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ABSTRACT
Since its first report in December 2019 from China, the COVID-19 pandemic caused by the beta-cor-
onavirus SARS-CoV-2 has spread at an alarming pace infecting about 5.59 million, and claiming the
lives of more than 0.35 million individuals across the globe. The lack of a clinically approved vaccine
or drug remains the biggest bottleneck in combating the pandemic. Drug repurposing can expedite
the process of drug development by identifying known drugs which are effective against SARS-CoV-2.
The SARS-CoV-2 main protease is a promising drug target due to its indispensable role in viral multi-
plication inside the host. In the present study an E-pharmacophore hypothesis was generated using a
crystal structure of the viral protease in complex with an imidazole carbaximide inhibitor. Drugs avail-
able in the superDRUG2 database were used to identify candidate drugs for repurposing. The hits
obtained from the pharmacophore based screening were further screened using a structure based
approach involving molecular docking at different precisions. The binding energies of the most prom-
ising compounds were estimated using MM-GBSA. The stability of the interactions between the
selected drugs and the target were further explored using molecular dynamics simulation at 100ns.
The results showed that the drugs Binifibrate and Bamifylline bind strongly to the enzyme active site
and hence they can be repurposed against SARS-CoV-2. However, U.S Food and Drug Administration
have withdrawn Binifibrate from the market as it was having some adverse health effects on patients.
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1. Introduction

COVID-19, a severe viral pneumonia, was first reported on
December 31, 2019, from the city of Wuhan in the Hubei
province of China by the Chinese Centre for Disease Control
(CDC, China). The causative virus was shortly identified as a
novel beta-coronavirus, dubbed SARS-CoV-2. The virus
belongs to the order Nidovirales of the Coronaviridae family
comprising of the alpha- and beta-coronaviruses. These are
enveloped, positive-sense RNA viruses with comparatively
large genomes among known RNA viruses (26.4–31.7 kb)
(Zheng, 2020; Su et al., 2016). Six members of the family are
previously known to infect humans including SARS-CoV and
MERS-CoV, which are known to cause severe respiratory ail-
ments in the host (Paules et al., 2020; Corman et al., 2018).
SARS-CoV-2 is the latest addition to the group and has pre-
sented itself as a potent human respiratory pathogen due to
a mutation in the Receptor Binding Domain (RBD) of its spike
protein that enables high affinity binding to the ACE2 recep-
tor in humans and a polybasic furin cleavage site at the junc-
tion of the S1 and S2 subunits of the spike protein
(Andersen et al., 2020; Hasan et al., 2020). Since the first

report on the virus, it has spread across continents inflicting
a global health-care and economic emergency. In view of
the global spread of the outbreak, the World Health
Organization (WHO) declared it as a pandemic in January
2020. As of 28th May 2020, the number of infections
reported was 5,596,550 and the number of deaths is 353,373.
The numbers are increasing relentlessly despite concerted
efforts to contain the spread of the virus using rigorous diag-
nostic testing, isolation of positive cases and tracing of con-
tacts. The scenario is further made grim by the fact that
there are no specific drugs or vaccines against the virus cur-
rently. The current treatments focus on symptom manage-
ment and supportive therapy (Prajapat et al., 2020).
Government agencies, pharmaceutical companies and
research institutes across the globe have taken up the for-
midable challenge of inventing a specific, viable and vali-
dated therapeutic agent against SARS-CoV-2 as it is probably
the only solution to the ongoing crisis.

Drug repurposing refers to the identification of novel
applications/targets for an approved or investigational drug
outside the premise of its medical indication (Ashburn &
Thor, 2004). At present, the strategy would be a logical
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choice for developing a therapy for COVID-19 considering
the substantial time-scales and attrition rates associated with
new drug discovery and the trial-based validation of its
safety and efficacy. The major advantage lies in the fact that
a repurposed drug has been already evaluated for its safety
by pre-clinical and clinical trials, which would save significant
amounts of time and money (Pushpakom et al., 2019), a pri-
ority concern in SARS-CoV-2 drug discovery. Indeed, most of
the drugs that are currently under investigation for efficacy
against SARS-CoV-2 are repurposed known medicines. Drugs
that are either under development or prescribed off-label
against COVID-19 include ribavirin, interferon-a, mycophe-
nolic acid, ritonavir, lopinavir, oseltamivir and remdesivir
(Mitj�a & Clotet, 2020; Baden & Rubin, 2020; Cao et al., 2020;
Muralidharan et al., 2020; Hendaus, 2020; Arya & Dwivedi,
2020). Among these, hydroxychloroquine, an approved anti-
malarial drug and two known antivirals ritonavir and remde-
sivir have been reported to be effective against SARS-CoV-2
in vitro (Yan, 2020). However, more recent studies have
reported harmful effects of chloroquine and hydroxychloro-
quine. Inhibition of autophagy by these drugs may induce
tissue damage and worsen organ injury in COVID-19 patients
(Edelstein et al., 2020). A number of computational studies
that aim to repurpose drugs against COVID-19 have been
reported. The drug targets selected in these studies include
the host cell protease TMPRSS2 (Elmezayen et al., 2020), the
spike (S) protein (Oliveira et al., 2020; Sinha et al., 2020), the
envelope (E) protein ion channel (Gupta et al., 2020), a puta-
tive immune evasion molecule, 20-O-ribosemethyltransferase
(Khan et al., 2020), the nucleocapsid protein (Salma et al.,
2020) and the RNA dependant RNA polymerase (RdRp)
enzyme (Elfiky & Azzam, 2020; Elfiky, 2020).

The aim of the present study is to identify clinically
approved drugs that can be targeted to the main protease
Mpro, which is also called 3CLpro. The enzyme has similar
structural fold and cleavage site specificity as that of the
picornavirus 3 C protease (Huang et al., 2004). The Mpro is an
attractive and well characterized drug target in corona
viruses owing to the pivotal role it plays in the propagation
of the virus inside the host (Zhang et al., 2020; Boopathi
et al., 2020). The non-structural proteins of the virus (n¼ 16)
is encoded in the ORF1a/b of the RNA genome and gets
transcribed and translated into two polyproteins (PP1a and
PP1ab). Proteolytic cleavage of the PPs into its components
is required to derive functionally active proteins. After its
auto-cleavage from PP1a and PP1ab, Mpro cleaves PP1ab at
about 11 sites. PP1ab contains the subunits of the replicase
complex including the RNA dependant RNA polymerase
(RdRP) and hence the cleavage becomes an essential require-
ment for viral replication (Zhang et al., 2020; Mousavizadeh
& Ghasemi, 2020). Thus, the inhibition of Mpro would effect-
ively stop viral spread by preventing its replication. Since,
human proteases with the same cleavage specificity as the
SARS-CoV-2 protease (Leu-Gln#Ser,Ala,Gly) are not known, it
is unlikely that an inhibitor would cross react with a human
protease (Zhang et al., 2020). Very recently, Jin and co-work-
ers reported the structure of the SARS-CoV-2 Mpro in com-
plex with a potent inhibitor (Jin et al., 2020). The protein is

306 residues long and has a molecular weight 33.8 KDa.
Being a pivotal drug target in SARS-CoV-2, various groups
have reported in silico drug repurposing studies using differ-
ent approaches against Mpro with a wide range of druggable
molecules (Khan et al., 2020; Aanouz al., 2020; Pant et al.,
2020; Joshi et al., 2020; Enmozhi et al., 2020; Choudhury,
2020; Kumar et al., 2020; Umesh et al., 2020; Das et al., 2020;
Al-Khafaji et al., 2020; Gyebi et al., 2020).

In the present study in-order to identify clinically
approved drugs that would bind to the catalytic site of Mpro,
an E-pharmacophore model based virtual screening was per-
formed on a chemical library of known drugs from the
SuperDRUG2 database. The database contains more than
4600 active pharmaceuticals which are marketed or
approved (Siramshetty et al., 2018). A subset of the drugs
selected based on pharmacophore screening was further
screened using molecular docking. The binding energies of
the identified poses were calculated using MM-GBSA
method. Molecular dynamics simulations were carried out on
selected poses to understand the dynamic behaviour of the
complexes and the stability of the protein-ligand binding.

2. Methods

All computational studies like E-pharmacophore hypothesis
generation, virtual screening, molecular docking and MM-
GBSA were carried out using Maestro version 11.4
(Schr€odinger Release 2018-1) from Schrodinger Inc.
Visualization of molecular interactions were done using PyMol.

2.1. Generation of E-pharmacophore model

The crystal structure of Mpro of SARS-CoV-2 bound to a non-
covalent inhibitor X77 at a resolution of 2.1 Å was used to gen-
erate an energy-optimised pharmacophore hypothesis (E-
pharmacophore). The structural coordinates of Mpro-X77 com-
plex was downloaded from the PDB (ID: 6W63). The structure of
the protein-ligand complex was pre-processed and water mole-
cules within 5Å distance from the ligand were removed.
Missing hydrogens and loops were added and the structure was
subjected to restrained energy minimization adopting OPLS3
force field (Harder et al., 2016). These steps were performed
using the protein preparation wizard of the Schrodinger suite
(Sastry et al., 2013). The E-pharmacophore model was devel-
oped using the ‘Develop Pharmacophore from protein-ligand
complex’ option in the Phase module (Dixon et al., 2006). For
this, the prepared protein-ligand complex was imported to the
workspace and default pharmacophore features such as hydro-
gen bond acceptor (A), hydrogen bond donor (D), aromatic ring
(R) and hydrophobicity (H) were mapped.

2.2. E-pharmacophore based virtual screening

E-pharmacophore based virtual screening was performed
using the chemical structures of 4600 drugs (ligands) from
the SuperDRUG2 database. Prior to the screening, the ligands
were structurally optimised at near neutral pH (7 ± 1). All
plausible tautomers and stereoisomers were generated and
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protonation states were assigned. The ligands were sub-
jected to energy minimisation with OPLS3 force field using
the ligprep module of Maestro 11.4. In order to generate a
subset of drugs with the desired molecular features for opti-
mal binding to Mpro, as mapped by the E-pharmacophore
model, a pharmacophore based virtual screening was carried
out using the phase module of Schrodinger suite. The fitness
scores were used to select the best hits.

2.3. Structure based virtual screening

The initial screening using the E-pharmacophore model
enabled the selection of 1000 drugs with a potential to
make energetically favourable interactions with the active
site of Mpro. Further, to identify the most promising candi-
date drugs form this subset, a structure based screening was
performed on the selected drugs using Molecular Docking.
The GLIDE (Grid-based Ligand Docking with Energetics, ver-
sion 7.8) module of Maestro 11.4 was used to perform all the
molecular docking studies. A receptor grid was generated by

keeping the bound ligand in the crystal structure (X77) as
the centre of the grid box. The size of the box was set to
15� 15� 15 Å3. GLIDE scores (g-scores) were used to rank
the drugs based on its binding affinity (Friesner et al., 2006).
The initial screening was performed using the High-
Throughput Virtual Screening (HTVS) module of glide and
10% of top scoring compounds were subjected to standard
precision (SP) docking. Finally, 50% of high scoring com-
pounds from SP docking were subjected to extra precision
(XP) docking to identify the best hits.

2.3.1. Validation of docking procedure
The docking procedure was validated by a control study. For
this the bound ligand in the crystal structure was re-docked to
the pre-processed and prepared protein keeping the same
grid box. The glide score for this docking was used as a stand-
ard value against which the scores for the drugs were com-
pared. The control docking was performed in the XP mode.

2.4. Estimation of binding free energy

The theoretical binding free energies of the potent inhibitors
of Mpro were calculated using the prime module of Maestro
11.4 (Lyne et al., 2006). MM-GBSA is a popular method to cal-
culate binding energy, which uses energy properties of free
ligand, free receptor and receptor–ligand complex for bind-
ing affinity calculation. Binding energies were estimated for
the 40 drugs selected based on the glide scores of XP dock-
ing, using the MM-GBSA method.

2.5. Molecular dynamics

The stability of binding of the selected drugs with Mpro in an
explicit solvent system was determined by molecular dynam-
ics (MD) using Desmond module of Schrodinger (Bowers

Figure 1. E-pharmacophore model for Mpro-X77 complex mapped to the bound inhibitor X77: The left panel shows the bound inhibitor X77 (ball-and-stick model)
in the active site of Mpro (ribbon model). The E-pharmacophore features of the inhibitor are shown in red. The right panel is a zoomed in image of the inhibitor,
X77 with the pharmacophore features marked in red.

Figure 2. Energy optimised pharmacophore hypothesis AARRR. A3 and A4 are
hydrogen bond acceptors; R9, R10 and R11 are aromatic rings. The distances
between the pharmacophore features are also shown.
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et al., 2006). The docked poses of protein ligand complexes
were used as input structures and each complex was pre-
pared by system setup option in Desmond module. In the
first step the complexes were solvated with TIP3P water
model and the solvated system was neutralized by adding
Naþ/Cl- ions. After the system generation, minimization and
relaxation of the protein-ligand complexes under NPT were
carried out using default protocol of Desmond module. MD
simulations were conducted with the periodic boundary con-
ditions in the NPT ensemble using OPLS3 force field. The
temperature and pressure were kept at 300 K and 1 atmos-
phere respectively using Nose-Hoover temperature coupling
and isotropic scaling. The operation was followed by 100 ns
NPT production run. The binding energy of each complex

was determined after the run from selected MD trajectory
frames by using MM-GBSA method.

3. Results and discussion

3.1 E-pharmacophore hypothesis

Pharmacophore is defined as ‘an ensemble of steric and elec-
tronic features that is necessary to ensure the optimal supra-
molecular interactions with a specific biological target and to
trigger (or block) its biological response’ (Proekt &
Hemmings, 2019). Pharmacophore model based screening
has evolved as a key tool in computer aided drug discovery
because of its ability to screen large libraries for potent hits

Figure 3. The docked pose of X77 (red) superimposed on the crystal structure (green).

Figure 4. Interactions between standard inhibitor X77 and Mpro active site residues. (a) X77-Mpro interactions in the crystal structure. (b) X77-Mpro interactions in
the docked structure.
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within a short period of time and minimal computational
capacities. Energy optimised pharmacophore models tries to
combine the stereo-electronic features of the ligand with the
energetics of its interactions with the protein structure
(Muthusamy et al., 2013). In the present study an E-pharma-
cophore hypothesis was generated to screen for the inhibi-
tors of Mpro protein of SARS-CoV-2 using its crystal structure
in complex with a strong, broad spectrum non-covalent
inhibitor. The bound inhibitor, an imidazole carbaximide
derivative dubbed X77, interacts strongly with the active site
amino acid residues. Based on the ligand-protein complex an
energy optimised five-featured pharmacophore hypothesis,
AARRR was obtained. The generated E-pharmacophore
model contains two hydrogen bond accepters (A) and three
aromatic rings (R) (Figure 1). Figure 2 shows the planar rep-
resentation of the pharmacophore hypothesis with distances
between the features. The hypothesis AARRR was used as a
3D search query to screen 4600 drugs from the SuperDRUG2
database to identify drugs with comparable pharmacophore
features. During the screening, the phase module analyses
the fitness of compounds with the query hypothesis and
ranks the compounds on the basis of fitness scores. One
thousand compounds were selected in this way and used for
the molecular docking based screening.

3.2. Structure based virtual screening

The best hits obtained in the E-pharmacophore based
screening (n¼ 1000) were further screened using molecular
docking. The docking study analyses the molecular interac-
tions of the different plausible geometries of the drugs
(poses) with the surrounding active site residues of the
SARS-CoV-2 Mpro and ranks them on the basis of binding
scores. The docking processes were carried out using three
different approaches: HTVS, SP and XP methods; by filtering
the outputs after each stage based on glide scores. The
docking studies also revealed the atomic level interactions

between the drugs and the protease. Re-docking the crystallo-
graphic ligand X77 (N-(4-tert-butylphenyl)-N-[(1R)-2-(cyclohexyla-
mino)-2-oxo-1-(pyridin-3-yl)ethyl]-1H imidazole-4-carboxamide)
to the active site of the protease using the same protocol
resulted in the binding of the ligand in the same position and
orientation (Figure 3) and this verified that the docking parame-
ters chosen were optimal. Analysis of the crystal structure of
Mpro-X77 complex showed that the binding of the ligand were
stabilized through three hydrogen bonds with the active site res-
idues, viz, Gly 143, His 163 and Glu 166. The in silico docked struc-
ture also exhibited these three hydrogen bonds (Figure 4).

Based on HTVS and SP docking, 40 drugs were selected
for XP docking. The g-score calculated for the crystallo-
graphic ligand, X77 was -8.243 kcal/mol. Seventeen of the 40
drugs used for XP docking showed g-scores comparable to
that of the standard inhibitor used in the study (g-scores
better than -7.0 kcal/mol) (supplementary data, S1). Three
highest scoring drugs, viz, Hidrosmin (-12.689 kcal/mol),
Diosmin (-11.409 kcal/mol) and Monoxerutin (-10.745 kcal/
mol) are flavanoids with similar pharmacological properties.
They are used as vaso-protectives and capillary stabilising
agents. Remikirin (-9.429 kcal/mol) is an interesting hit
because it is a well-known inhibitor of Renin, an aspartyl
endoprotease which acts as the primary enzyme in the
renin-angiotensin system (Himmelmann et al., 1996).
Doxorubisin (-9.16 kcal/mol), an anthracyne class antineoplas-
tic used as an anti-cancer drug and Fluvastatin (-8.346 kcal/
mol), an inhibitor of hydroxymethylglutaryl-coenzyme A
(HMG-CoA) reductase, used as an antilipemic agent also
showed high binding score to the protease. Of note,
Doxorubisin and its derivatives had been previously shown
to be effective in vitro against viruses like HIV, HSV, Dengue
virus, Yellow Fever Virus, Rauscher leukemia virus and avian
myeloblastosis virus (Kaptein et al., 2010; Ash & Diekema,
1987; Jeyaseelan et al., 1996; Papas & Schafer, 1977).
Although the drug targets in each case vary, the drugs were
able to reduce virus replication in vitro. Statins, in general,

Table 1. Drugs with highest binding energies towards Mpro.

Drug
Binding free energy

(kcal/mol) Fitness score H- bonded residues Primary target/activity

Binifibrate �69.04 1.3 Gly143, His 163, Glu 166 Peroxisome proliferator-activated receptor agonist/
Hypolipidimic agent

Macimorelin acetate �64.25 1.296 Gly 143, His 164, Glu 166, Thr 190 Agonist of Growth Hormone (GH) secretagogue receptor
Bamifylline �63.19 1.534 Gly143, Glu 166, Gln 189 Selective A1 adenosine receptor antagonist.
Rilmazafone �61.37 1.409 Thr 26, Gly 143, His 163, Glu 166 GABA-A receptor agonist/ Non-benzodiazepine sedative
Afatinib �60.89 1.169 Gly 143, Glu 166 Tyrosine kinase inhibitor
Ezetimibe �60.21 1.175 Glu 166 Inhibits intestinal cholesterol absorption by physical

interactions with Niemann-Pick C1-Like 1 (NPC1L1)
transporter

Table 2. Energy contributions from different components to the total binding energy (kcal/mol)�.
Drug Coulomb dG_Bind _Covalent vdW Lipo Solv_GB Hbond Packing

Binifibrate �23.14 11.67 �61.20 �20.31 27.42 �1.74 �1.73
Macimorelin acetate �50.03 10.22 �49.21 �16.17 47.52 �2.30 �4.26
Bamifylline �27.93 1.45 �41.84 �13.22 23.41 �2.09 �2.96
Rilmazafone �21.88 1.34 �53.12 �14.58 29.69 �2.09 �0.72
Afatinib �29.13 8.70 �59.76 �13.28 38.17 �2.29 �3.28
Ezetimibe �11.76 1.88 �43.56 �18.75 15.88 �1.18 �2.71
�Coulomb¼ Electrostatic, dG Bind Covalent¼ Covalent, vdW¼ van der Waals, Lipo¼ Lipophilic, Solv_GB¼Generalized Born electrostatic salva-
tion, Hbond¼Hydrogen bonding, Packing¼ pi-pi packing.
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are known to inhibit the replication of many enveloped
viruses by the inhibition of cholesterol/isoprenoid pathway
(Shrivastava-Ranjan et al., 2018). Fluvastatin was earlier

shown to have an inhibitory effect on Heamophilus influenza
replication in vitro (Peng et al., 2014). Thus, the present study
identifies the Mpro of SARS-CoV-2 as a novel targets for the

Figure 5: Conformation of drugs with highest binding energies bound in the active site of Mpro and surrounding protein residues. (a) Afatinib (b) Bamifylline (c)
Ezetimibe (d) Binifibrate (e) Macimorelin acetate (f), Rilmazafone.
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known antivirals, Doxorubisin and Fluvastatin. Fluvastatin is
an interesting hit considering the fact that the SARS-CoV-2
is also an enveloped virus. The drug might have a

cumulative inhibitory effect on the propagation of the virus,
if it can inhibit both the Mpro and the cholesterol synthe-
sis pathway.

Figure 6. Protein and ligand RMSD of SARS-CoV-2 Mpro in complex with (a) Binifibrate, (b) Macimorelin acetate, (c) Bamifylline and (d) Rilmazafone as observed in
the 100 ns MD simulations.
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3.3. Estimation of binding energies of docked drugs

Drugs which showed high glide score was further subjected
to binding energy calculation using the MM-GBSA method.
The binding energy of crystallographic ligand, X77 as deter-
mined by MMGBSA was -73.68 kcal/mol. Six drugs with bind-
ing free energies better than -60 kcal/mol were selected from
the pool of 40 drugs using molecular docking. These drugs
were Binifibrate, Macimorelin acetate, Bamifylline, Rilmazafon,
Afatinib and Ezetimibe. Except Bamyfilline (g-score;
�6.61 kcal/mol) all these drugs had shown g-scores better
than -7 kcal/mol in the docking studies. However few drugs
that showed glide scores comparable to the standard inhibi-
tor showed lower binding energies. Binifirbate, a

hypolipidaemic drug showed a very high binding energy
(-69.04 kcal/mol) similar to that of the standard inhibitor,
X77. Binifibrate forms hydrogen bonds with three active site
residues, viz, Gly 143, His 163, and Glu 166. The binding free
energies and protein residues that interact with the drugs
were shown in Table 1. The primary targets/activities of the
drugs were also shown in the table. Energy contributions
from different components like, Electrostatic, Covalent, Van

Figure 7. Schematic diagram of the ligand interactions with surrounding protein residues. (a) Binifibrate, (b) Macimorelin acetate, (c) Bamifylline and
(d) Rilmazafone during the course of MD simulation.

Table 3. Binding free energy values of the drugs with SARS-CoV-2 Mpro

after MD.

Drug Binding energy after MD simulation kcal/mol

Binifibrate �67.78 ± 5.97
Macimorelin acetate �17.36 ± 14.53
Bamifylline �65.24 ± 6.20
Rilmazafone �39.05 ± 6.15

Figure 8. The comparison of binding energy values before and after
MD simulation.
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der Waals, Lipophilic, Generalized Born electrostatic solvation,
Hydrogen bonds and Pi-Pi packing towards the total binding
energy were given in Table 2. From the results presented in
Table 1 it can be seen that the hydrogen bonding interac-
tions with Gly 143, His 163, and Glu 166, the three polar
amino-acid residues in the active site of the protease are crit-
ical in the high affinity binding of the drugs to the protein.
Figure 5 shows the conformation of the bound drugs in the
active site of the enzyme and surrounding protein residues.

3.4. Molecular dynamics

MD simulations were performed on the top 4 hits selected
based on the binding free energies, namely, Binifibrate,
Macimorelin Acetate, Bamifylline and Rilmazafon in complex
with Mpro. The conformational changes of the protein and
the ligand from the initial structure during the simulation
can be expressed in terms of Root Mean Square Deviation
(RMSD). Any RMSD within 3 Å is perfectly acceptable for
globular proteins. Larger deviations indicate that the protein
is undergoing large conformational changes during the simu-
lation and it means that the protein-ligand complex is
unstable. The four complexes that were subjected to MD
simulations showed deviations in protein RMSD is below 3Å
when compared to initial frame (Figure 6). The overall values
of Root Mean Square Fluctuation (RMSF), (which specifies the
flexibility of protein residues during the interaction with the
drug) falls within 3 Å and hence indicates that the protein is
stable while in complex with the drugs in the active site.
Analysis of the ligand RMSD shows that Binifibrate and
Bamifylline do not exhibit large deviations from the initial
position indicating that their binding is stable. However,
Macimorelin acetate and Rilmazafone displayed larger RMSDs
during the MD run indicating that they have less stable bind-
ing. Taken together, it is clear that Binifibrate and Bamifylline
possess better binding affinity towards SARS-CoV-2 Mpro

active site compared to the other two drugs. The interactions
of drugs with specific residues of Mpro during the MD run
were shown in Figure 7. The major hydrogen bonds which
stabilize the binding of Binifibrate (Gly 143 and Glu 166) and
Bamifylline (Gly143, and Glu 166) were persistent during the
entire course of the MD simulations. The hydrogen bonding
interactions established by Macimorelin acetate (with Gly
143, His 164, Glu 166, Thr 190) and Rilmazafone (with Thr 26,
Gly 143, His 163, Glu 166) were eventually lost during the
course of the simulation and that accounts for the lower sta-
bility of the binding.

After the MD run, binding energy of the selected frames
from MD trajectory was calculated by MM-GBSA. For this, the
structure of each 10 ns frame from the 100 ns (total 10

structures) MD trajectory was exported and binding energy
was calculated for each complex. The binding energies
obtained were averaged and standard deviations were deter-
mined (Table 3). Binifibrate showed highest average binding
energy during the MD run (-67.78 ± 5.97 kcal/mol) and the
energy value was similar to the binding energy before the
MD run (-69. 04 kcal/mol). The binding energy values of
Bamifylline before and after the MD run (-63.19 kcal/mol and
-65.24 ± 6.20 kcal/mol respectively) were also similar indicat-
ing that the drug interacts with the Mpro active site with
high stability. Rilmazafone which had an initial binding free
energy of -61.37 kcal/mol showed a significantly lower
energy (-39.05 ± 6.15 kcal/mol) after the MD run. Likewise
Macimorelin acetate showed a large deviation in binding
energy before (-64.25 kcal/mol) and after the MD run
(-17.362 ± 14.53 kcal/mol). Also, the RMSD of Macimorelin
acetate showed a huge variation (15-40 Å). The MD simula-
tion indicates that binding of Macimorelin to Mpro was not
stable. Figure 8 summarises the comparison of binding
energy values before and after MD simulation and Table 3
summarises the contribution of each energy parameters to
the binding energy of the simulated systems. The MD data
indicates that the drugs Binifirbate and Bamifylline might
bind to the active site SARS-CoV-2 Mpro and inhibit its activ-
ity. Hence, these drugs have the potential to be repurposed
against COVID-19. However, Binifibrate, a hypolipidemic
fibrate drug co-administered along with statins, has been
presently withdrawn from the market. The reason cited for
the withdrawal is that the risks associated with the drug out-
weighs its efficacy as an agent that reduces triglycerides and
increases high density lipoprotein-C (HDL-C) (Abb Vie Inc,
2016). A rational assessment of the benefits of using binifi-
brate against COVID-19 and the potential side effects should
be made before considering it for drug repurposing against
COVID-19.

4. Conclusion

Drug repurposing is perhaps the best way to combat the
medical emergency poised by the SARS-CoV-2 infections that
grows in magnitude with the passing of each day.
Repurposing involves screening and identification of known
bio-actives against specific therapeutic targets in SARS-CoV-2.
Repurposed drugs gets to the market at relatively lesser time
periods and costs compared to novel drugs. The Mpro of
SARS-CoV-2 is involved in the proteolytic processing of viral
polyproteins to form key non-structural components involved
in viral multiplication and hence is an attractive target for
drug development. In the present study using a combination
of E-pharmacophore and structure based virtual screening

Table 4. Energy contributions from different components to the total binding energy (kcal/mol) after MD simulations.�.
Drug Coulomb dG_Bind _Covalent vdW Lipo Solv GB Hbond Packing

Binifibrate �15.21 4.87 �61.37 �15.94 24.36 �1.25 �3.23
Macimorelin acetate �21.69 0.30 �14.26 �4.63 25.50 �1.17 �1.42
Bamifylline �38.72 2.22 �44.07 �11.24 32.35 �2.27 �3.51
Rilmazafone �13.71 2.01 �32.14 �11.35 17.09 �0.41 �0.54
�Coulomb¼ Electrostatic, dG_Bind_Covalent¼ Covalent, vdW¼ van der Waals, Lipo¼ Lipophilic, Solv_GB¼Generalized Born electrostatic
salvation, Hbond¼Hydrogen bonding, Packing¼ pi-pi packing.
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followed by binding energy estimation; a subset of known
drugs from the superDRUG2 database was repurposed
against COVID-19. Out of 4600 drugs from the database,
after a series of screening, four drugs were selected for
molecular dynamic simulation studies to check their binding
stabilities in the active site of SARS-CoV-2 Mpro. Based on the
MD results, it was found that Binifibrate and Bamifylline may
bind to the SARS-CoV-2 Mpro active site and inhibit its activ-
ity. Hence, Binifibrate and Bamifylline are two drugs that
could be repurposed against COVID-19. However, it is
important to note that Binifibrate is currently withdrawn
from the drug market because of its side effects. It is sug-
gested that a rational risk-benefit analysis should be per-
formed before the drug can be used for repurposing against
COVID-19. To conclude, Bamifylline is proposed as potential
drug worthy of testing against COVID-19 based on the in sil-
ico studies described here.
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