples. Results
were highly consistent on biological replicates, yet the analysis was sensitive enough to
show that multiple samples from the same subject were more similar than samples
from different subjects. A companion manuscript (Part 1) details the algorithmic devel-
opment of SWIFT. VC 2014 The Authors. Published by Wiley Periodicals Inc.†
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INTRODUCTION

FLOW cytometry (FC) is a powerful technology for rapid multivariate analysis of

individual cells. It has become indispensable for basic and clinical studies in many

areas, including immunology, cancer, and stem cell biology. A challenge for data

analysis is created by current cytometers that analyze >20 properties on more than

106 cells/sample (1,2). Conventional manual, sequential bivariate gating cannot

simultaneously analyze many dimensions, and is time-consuming, subjective, and

irreproducible (3). Several flow cytometry clustering algorithms have been developed

to address these issues (4–21). Clustering of flow cytometry data is complicated by

the very high dynamic ranges and variable distributions (shapes) of subpopulations.

Model-based methods may conform better with the expected overlap in biological

cell subpopulations, but do not normally scale well to very large datasets, and have a

high computational load.
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A particular challenge in flow cytometry is to identify

rare subpopulations in large, complex samples, for example T

cells secreting cytokines in response to antigen stimulation

(3,22,23); stem cells in peripheral blood (24); or residual can-

cer cells after therapy (25). In highly diverse populations,

many clusters may need to be resolved to discern the rare sub-

populations. The true diversity of cell populations analyzed by

flow cytometry, for example human peripheral blood mono-

nuclear cells (PBMC), can be very large—even if 16 antibodies

against different antigens are used to define subpopulations,

the addition of further antibodies identifies further subdivi-

sions. Recent advances in mass spectrometry-based flow

cytometry allow the measurement of more than 30 properties

(26) and provide very high resolution of complex popula-

tions. Therefore, the normal goal of flow cytometry analysis

methods is not to define homogeneous subpopulations, but

to provide a practical separation of subpopulations, at the

level of resolution defined by the antibody panel.

To deal with the large dynamic range and asymmetry of

flow cytometry subpopulations, we have developed Scalable

Weighted Iterative Flow-clustering Technique (SWIFT), a

three-stage approach based on a scalable and efficient Gaus-

sian mixture model-based clustering method, followed by

splitting and merging steps to adjust the number of clusters,

identify rare subpopulations, and conform to non-Gaussian

distributions. Both splitting and merging use unimodality as

the guiding principle for cluster separation, as this is an intui-

tively reasonable criterion that approximates common prac-

tice in manual gating. The algorithmic development of SWIFT

is described in detail in the accompanying article (27), where

its performance is also evaluated using simple synthetic and

semisynthetic datasets for which ground truth is known. This

article focuses on the application of SWIFT in analyses typical

in immune response evaluation. SWIFT objectively identifies

rare, biologically meaningful subpopulations in large, high-

dimensional samples (e.g., clusters as rare as one part per mil-

lion cells). This method also allows objective estimation of

cluster number, and stringent comparison between similar

samples by co-clustering.

In addition to the primary clustering analysis of large,

high-dimensional sample data, the resulting large quantity of

processed data necessitates efficient methods for further anal-

ysis of the cluster data. To take advantage of the richness of

data available in the SWIFT results, we have also developed

SWIFT-dependent auxiliary methods for visualization and

other postclustering analyses to facilitate rigorous compari-

sons between samples, as well as exploration of datasets for

discovery research.

METHODS

Subjects

Blood was collected from healthy human subjects, ages

19–49 years. No subjects reported influenza-like illnesses

(ILI). All procedures and the consent form were approved by

the Research Subjects Review Board at the University of Roch-

ester Medical Center, Rochester, New York.

Sample Processing

PBMC were isolated from sodium heparinized peripheral

blood by Ficoll-HypaqueTM gradient centrifugation, washed

and cryopreserved in 90% FBS and 10% DMSO (Sigma-

Aldrich, St. Louis, MO). Cells were frozen to 280 �C using an

isopropanol-filled, controlled-rate freezing device. After 24–

48 h at 280 �C, the vials were transferred into liquid nitrogen

for long-term storage.

Peptide Antigens

Individual peptides consisting of 15–17 amino acid resi-

dues, offset by 5 amino acids, were designed for sequences

present in different combinations of H1N1 strains of influenza

A. In particular, pool 1 contained peptides present in influenza

A/New Caledonia/20/99 but not A/California/04/2009 or A/

Brisbane/59/2007 3 A/Puerto Rico/8/1934, i.e. these peptides

were expected to stimulate long-term, multiply-boosted T

cell responses (for more details of the peptide pools, see Ref.

28). These peptides, and a pool of CD4 T cell-restricted epi-

topes from tetanus toxoid (29–31), were synthesized by Mimo-

topes. Peptide pools were used at final concentrations of

0.1 mg/mL/peptide (influenza) and 3 mg/mL/peptide (tetanus).

Ex vivo Stimulation

PBMC were rapidly thawed in RPMI 1640 (Cellgro, Man-

assas, VA), supplemented with penicillin (50 IU/mL)-strepto-

mycin (50 mg/mL) (GIBCO, Carlsbad, CA), 10 mg/mL DNase

(Sigma-Aldrich, St. Louis, MO) and 8% FBS (assay medium).

Cells were centrifuged and resuspended in RPMI 1640,

supplemented with penicillin (50 IU/mL)-streptomycin

(50 mg/mL), and 8% FBS and rested overnight in a 37 �C 5%

CO2 incubator. On the day of the assay, cell viability was

tested by trypan blue exclusion dye, and 1–2 3 106 cells/well

in assay medium were plated into a 96-well V-bottom plate

(BD, Franklin Lakes, NJ). A 200 mL PBMC suspension was

stimulated with 0.3% DMSO (no antigen control), groups of
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influenza peptides, tetanus peptides, or staphylococcal

enterotoxin-B (1 mg/mL, SEB, Sigma-Aldrich, St. Louis, MO)

for a total of 10 h. Ten mg/mL brefeldin A (BD, Franklin Lakes,

NJ) and 2 mM monensin (Sigma-Aldrich, St. Louis, MO) were

added for the last 8 h of culture.

Intracellular Cytokine Staining (ICS)

PBMC were labeled with surface antibodies then fixed

and permeabilized for ICS using a micromethod (32). The 15-

color flow cytometry antibody panel is shown in Supporting

Information Table 1. Cell data were acquired using an LSR II

cytometer (BD Immunocytometry Systems). Manual data

analysis was performed using FlowJoTM software (Treestar,

San Carlos, CA).

RESULTS AND DISCUSSION

SWIFT Algorithm Design for Detection

of Rare Subpopulations

Several common flow cytometry data characteristics were

considered in the design of a program that could detect very

rare subpopulations. (a) Flow cytometry often produces data

with high numbers of dimensions (e.g., 20) from large num-

bers of cells (e.g., millions) per sample. (b) Flow cytometry

data have a high dynamic range, e.g., biologically significant

subpopulations can be present at the level of 25 cells in several

million. (c) Some subpopulations are asymmetric in one or

more dimensions. (d) Subpopulations can overlap. The overall

SWIFT strategy is summarized in Figure 1A and described in

detail in the companion paper (27). A brief summary of the

steps in SWIFT follows.

Scalable mixture model fitting. We have chosen to use

model-based clustering, to better approximate the potentially

overlapping clusters found in flow cytometry data. First, data

are preprocessed by censoring off-scale values (typically <1%

in a good-quality sample), compensating, and applying an

inverse hyperbolic sine transformation to stabilize Gaussian

features across the entire data range. SWIFT then selects a

small, uniform, random sample of the total dataset, and

identifies initial clusters by the Expectation-Maximization

(EM) algorithm for Gaussian mixture modeling (GMM).

Figure 1. The SWIFT strategy for primary clustering, splitting, and merging. (A) Demonstration of the three steps in SWIFT to cluster the

data using the EM algorithm; split multimodal clusters; and merge overlapping clusters. One dimension is shown for clarity—SWIFT

actually operates in all dimensions simultaneously. (B) Merging proceeds sequentially, testing all possible overlapping pairs by the KL

divergence and merging the most similar pair only if the merged result is unimodal. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Large clusters are well-represented by the initial sampling,

but rare subpopulations will not be detected as distinct clus-

ters. SWIFT next fixes the parameters of the most populous

Gaussian components and draws a new sample according to

a weighted distribution that decreases the representation of

the populous clusters and increases the weight of smaller

clusters in the new sample. These steps are repeated until all

cells have been evaluated. The iterative approach selectively

improves the chances of sampling from rare subpopulations.

Finally, the Incremental EM (IEM) algorithm is applied to

the entire dataset to correct any deviations potentially intro-

duced by the sequential iterative process. The computational

complexity for SWIFT’s weighted iterative sampling scales

less than linearly in the number of data points. Hence, this

step is scalable for large datasets, and enhances the detection

of rare subpopulations.

Multimodality splitting. Further enhancement of the identi-

fication of rare subpopulations is provided by a splitting step.

In the first step, the EM algorithm fits multiple Gaussians to

large, non-Gaussian clusters before assigning Gaussian compo-

nents to smaller clusters. Because of the high dynamic range of

subpopulation sizes, complexity of high dimensional datasets,

non-Gaussian subpopulations, and potential underestimation

of the initial cluster number, the data fitted to some Gaussian

clusters can remain multimodal in one or more dimensions.

SWIFT tests all clusters resulting from step 1 for unimodality in

all data dimensions and along the principal component axes.

Multimodal clusters are further split using the EM algorithm

until all clusters are unimodal. Oversampling sparse back-

ground clusters before splitting enhances the detection of very

small subpopulations. As the overlap of subpopulations can

represent a continuum of cases, a cutoff criterion is required to

decide when to split the initial clusters. The multimodality cri-

terion for splitting is arbitrary, but this is an intuitively reasona-

ble criterion that approximates common manual gating

practice, and in practice this criterion successfully isolates bio-

logically significant subpopulations (below).

Agglomerative merging. Because the initial assumption of

simple Gaussian subpopulations is in general not valid with

flow cytometric data, some modification of the simple GMM

is required. More complicated parametric models [FLAME,

flowClust (7,19)] allow greater flexibility in data fitting but

add very significant computational cost. Because sums of

Gaussians can approximate a wide class of distributions, our

approach instead is to merge overlapping clusters using, once

again, the criterion of unimodality. The differences between

all possible pairs of clusters with any overlap are measured by

the Kullback–Leibler (K–L) divergence, and the most similar

pair is merged if the resulting cluster would be unimodal

along: (a) the linear-discriminant-analysis (LDA) dimension

along which the pair is most separated, (b) all data dimen-

sions and (c) the principal component axes. K–L divergences

are recalculated for the new cluster, and the merging step is

repeated until no more merges are possible without compro-

mising unimodality. Sequential merging provides robust

merging and prevents “bridging” clusters from causing over-

merging and generating bimodal clusters (Fig. 1B). This step

allows SWIFT to represent the skewed non-Gaussian distribu-

tions commonly found in flow cytometry data (7,17,21,33–

35), and corrects for any over-estimation of cluster numbers

in the first two steps. Finally, all events (including those ini-

tially censored) are assigned to the clusters in the final tem-

plate based on probability of membership, both fractionally

(to accurately estimate subpopulation sizes) and stochastically

(to generate suitable data for examining the clusters in flow

cytometry analysis programs).

Performance Characteristics of SWIFT: Convergence

of Cluster Numbers

SWIFT successfully identifies clusters over a wide

dynamic range. Figure 2A shows three clusters (selected from

1,172 clusters) in a sample of human PBMC stimulated with

influenza antigens and stained with a 15-color panel. The

small cluster (69 cells) comprises influenza-specific T cells

expressing interferon gamma (IFNc), whereas the large cluster

(22,798 cells) represents a relatively homogenous subpopula-

tion of na€ıve CD4 T cells. Figure 2B demonstrates merging,

with an example of three clusters resulting from the first two

steps of SWIFT. These clusters have substantial overlap, and

were merged in step 3 to form a single merged cluster (gray

area) that is skewed but not multimodal.

In addition to the identification of rare subpopulations

and asymmetric subpopulations, the splitting and merging

steps in SWIFT have the further benefit of converging on a

stable cluster number. The EM algorithm requires an initial

estimate of K, the cluster number, which is used for the first

clustering step. However, if this number is too low, the split-

ting stage will generate a large increase in cluster number in

the second step, and if the initial estimate of K is too high, the

final merging step will perform a large number of merging

operations. The effect of these two steps is to converge on a

relatively stable final number of clusters, varying by only 1.3-

fold even when the input initial estimate of K was varied over

a 100-fold range (Fig. 3A). The Bayesian information criterion

(BIC) was also tested in SWIFT as a criterion for determining

K, but was slower and less robust than the modality-based

splitting and merging steps in SWIFT (data not shown).

SWIFT exhibits strong self-normalizing behavior to converge

on a stable number of clusters. Although the final number of

clusters is higher than determined by other flow cytometry

analysis programs, the level of resolution described by SWIFT

is consistent with the known biological diversity of the cell

populations (see below).

SWIFT run times (Fig. 3B) reached a minimum at about

50 input clusters for the sample (100,000 cells) shown in

Figure 3A. At very low input cluster numbers the first step is

rapid, but this is outweighed by the extensive splitting that

occurs in the second step. At higher input cluster numbers the

duration of the initial EM clustering step increases.

As expected, the number of detected clusters increases

with the total cell number (Fig. 3C) and also with the number

of dimensions used for clustering (data not shown). Detecting

rare subpopulations requires enough data for the rare

Original Article
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subpopulations to appear as distinct clusters, above the

threshold of clustering (about 20 cells for 20-dimensional data

in SWIFT). Thus, the sensitivity of discovering very small

clusters can be increased by combining samples, or reduced by

taking stochastic subsets of samples. The resolution of the

analysis can also be modified by considering either merged or

unmerged clusters.

The source code for SWIFT can be downloaded from

http://www.ece.rochester.edu/projects/siplab/Software/SWIFT.

html. The installation of the SWIFT program, and the cluster

analysis of a typical sample, are described in Tutorial 1 (see

Supporting Information).

Postprocessing and Visualization of Cluster Data

SWIFT clustering results are complex and require further

analysis—depending on settings, 100–1,000 clusters are

detected in 19-dimensional analysis (15 colors plus four scat-

ter) of large (>1 million) human PBMC samples. We have

developed several auxiliary tools to assist the further analysis

of SWIFT cluster data. To facilitate the application of expert

knowledge, SWIFT assigns cells to clusters and the SWIFT out-

put includes a FCS file that incorporates cluster information

to allow visualization and gating of clusters in standard flow

cytometry analysis programs.

Soft clustering and stochastic assignment. SWIFT initially

produces soft clustering results, in which each cell (event) has

a membership probability between 0 and 1 in each cluster.

This is useful for numerical output, but difficult to represent

graphically for data exploration by experts. After clustering,

SWIFT therefore stochastically assigns events to each cluster,

in proportion to membership probabilities. This results in

overlapping clusters that provide more realistic population

shapes than hard boundaries, and more correctly describes the

ambiguity inherent in overlapping populations. However, in

this method, as in manual gating, the “true” cluster member-

ship of a cell in the overlap regions cannot be defined.

Figure 2. SWIFT detects Gaussian and skewed clusters over a large dynamic range. A combined sample of 3 million human PBMC stimu-

lated with tetanus and influenza peptides was analyzed by SWIFT, using two scatter and 15 fluorescence dimensions. (A) Three merged

clusters (out of 872) were chosen to illustrate the wide variation in cluster size. (B) An example of merging shows three split clusters (left,

colored lines; right, colored dots) that were combined by SWIFT into a single merged cluster (solid gray). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Visualizing output from SWIFT–cluster gating. After

assignment to a cluster, each cell is assigned, in addition to its

original private values, the median values of its cluster in each

dimension. These values are written as extra parameters in the

output .FCS file. Cells can then be plotted at their cluster

median values using standard flow cytometry analysis pro-

grams (e.g., FlowJoTM), with each cluster appearing as a single

point. Thus intact clusters can be gated conventionally as if

they were single events (Fig. 4A). At any stage, the diversity of

cells in gated clusters can then be revealed by plotting the pri-

vate channel values. As both split and merged cluster medians

are provided in SWIFT output, increased resolution can be

obtained by examining the split clusters. Cluster median dis-

play and gating provides a convenient way to explore the

SWIFT clusters and their constituent cells, with the advantage

of applying expert knowledge for interpretation AFTER the

primary analysis, to retain as much objectivity as possible.

Visualization of clustering data is demonstrated in Tutorial 2

(see Supporting Information).

Biological Evaluation of SWIFT’s Ability to Detect

Biologically Important Rare Populations

A critical question for all clustering methods is whether

the resulting clusters correspond to biologically relevant pop-

ulations. This is particularly important with SWIFT, which

resolves large numbers of clusters in complex samples. We

have used detection of rare but expected populations, combi-

nations of artificial mixtures, and sample comparisons to pro-

vide external criteria for evaluating SWIFT performance.

SWIFT identifies rare cytokine-secreting T cell populations.

As a stringent test of the ability of SWIFT to identify rare, but

biologically significant populations, we stimulated human

PBMC with influenza peptide antigens to induce rare

(<0.01%) cytokine-secreting populations absent in negative

controls (22,36). Influenza-stimulated and control PBMC

samples from normal donors were clustered in SWIFT, and

analyzed by cluster gating. After gating on activated CD4 T

cell clusters (CD31, CD82, CD41, CD142, CD691) as in Fig-

ure 4A, small clusters were detected in influenza peptide-

stimulated samples but not in control samples (Fig. 4B).

Examination of the individual clusters showed that these con-

tained the cytokine-secreting cells that were the target of the

experiment. Each cluster contained cells expressing IL-2,

TNFa, IFNc, and/or CCL4.

SWIFT shows excellent accuracy using an experimental

dataset with ground truth. To generate a real-world experi-

mental dataset with ground truth, we analyzed separate mouse

and human cell samples with complementary fluorescence

labels, then merged the data electronically and clustered using

SWIFT, without using the mouse/human labels. SWIFT iden-

tified 35 and 21 clusters that contained >90% mouse or

human cells, respectively. No clusters fell into an intermediate

category [see companion paper, (27)]. For comparison we

also used FLOCK (12), which also resolved mostly human or

mouse clusters, but had more overlap, possibly due to the

smaller number of clusters detected.

Comparing Cluster Output from SWIFT

Cluster matching is a difficult problem. Most flow cytome-

try experiments are performed for the purpose of comparing

populations between different samples. Because of overlap of

populations and ambiguity of clustering, matching of clusters

is difficult between complex samples. Clustering has been

described as an ill-posed problem (37) and different algo-

rithms can provide different solutions (38–44). Because of the

high dimensionality and inherent ambiguity in flow

Figure 3. Performance characteristics of SWIFT including robust convergence on a final cluster number. A single sample of influenza-

stimulated human PBMC was analyzed by ICS and flow cytometry, and then a random subset of 100,000 cells was clustered in SWIFT

using seven fluorescence and two scatter dimensions. (A) Different values of the input cluster number were used in the first step (six repli-

cates per point). The numbers of clusters found after the first (Initial, green), second (Split, orange), and third (Merged, blue) steps are

shown. (B) Run times for the analyses in A are shown. Analysis was performed on a 2.4 GHz Mac Pro with 8 cores. (C) Samples containing

different cell numbers, randomly sampled from a concatenate of influenza-stimulated human PBMC samples, were analyzed in triplicate

in SWIFT using 100 input clusters. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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cytometry data, a clustering algorithm can be trapped in dif-

ferent local optima and provide multiple valid solutions

(45,46). The problem of matching clusters across different

datasets (47,48) is especially challenging with the high cluster

numbers and range of sizes that SWIFT detects in large, high-

dimensional datasets. Thus comparing two independently clus-

tered samples is difficult.

Zero or near-zero populations can not be clustered directly.

There is an additional and very important problem if a popu-

lation is detectable in one sample but is absent or has very low

membership in a second sample—this population cannot be

enumerated by direct clustering in the second sample if the

number of cells is too low to cluster. A specific example of this

is seen in Figure 4B, in which the number of cytokine-

secreting cells in the negative controls is nonzero, but too low

to identify as a separate cluster. Correct comparison of the

positive and negative samples requires enumeration of the

small number of cells in this region in the negative control.

Co-clustering sidesteps the cluster matching problem and

allows rigorous comparison, even between samples with

missing populations. Fortunately, the cluster matching

problem can be avoided by co-clustering samples (49), i.e., by

clustering a concatenate consisting of either the entire .fcs

data files for all samples, or of a random subset of events from

each sample (to keep the total number of events within a rea-

sonable range). This allows a consensus clustering result to

Figure 4. Cluster gating to identify activated CD4 T cell clusters. Aliquots of human PBMC from a healthy donor were incubated with or

without influenza antigens and analyzed by ICS and flow cytometry. (A) After analysis of an influenza-stimulated sample by SWIFT, the

events were visualized in FlowJoTM according to individual event values (top) or common cluster median values (red dots, bottom,

boxed). Live, activated CD4 T cells were identified by sequential gating, using similar gates for both events and clusters. The final panels

(right) show individual cells identified by event gating (top) or cluster gating (bottom). MM denotes “merged medians.” (B) Stimulated

and unstimulated samples were analyzed individually by SWIFT; activated memory CD4 T cells were identified by cluster gating as in A,

and then displayed according to the cluster median (top) or individual (bottom) fluorescence values for IFNc and TNFa. The three IFNc1

TNFa1 clusters, present only in the stimulated sample, are displayed as events in the right panel. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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emerge, which often reflects the underlying populations better

than any single sample. Joint clustering constrains all samples

to the same consensus clusters, allowing rigorous comparison

between samples by avoiding the problem of alternate cluster-

ing solutions. Samples to be co-clustered should be relatively

similar, and staining and analysis procedures must be as uni-

form as possible, although normalization (50) may allow

more variable samples to be co-clustered in the future. If rare

subpopulations of interest are present only in a few samples,

care must be taken to ensure that these populations are not

masked by background events from an excess of samples with-

out these subpopulations. Differences between samples are

revealed by comparing, for each cluster from each sample,

both the numbers of events and the multidimensional

medians. This approach is particularly powerful for enumerat-

ing cells in biologically interesting cell populations (e.g.,

antigen-stimulated T cells) that are almost absent in negative

control samples.

To demonstrate the strength of the co-clustering

approach, two flow cytometry data files from influenza-

stimulated and unstimulated samples were merged, co-clus-

tered by SWIFT (resulting in 911 clusters), and further ana-

lyzed by manual cluster median gating. Four clusters of

activated CD4 T memory cells (CD31, CD41, CD8–, CD14–,

CD45RA–, CD691) were identified, producing combinations

of the four cytokines (IL-2, IFNc, TNFa, and CCL4) character-

istic of influenza responses (Fig. 5A). The majority of the cells

in each of these four clusters was derived from the stimulated

sample, not the negative control. Cluster 4 contained most of

the CCL41 cells, and cluster 3 comprised cells with low IL-2

expression. Although clusters 1 and 2 expressed similar levels

of the four cytokines shown, these clusters were distinguished

by slightly different background values in the CD45RA, IL-17,

and CD8 dimensions.

Sensitivity and resolution of SWIFT. To determine the sen-

sitivity of SWIFT for detecting small populations in very large

samples, a sample was produced by electronically merging 18

.FCS files from an experiment comparing the responses to dif-

ferent influenza peptide pools. Low-responding and negative

control samples were deliberately included in this concatenate,

to ensure that small populations would be present. This sam-

ple of 27.2 million events was then clustered by SWIFT, result-

ing in the identification of 1,814 split clusters. Several of these

were cytokine-producing activated memory CD4 T cells, and

two smaller clusters are shown in Figure 5B. Both clusters

comprised cells expressing TNFa and IL-2, whereas IFNc was

expressed by the cells in Cluster B but not Cluster A. These

cells were derived from influenza- or tetanus-stimulated sam-

ples, but not from unstimulated samples. The detection of

cytokine-producing populations as small as 19 and 24 cells,

from a sample of 27.2 million events, demonstrates that

SWIFT has a sensitivity of better than one part per million.

This compares very favorably with other methods, for exam-

ple a recently-described automated clustering technique for

flow cytometry data found rare subpopulations at a level of

0.01% (51).

SWIFT analyzes flow cytometry data at high resolution,

generating larger numbers of clusters than many other meth-

ods. In a moderate-sized sample (100,000 cells, seven colors)

SWIFT finds �60 clusters (Fig. 3A), similar to numbers

obtained by other methods. In larger PBMC samples with

more dimensions (one million cells, 15 colors), SWIFT

resolves �500 clusters. We believe that this high level of reso-

lution is appropriate for several reasons. First, SWIFT is

designed to detect rare cells, and a high level of resolution is

necessary to reveal these subpopulations. Second, SWIFT gen-

erates �1,500 clusters from a CyTOF
VR

(52) sample with 33

antibody dimensions (data not shown). This is a relatively

small increase as compared to the potentially enormous

increase that could result from adding 18 more dimensions if

SWIFT were spuriously splitting subpopulations. Third, even

at a resolution of �500 clusters, the rare cytokine-producing

clusters are not present in large numbers (e.g., 6) and the dis-

tinguishing features of each cluster (e.g., the combination of

cytokines expressed) can normally be identified by examina-

tion in visualization software such as FlowJoTM (Fig. 5A).

Thus SWIFT appears to resolve genuinely different subpopula-

tions, albeit at very high resolution.

Assigning cells to a cluster template extends traditional

batch analyses. In the previous section, co-clustering of

large concatenates allowed comparisons between several sam-

ples, but large experiments, particularly clinical studies, often

generate thousands of samples that include hundreds of mil-

lions of cells. To extend SWIFT’s comparisons to these larger

datasets, we have established a templating procedure that

allows batch processing of large numbers of samples using an

auxiliary program, “SWIFT assign”. One of the output files of

SWIFT is a cluster template that includes the location, disper-

sion, and proportion of all clusters, and events in additional

samples are then assigned to the clusters in this template. This

template/assign strategy is flexible, as templates can be pro-

duced from single samples to establish a master template; com-

binations of samples to produce a consensus template; or

stochastic subsets of cells to optimize run times and the sensi-

tivity of detection of small clusters. In all cases, the sample(s)

chosen to generate the template must include all subpopula-

tions to be analyzed. Templating allows the identification of

cluster memberships down to zero in individual samples,

which is essential for comparing stimulated and control sam-

ples. It also allows the clustering run to be performed at an

optimal cell number (e.g., 1–5 million cells). Both co-cluster-

ing and template assignment identify small differences between

similar samples, and solve the problem of enumerating an

absent or very small population, e.g., 0–5 cells in a negative

control. Note the initial template clusters are unimodal due to

the criteria in the splitting and merging steps in SWIFT, but

occasionally the cells assigned to a cluster from another sample

may yield a multimodal population. The generation of SWIFT

cluster templates and their use in sample comparisons are

demonstrated in Tutorial 3 (see Supporting Information).

Assignment of cells in additional samples to a cluster

template is fast, e.g., about 1 min for a sample with 1 million
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cells on a desktop computer. Thus, even if SWIFT clustering

of the consensus sample requires significant time, e.g. 2 h (see

Supporting Information for sample run times), analysis of

hundreds of samples can be completed rapidly.

The template produced in Figure 5A was applied to three

replicate samples each of unstimulated and influenza-

stimulated cells. Substantial numbers of stimulated cells were

assigned to the four cytokine-producing cell clusters (Fig. 5C),

whereas none of the three control samples contributed sub-

stantially to any of the clusters except cluster 3. Triplicate cul-

tures showed excellent consistency.

SWIFT distinguishes subtleties between small cytokine-

secreting populations. A cluster template was produced

from merged influenza and tetanus antigen-stimulated sam-

ples, and additional samples were assigned to this template

(Fig. 5D). In contrast to influenza responses, tetanus toxoid-

specific responses are biased towards T cells producing IL-2

and TNFa rather than IFNc (36). Among four activated T cell

clusters identified by SWIFT, the influenza-stimulated sample

contributed more strongly to the three IFNc1, IL-21 clusters,

whereas the tetanus sample contributed more to the IFNc–,

IL-21 cluster. Very few cells from the control sample were

assigned to any of the four clusters. Thus in these experiments

and others, SWIFT identified rare, biologically significant cell

populations that are consistent with current biological

interpretations.

Identification of clusters by SWIFT with minimal operator

input. To test whether SWIFT could objectively identify

antigen-specific T cell populations with very few assumptions,

the SWIFT-derived clusters (Fig. 5A) of merged triplicate

Figure 5. Co-clustering and template assignment to rigorously

compare samples. Aliquots of human PBMC were incubated in

triplicate in the presence or absence of influenza or tetanus toxin

peptides, then analyzed by ICS and flow cytometry. (A) Files from

one unstimulated and one influenza-stimulated sample were con-

catenated and analyzed in SWIFT. Activated memory CD4 T cell

clusters were identified by cluster gating, and the expression of

four cytokines by cells in each cluster is shown. Black and red

dots represent cells from the stimulated and unstimulated sam-

ples, respectively. (B) Eighteen files from triplicate samples incu-

bated with no antigen, tetanus peptides, or four pools of

influenza peptides were merged electronically into a single con-

catenate. Low doses of antigens were deliberately chosen so that

the cytokine-producing populations in the merged sample would

be very rare. The combined sample of 27.2 million cells was then

analyzed in SWIFT, resulting in 1,814 split and 1,524 merged clus-

ters. Cytokine-producing memory CD4 T cell split clusters were

identified by cluster gating, and the cells in two small clusters (24

and 19 cells) are shown. Both clusters included cells from tetanus

(orange) and influenza (blue) but not unstimulated samples. (C)

Triplicate control and influenza-stimulated samples were

assigned to the template derived in A. Triplicates are indicated by

black, red, and blue dots. (D) All cells in control, influenza, and tet-

anus samples were assigned to a SWIFT template from concaten-

ated tetanus- and influenza-stimulated samples. Four activated

CD4 T cell merged clusters were identified by cluster gating (H1,

H2, H3, and H4). (E) Clusters in the two-file concatenate (from

panel A) were selected according to low staining by the live/dead

marker (<1,000). Median fluorescence values are shown for all

five clusters in which the ratio of influenza-stimulated to control

samples was >6. These included the four CD4 T cell clusters iden-

tified in A, and one CD8 T cell cluster. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6. Reproducibility of SWIFT clustering. PBMC samples from seven subjects were analyzed by ICS and flow cytometry. (A,B) Three

replicate aliquots (X1, X2, and X3) from one subject, as well as samples from three additional subjects (P1, Y1, and O1), were assigned to

a SWIFT cluster template produced from a sample from subject (X) Correlations of cells/cluster (Panel A), or the median fluorescence val-

ues for CD45RA (Panel B) are shown. (C, D) PBMC from eight independent blood samples (drawn over a period of 208 days) from three

subjects (61, 62, 68) were stimulated with two pools of influenza peptides, SEB, or no antigen, and analyzed by ICS and flow cytometry.

(C) A cluster template was produced from one influenza peptide pool-stimulated sample of subject 61, and all other samples assigned to

this template. The heat map represents the R2 correlation values between all pairs of samples stimulated with the same influenza peptide

pool, comparing the numbers of cells assigned to each cluster (left) or the median fluorescence intensity of the CD45RA staining in each

cluster in each sample (right). (D) Two independent operators manually identified the activated memory CD4 T cells expressing TNFa and

IFNc in samples from subjects 61 and 62. One SWIFT template was produced from each subject, from concatenates of four antigen-

stimulated samples. All samples were assigned to both templates, and the clusters containing activated memory CD4 T cells expressing

TNFa or IFNc identified. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com


influenza-stimulated and control samples were classified by

only two rules: live cell clusters were identified by low expres-

sion of the live/dead marker, and the live clusters were ranked

according to the ratio of cells in each cluster derived from

stimulated versus unstimulated samples. The five top-ranked

clusters comprised the same four activated CD4 memory T

cells identified by cluster gating (Fig. 5A), plus one activated

CD8 T cell cluster (Fig. 5E).

Robustness and Reproducibility

As model-based clustering of complex flow cytometry

populations can have multiple valid solutions, repeated clus-

tering of the same sample in SWIFT does not result in identi-

cal cluster locations, and individual cells can be assigned to

different clusters. Because typical flow cytometry datasets con-

tain extensive overlap between populations, neither manual

nor automated methods can assign cells unambiguously in the

overlap regions, therefore either stochastic assignment or

membership probabilities have to be used. Consequently, the

locations and sizes of the clusters are more consistent than the

assignments of the individual cells to a cluster.

Testing SWIFT robustness. SWIFT robustness was eval-

uated by generating a cluster template from one sample, then

assigning cells to this template from three experimental repli-

cate samples from the same subject, or from different subjects

analyzed under the same conditions on the same day. The

numbers of cells assigned to each cluster from the replicate

samples were tightly correlated, whereas samples from differ-

ent subjects were more variable (Fig. 6A). After assigning cells

from different samples to the cluster template, the medians of

the resulting clusters were recalculated and compared with the

medians of the original template, i.e., testing the “goodness of

fit” between template and sample. Experimental replicate

samples agreed well, whereas some samples from different

individuals were more diverse (Fig. 6B).

To distinguish between variability contributed by differ-

ent subjects versus that due to different blood samples, we

compared eight different blood samples taken over a period of

208 days from three subjects. All samples were cryopreserved,

then analyzed on the same day. Figure 6C shows that the clus-

ter results were generally more consistent between blood sam-

ples from the same subject, and more different when

compared between subjects. As in Figures 6A and 6B, the clus-

ter sizes were more variable than the median fluorescence val-

ues of each cluster (note different scale for heat maps). Thus

cluster properties are consistent between replicate samples, yet

SWIFT sensitively detects differences between non-identical

samples, e.g., from different normal subjects.

Reproducibility between SWIFT and manual gating.

Although in the long term our goal is to exceed the capacity

of manual gating for detection and reliable quantitation of

rare populations, an important interim goal is to show that

SWIFT reliably recapitulates the overall results of manual gat-

ing. Human PBMC stimulated with different antigens were

analyzed by manual gating by two experts (using the same gat-

ing protocol), and in parallel by two clusterings by SWIFT fol-

lowed by cluster identification as above. Populations of

activated CD4 T cells producing IFNc and TNFa were enum-

erated by both methods, and the results compared. Manual

gating and SWIFT clustering agreed well over a wide range

(Fig. 6D), from negative controls, to antigen stimulations, to

SEB polyclonal stimulations. SWIFT typically found slightly

higher numbers of positive cells, possibly due to the more lib-

eral cluster boundaries that could be achieved using simulta-

neous gating in all dimensions.

Note that the template/assign procedure is well-suited to

datasets that are similar, particularly different stimulations

from the same person. It can also handle variations between

subjects and experimental days, provided that care is taken to

keep the staining procedure and cytometer setup parameters

as constant as possible using strict protocols (53). Samples

with more variation would require the application of normal-

ization techniques [e.g. (50)] before the templating procedure

could be used.

SWIFT is Optimized for Rare Populations

Algorithmic analysis of flow data is now possible using

several alternative strategies. Several of these techniques now

rival manual analysis methods, as evaluated by the ability to

reproduce manual gating, and possibly more importantly, to

objectively classify flow cytometry samples according to exter-

nal clinical criteria (54). Different algorithms perform better

at different challenges, as expected due to their different strat-

egies. SWIFT and its adjunct programs have been optimized

to detect very rare populations, and the templating strategy

allows stringent comparisons between large numbers of sam-

ples. The particular ability of SWIFT to detect rare popula-

tions in large datasets was demonstrated by comparing with

three other programs, FLAME, flowMerge, and flowMeans

(7,20,21), using graded sample sizes, and testing for the iden-

tification of rare cytokine-producing populations (see Sup-

porting Information for details). To achieve fine resolution

and high sensitivity, SWIFT uses multiple steps to optimize

the identification of clusters in complex high-dimensional

samples across a very wide dynamic range. This program can

not only replace manual gating with a more rapid, objective

method, but can also discover changes not seen in manual gat-

ing, for two reasons: SWIFT can evaluate all subpopulations

in complex samples; and simultaneous multidimensional clus-

tering can detect more subtle changes than sequential bivari-

ate manual gating.
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