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Abstract

Emotions are not confined to short momentary states but carry on over time, facilitating the perception and interpretation
of the environment in mood-congruent ways. Yet, the (neural) mechanism linking affective stimulation at a certain
time-point to such altered, mood-congruent processing of stimuli presented at a subsequent time-point remains unknown.
Recent research suggests that such a link could be explained by transient effects of affective stimulation on the organization
of intrinsic macro-scale neural networks. It remains, however, unclear whether these changes in network organization are
influencing subsequent perception in a mood-congruent way. Addressing this gap the current study investigated whether
changes in network organization, measured in terms of network efficiency, mediate the relation between mood induction
and mood-congruent processing as measured by reaction times during an emotional Stroop task. The results demonstrated
that negative mood induction increased the efficiency of the salience network and decreased the efficiency of the central
executive network. This modulation of network efficiency fully mediated the effects of mood induction on reaction times to
negative words. These findings indicate that transient shifts in the organization of macro-scale neural networks are an
essential part of the emotional response and can help to explain how affect shapes our interaction with the environment.
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Introduction

The emotions we experience are not confined to short momen-
tary states but carry on over time and shape the perception,
interpretation and interaction with our environment (e.g. Clore
and Huntsinger, 2007). Especially the tendency of emotions to
facilitate processing of stimuli in a mood-congruent manner
has received considerable attention (for example MacLeod and
Mathews, 1988; Tamir and Robinson, 2007; Isaac et al., 2012;
Forgas, 2017). On the upside, such mood-congruent processing

is considered to reflect a core functional feature of emotions,
helping us to navigate the threats and opportunities in our
environment (for example Schwarz, 1990; Eldar et al., 2016). On
the downside, when such mood-congruent processing becomes
inflexible and difficult to regulate, it is considered to play a cru-
cial role in the development of affective disorders (for example
Koster et al., 2005). Despite its central role for adaptive and mal-
adaptive functioning, the (neural) mechanisms linking affective
stimulation, at a certain time-point, to the processing of novel
stimuli at a subsequent time point are not fully understood.
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Fig. 1. Overview over research questions. Testing the hypothesis that the effect of
emotional stimulation at a certain time-point (t1) to mood-congruent behavior
at a subsequent time point (t2) (A) is linked by transient shifts in intrinsic
network organization (B), we will, as a first aim, replicate the findings of a relation
between emotional stimulation and subsequent mood-congruent behavior (c) as
well as emotional stimulation and shifts in intrinsic network organization (a). As
a second aim we will test for a relation of shifts in intrinsic network organization
and mood-congruent shifts in behavior (b), and finally as a third aim, we will
test if these shifts in intrinsic network organization are mediating the relation
of emotional stimulation on mood-congruent behavioral shifts (B).

Outlining a potential neural mechanism of how affective
stimulation might shape the processing of subsequently pre-
sented novel stimuli, recent research has shown that mood
induction is related to transient and sustained shifts of func-
tional connectivity within macro-scale neural networks involved
in emotional processing. Indeed, it is becoming increasingly
clear that neural responses to mood induction are not confined
to the duration of such stimulation but carry on and modulate
neural activity and connectivity within the salience network
(SN), the default mode network (DMN) as well as the central
executive network (CEN) (Harrison et al., 2008; Eryilmaz et al.,
2011, Borchardt et al., 2017). The transient character of these
changes (see for example Eryilmaz et al., 2011) as well as the links
between transient changes in network organization and behav-
ior (Tambini et al., 2016; see also Spoorns, 2010; Raichle, 2015) are
making them a promising candidate for orchestrating the effects
of emotions on subsequent processing of novel stimuli (see also
Pessoa, 2017; Pessoa, 2018). However, to our knowledge, no study
has yet examined whether affect-induced changes of macro-
scale neural networks are related to mood-congruent processing
of novel stimuli and whether these changes can indeed explain
(mediate) the relationship between emotional stimulation and
mood-congruent processing of novel stimuli.

Accordingly, the overall aim of the present study is to test
the potential role of changes in network organization in con-
necting affective stimulation with subsequent mood-congruent
processing of novel stimuli. For this purpose we first aim to
replicate the findings that affective stimulation results in mood-
congruent processing of novel stimuli (see arrows c in Figure 1)
and in changes in the intrinsic organization of the DMN, CEN and
SN (see arrow a in Figure 1). The second aim is to test a possible
relation between changes in the organization of these networks
and (mood-congruent) processing of novel stimuli (see arrow b
in Figure 1). Finally, the third aim is to test whether changes in
the intrinsic organization of the DMN, CEN and SN mediate the
effect of affective stimulation on mood-congruent processing of
novel stimuli (see Figure 1).

To realize these aims, we conducted a functional magnetic
resonance imaging (fMRI) study consisting of nine sessions. Each
session started with a mood induction (positive vs negative vs
neutral), followed by a resting state period and a measurement
of mood-congruent processing. To induce affective experience
we made use of emotional movie clips as they have been shown
to be highly effective at eliciting emotions (Gross and Levenson,
1995; see also Lench et al., 2011). Resting-state periods after nega-
tive and positive mood induction were used to estimate network
integration in terms of network efficiency (Latora and Marchiori,
2001), indicating the capacity of a network to support rapid,
efficient and integrated communication. This topological feature
of network organization has been shown to be sensitive to the
affective context (McMenamin et al.,, 2014) and such emotion-
dependent reconfiguration of network integration have been
argued to be a central aspect in linking emotions to changes in
perception and behavior (see for example Pessoa, 2017). Finally,
the emotional Stroop task (Williams et al., 1996) is presented at
the end of each session to capture mood-congruent behavioral
changes in the processing of novel emotional stimuli (see also
Gilboa-Schechtman et al., 2000).

Based on previous work we formulated the following
hypotheses. Related to our first goal, we expected to replicate
the mood congruency effect on reaction times in the emotional
Stroop task with negative mood induction increasing the
reaction times to negative and positive mood induction to
positive words (as for instance shown in Gilboa-Schechtman
et al., 2000). Moreover we expected that the mood induction
would impact the functional organization of the SN and CEN.
In particular, we expected to find increased SN efficiency after
negative mood induction (compared to positive mood induction),
replicating the relationship between coupling of SN regions and
negative emotional states (see Harrison et al., 2008; Eryilmaz
etal.,2011; see also van Marle et al., 2009; Raz et al., 2012; Raz et al.,
2016). In contrast, we expected, in line with findings of reduced
CEN efficiency in negative emotion contexts (McMenamin et al.,
2014; see also Hermans et al., 2014), decreased CEN efficiency
after negative mood induction (compared to positive mood
induction).

Related to our second goal, we expected changes in efficiency
of both networks to impact subsequently presented emotional
stimuli. On the one hand we predicted the SN to be involved
in facilitating the processing of negative emotional stimuli. This
prediction is mainly based on previous research showing that
negative mood induction modulates the responses of key SN
regions to subsequently presented stimuli (for example Wang
et al., 2006; Qiao-Tasserit et al., 2018). On the other hand we
expected alterations in the CEN to be connected to facilitating
processing of positive stimuli after positive mood induction (as
compared to negative mood induction). This prediction is mainly
based on findings of increased activity in a key CEN region—the
dorsolateral prefrontal cortex (dIPFC)—in response to positive
stimuli being associated to increased sensitivity to these stimuli,
resulting in a larger change of the affective state of the subjects
(Mak et al., 2009) as well as reduced dIPFC responses to positive
stimuli after negative-mood induction (Ossewarde et al., 2011).

Finally, no directed predictions were formulated regarding
the DMN as most studies report a modulation of the DMN by
mood but the direction of these effects are highly inconsistent
(see Harrison et al., 2008; Borchardt et al., 2017; Clemens et al.,
2017), making it difficult to formulate specific hypothesis about
the affect-dependent changes in network efficiency as well as
the effects of such potential changes on subsequent emotional
stimuli.



Related to our third goal, we expect that changes in network
efficiency are able to explain the mood induction effects on
changes in the processing of subsequently presented words.
Accordingly, we expected that the effects of affective stimulation
onreaction times in the emotional Stroop task are fully mediated
by changes in network efficiency that are outlasting the mood
induction.

Materials and methods
Participants

An initial sample of 287 participants was recruited through
online advertisements and flyers in which they were asked to
fill out an online screening questionnaire. From this participant
pool, 38 participants were selected based on their suitability to
undergo an fMRI scan and additional criteria including no color
blindness, no history of psychiatric or neurological disorders
and right handedness. The selection process was further guided
to achieve an approximately equal distribution of scores on
the BFI-2 neuroticism scale (Soto and John, 2017). This pro-
cedure ensured that the sample of participants represented a
wide range of trait emotionality and is not biased toward well-
adapted participants scoring low on neuroticism, which would
possibly limit the generalizability of the findings. To achieve
this, the original participant pool was divided into five groups,
representing five distinct sections of neuroticism scores (very
low [< 2], low [2-2.5], middle [2.5-3], high [3-3.5] and very high
[>3.5]). An approximately equal number of participants from
every section were invited to participate in the study. Of those
who agreed to participate, one participant was excluded from
the analysis because of low compliance during the fMRI ses-
sion (40% answered questions compared to 99.1% in the overall
sample). Additionally two fMRI trials (see design section below)
had to be removed from the analysis because of failed registra-
tion during preprocessing. This resulted in a total of 331 trials
(109 negative, 111 neutral and 111 positive) nested within 37
subjects.

The final sample consisted of 17 male and 20 female healthy
participants between 18 and 32 years of age (M =24.03). The study
was approved by the Ethics Committee Research UZ/KU Leuven
(559871).

Design

Every participant underwent nine task sessions (see Figure 2)
inside the scanner, each consisting of a mood induction followed
by a short resting period and an emotional Stroop task (see
Williams et al., 1996). To make sure to avoid position effects of the
mood inductions as well as avoid more than two mood induc-
tions with the same valence following each other, the order of
the session was determined via randomly grouping one session
with a positive, one session with negative and one session with
neutral mood induction into three blocks and then randomizing
the order of the presentation of these blocks.

Mood induction. Each participant was exposed to three positive,
three negative and three neutral emotional movie clips. The
neutral movie clip lasted for ~30 s while the emotional movie
clips lasted for ~90 s (for further information about the movie
clips see Supplementary Table S1).

Participants indicated their mood state using a 7-item Likert
scale (from very positive to very negative) before the movie
and after the resting period. These ratings allowed for checking
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the effectiveness of the mood induction to induce prolonged
changes in mood that sustained until after the resting state
period. Furthermore, to obtain additional data on the mood state
experienced during mood induction, participants were asked to
watch and rate all the emotional movie clips again after the
fMRI session (for the ratings on specific emotion categories see
Supplementary Figure S1).

Resting phase. Every emotional movie clip was followed by a
short eye-open resting period of 130 s. Since no analysis of the
resting period after neutral movies were planned, and to reduce
total scanning time, the resting phase after neutral movies was
reduced to 10 s.

Emotional Stroop task. During this task, participants were shown
positive, negative and neutral words in red, green, blue or yellow
and had to indicate the color of the word by pressing a button
corresponding to the color. The relative position of the colored
buttons on the button boxes that participants were holding in
their hands was indicated by color-words on the screen. For
example, if the button at the extreme left of the button box
corresponded to green, the word ‘green’ was situated on the
extreme left of the screen. Each word was shown until a button
press (maximum 2 s) and then followed by a fixation cross until
the total presentation time of the word and the fixation cross
was 2.5s.

In every task session 50 Dutch words were shown, equaling
450 in total. Of these, 150 words were unique—50 positive, 50
negative and 50 neutral—and each word was repeated three
times (once after neutral, once after negative and once after
positive mood inductions). The words were selected from a
normed list of Dutch words (Moors et al., 2012) so that they
approximately matched in regard to arousal (negative: M=3.98,
SD =1.09; neutral: M =3.68, SD =0.50; positive: M=4.09, SD =0.62)
and word length (negative: M=7, range =5-10; neutral: M=6,
range = 5-8; positive: M =7, range = 5-8) while showing clear dif-
ferences in their valence (negative: M=2.09, SD=0.31; neutral:
M=4.42, SD=0.47; positive: M=6.10, SD=0.23) (for the specific
words see Supplementary Table S2).

Image acquisition

All scans were acquired with 3T MRI scanner (Philips Medical
Systems). For all functional scans T2x-weighted multiband
sequences containing 40 slices (TR/TE=1200/30 ms, voxel
size=2.7 x2.7 x3 mm, FOV=216 x 120 x 216) were acquired.
High-resolution T1-weighted structural images were acquired
containing 184 slices (TR/TE=9.75/4.6 ms, voxel size=1x1x1
mm, FOV =256 x 256 x 184).

Image preprocessing

Structural MRI. Preprocessing of the structural MRI data,
including intensity normalization, removal of non-brain tissue
and calculating ventricle and white matter tissue masks, was
performed with Freesurfer (http://surfer.nmr.mgh harvard.edu)
(Fischl et al., 2002; Fischl, 2012; Fischl, 2004).

Resting state. Preprocessing of the resting state periods after
the movies was performed using AFNI (http://afni.nimh.nih.
gov/afni) (Cox, 2012) using standard procedures, including
de-spiking, co-registration, normalization to MNI-space and
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Fig. 2. Overview of the study design. (A) The general outline of the single-task sessions is depicted. Each session started with rating the current affective state on a
scale from very negative to very positive followed by a short movie clip as mood induction. After that, an eye-open resting-state period and a second (post) rating of the
current affective state followed. Finally participants were confronted with an emotional Stroop task. Each participant underwent nine task sessions with in total three
negative, three positive and three neutral mood inductions/movie clips. The graphs in the lower panel depict basic visualizations of data characterizing participants
response to this design including (B) valence and arousal ratings of the emotional movies used as mood induction (as rated during the second viewing of the movie
clips after the scanning session) and (C) effectiveness of the mood induction on both the mood ratings after the mood induction and resting state period (mood rating
post) and the change in indicated mood before and after the mood induction. In (D) the effect of the mood induction (valence of the movie-clips) as well as subjective
mood ratings (post) on group mean centered reaction times toward negative words in the emotional Stroop task are shown.

smoothing using a 6 mm full-width half-maximum Gaussian
kernel. Additionally images were band-passed filtered (0.008-
0.15) and censored (Euclidean norm, >0.3; outlier, >0.1). Motion
parameters as well as tissue-based regressors (ANATICOR; Jo
et al., 2010)—estimated from Freesurfer ventricles as well as
white matter masks—were regressed out (3dDeconvolve) of the
fMRI time series. To prevent spill-over effects from the movie
clips shown before the resting period, the first 10 s of the resting
period were removed from the analysis. Preprocessing of these
resting state periods was done separately for every subject and
session.

Network parameters

Regions of interest. Network nodes were defined as 5 mm
radius spheres around 36 regions of interest (ROIs) described
in previous studies as being part of the DMN (n =12, Fox et al.,
2005), SN (n =13, Hermans et al., 2011) and CEN (n =11, Seeley
et al., 2007) (for the detailed description of the used ROIs see
Supplementary Table S3; also see Najafi et al., 2017). For every
session and subject the mean time series of the voxels within
every ROI sphere was extracted and used to construct a 36 x 36
Pearson correlation matrix.

Network efficiency. A global threshold of r =0.25 was applied to
all matrices to account for noise as well as to remove all negative
(Pearson) correlations (see also Supplementary Figure S2 for
stability of effect sizes over different thresholds). Network
efficiency, defined as the inverse of the sum of shortest paths
(as implemented in the Brain Connectivity Toolbox, Rubinov
and Sporns, 2010), was calculated for the DMN, SN and CEN
for each participant and session (220 sessions: 109 negative, 111
positive) separately (for a similar approach see McMenamin et al.,
2014; see also Supplementary Figure S3 for visualization of the
distribution of efficiency parameters).

Manipulation check: mood induction

In order to check the effectiveness of the mood induction pro-
cedure, we examined the influence of the valence of the mood
induction (i.e. valence of the shown movie clips) on experienced
mood (i.e. the subjective mood ratings) after the mood induction
(i.e. after the resting state phase). Taking into account the nested
structure of the data (331 sessions nested within 37 subjects),
these effects were modeled with random-intercept multilevel
models (nlme-package; Pinheiro et al., 2019). To reduce the num-
ber of analyses we first calculated an omnibus F-test for mood
induction differences followed by planned t-tests comparing
positive, negative and neutral mood inductions. Two sessions
from one subject had to be removed from the analysis because
of missing mood ratings. These sessions were subsequently
removed from all analysis including the subjective mood ratings.

Data-analytic strategy for aim 1: the effect of mood
induction on reaction times in the emotional Stroop
task and network efficiency during rest

Impact of mood induction on reaction times in the emotional Stroop
task. To capture reaction time differences between sessions,
the reaction times were first normalized for each button (to
control for differences in mean and variance between buttons)
and then aggregated by calculating the median reaction time
differences (positive words-neutral words and negative words-
neutral words) within each task session. Mood effects on these
median reaction time differences were analyzed with a random-
intercept multilevel model (nlme-package; Pinheiro et al., 2019).
Specifically, we calculated omnibus F-tests for effects of mood
induction on negative (contrasted with neutral) as well as posi-
tive (contrasted with neutral) words followed by planned t-tests
comparing positive, negative and neutral mood induction. Sub-
sequently, in order to additionally estimate the effect of subjec-
tively experienced mood (as rated by the participants after the
resting phase), an additional random-intercept multilevel model
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including the group-mean centered mood ratings as predictor of
reaction times was fitted. Five sessions (of five different subjects)
had to be removed from the analysis because of errors in reaction
time recordings or technical problems with button boxes during
the sessions.

Impact of mood induction on network efficiency. Taking into
account the nested structure of the data (sessions nested in
subjects), multilevel models (nlme-package; Pinheiro et al., 2019)
were estimated to separately examine the effect of the positive
and negative mood induction on the efficiency of the CEN,
SN and DMN. These models included a random intercept for
subjects as well as valence of the mood induction (positive or
negative) as a binary level one predictor. Sessions with neutral
mood induction were not included in the analysis.

In a subsequent set of analyses, we added the subjectively
experienced (and rated) valence after mood induction as a pre-
dictor of network efficiency. The rationale behind this was that,
especially in the context of investigating the influence of affect,
an important distinction pertains to whether the relationship
with mood is linear (i.e. linearly changing with the valence of the
mood) or quadratic (i.e. changing both with increased positive
and negative mood, suggesting changes driven by general emo-
tionality or valence-independent arousal). To distinguish these
effects, orthogonal polynomials of the indicated mood after the
mood induction (of the first and second degree, i.e. linear and
quadratic trend) were estimated (using the ‘poly ()’ R-function)
and included into the multilevel models for network efficiency
as continuous first-level predictors. Since we were solely inter-
ested in within-person relationships, the mood ratings were
person-mean centered before being entered into the model.
Additionally, to ensure that the modeling of sub-network spe-
cific effects was not driven by unspecific changes of the global
network, the efficiency of the global network (i.e. SN, CEN and
DMN) was added as a nuisance predictor to all models. Resulting
P values were corrected for multiple comparisons using family-
wise error correction (Holm-Bonferroni method; Holm, 1979).

Data-analytic strategy for aim 2: relation between
network efficiency at rest and reaction times in the
emotional Stroop task

Next we investigated the possible functional role of the
affect-induced network changes on the subsequent processing
of emotional information. More precisely, separate single
random-intercept multilevel models were estimated predicting
reaction times during the emotional Stroop by means of
network efficiency of the SN, DMN and CEN (nlme-package,
Pinheiro et al.,, 2019). Resulting P values were corrected for
multiple comparisons using family-wise error correction (Holm-
Bonferroni method; Holm, 1979).

Data-analytic strategy for aim 3: mediation of the
relation between mood induction and reaction times in
the emotional Stroop task by network efficiency

For aspects of the network organization that were significantly
associated with behavior outcomes (aim 2), we then estimated
1-1-1 hierarchical mediation models including (a) the valence of
the mood induction (positive vs negative; independent variable),
(b) the session specific reaction time trends (dependent variable)
and (c) network efficiency (mediator). This (level 1) mediation
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model allows to estimate the within subject mediation effects
while taking into account the nested structure of the data.
The mediation models were estimated using the boot package
(Canty and Ripley, 2019) in R and customized R-scripts, in order
to estimate indirect multilevel model effects (Elizabeth Page-
Gould, http://www.page-gould.com/r/indirectmlm/; see Zhang
et al., 2009) with bootstrapped confidence intervals (1000 boot-
strap samples).

Results
Manipulation check: mood induction

We found strong differences in mood ratings after positive, neg-
ative and neutral mood induction (F(2, 295)=194.83, P <0.001).
Valence ratings were higher (i.e. more positive) for positive than
negative (8 =2.30, 95% CI [2.06-2.55], t(184) = 18.55, P <0.001) and
neutral mood inductions (8 =0.97, 96% CI [0.77-1.17], t(185) = 9.60
P <0.001), and higher for neutral compared to negative mood
induction (8 =1.33, 95% CI [1.11-1.56], t(184)=11.62, P <0.001).
Investigating the ratings of positive and negative movie clips
after the fMRI part of the study (outside the scanner after re-
watching these movie clips) revealed that, while there were
strong differences in valence ratings between positive and
negative movie clips (8 =4.08, 95% CI [3.87-4.29], t(184) =37.50,
P <0.001), arousal ratings showed significant but, based on
the very low effect size, only marginally relevant differences
(8 =—0.37, 95% CI [~0.73 to —0.01], t(184) =—2.02, P =0.045) (see
Figure 2).

To further characterize the mood induction, we addi-
tionally investigated how the mood induction changed the
experience of specific emotions (for further information see
Supplementary Figure S1). The results revealed that positive
mood induction consistently increased the experience of
positive emotions (happy, amused and relaxed) and decreased
the experience of negative emotions (sadness, anger, anxiety and
stress). In contrast negative mood induction, while consistently
decreasing all positive emotions, only increased the experience
of sadness (but not anger, anxiety or stress).

Aim 1: the effect of mood induction on reaction times
in the emotional Stroop task and on network efficiency
at rest

Impact of mood induction on reaction times in the emotional
Stroop task. Reaction times during the emotional Stroop task
for negative (F(2, 282)=4.69, P =0.010), but not positive words
(F(2, 282)=1.17, P =0.311), were significantly influenced by
mood induction. Further, comparing the effects of single mood
inductions on reaction times to negative words revealed a
significant increase in reaction times after negative compared to
positive mood induction (8 =0.12, 95% CI [0.02-0.21], t(177) =2.37,
P =0.019) and compared to the neutral mood induction
(8 =0.142, 95% CI [0.04-0.24], t(177)=2.83, P =0.005). There
was no difference in reaction times after neutral and positive
mood induction (P =0.6) (for better comparability with previous
studies, significant effects of mood induction on reaction-
times are additionally shown in milliseconds in Supplementary
Figure S4).

The relationship between negative mood and increased reac-
tion times to negative words was further confirmed testing
for effects of continuous mood ratings, showing an increase
of reaction times with decreasing (more negative) mood rating
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(8 =—0.04, 95% CI [~0.07 to —0.003], t(284) = —2.18, P =0.030) (see
Figure 3).

Impact of mood induction on network efficiency. Investigating the
mood-dependent changes in network efficiency, we found an
increased efficiency of the SN after negative compared to pos-
itive mood induction (8 =—0.04 (0.01), 95% CI [-0.06 to —0.01],
t(157)=—2.63, P =0.009, Prwr =0.027). Furthermore the SN effi-
ciency increased linearly with decreasing (more negative) sub-
jectively experienced mood (8 =—0.20 (0.1), 95% CI [-0.39 to
—0.01], t(155) = —2.10, P =0.037).

In contrast, the efficiency of the executive network (CEN)
was higher after positive compared to negative mood induc-
tion (8 =0.03 (0.01), 95% CI [0.01-0.06], t(157)=2.59, P =0.011,
Prwe =0.027) and showed a linear increase with more posi-
tive subjectively experienced mood (8 =0.22 (0.1), 95% CI [0.03-
0.42], t(155) = 2.23,P =0.027). There was no significant association
between mood induction or mood ratings with the DMN Effi-
ciency (P > 0.48) and none of the quadratic effects of continuous
mood ratings reached significance (all P > 0.49).

Aim 2: relation between network efficiency and
reaction times in the emotional Stroop task

Examining possible relations between changes in network orga-
nization after mood induction and mood-congruent reaction
times in the emotional Stroop task (see Figure 3), we found
that increasing SN efficiency predicted longer reaction times
to negative words (8 =1.04 (0.3), 95% CI [0.11-0.87], t(157)=3.47,

P <0.001, Ppye =0.001). Higher CEN efficiency was in contrast
related to reduced reaction times to negative words (8 =—1.06
(0.3), 95% CI [0.11-0.87], t(157)=—3.59, P <0.001, Pryr =0.001).
DMN efficiency was not related to reaction times to negative
words during the emotional Stroop task (P =0.53) and there were
no associations between any of the network efficiency scores
(i.e. SN, CEN and DMN) and reaction times to positive words (all
P >0.4).

Aim 3: mediation of the relation between mood
induction and reaction times in the emotional Stroop
task by network efficiency

Further investigating the role of changes in network efficiency
in the relationship of the mood induction (positive vs nega-
tive) and subsequent reaction times two hierarchical multilevel
within-subject mediation analysis (1-1-1) were estimated. The
first model involved SN efficiency, the second CEN efficiency as
mediators. No mediation with DMN efficiency was carried out
because of the lack of found relations with DMN efficiency.

The analyses revealed that there was a significant indirect
effect (ab-path: —0.032, 95% CI [-0.083 to —0.008]) from mood
induction over SN efficiency (a-path: —0.031, 95% CI [-0.051 to
—0.010]) to reaction times to negative words (b-path: 1.00, 95%
CI [0.438-1.831]) that fully mediated the relationship between
mood induction and reaction times (c-path: —0.107,95% CI [-0.2
to —0.01]; ¢’-path —0.05, 95% CI [-0.123 to 0.067]). Similarly also
Ecen Was found to be linking mood induction to reaction times
to negative words (ab-path: —0.035, 95% CI [-0.075 to —0.008]; a-
path: 0.033, 95% CI [0.012-0.055]), fully mediating their relation-



ship (c-path: —0.107,95% CI [—0.2 to —0.01]; ¢’-path —0.068, 95% CI
[-0.158 to 0.019]). Accordingly the reduced efficiency of the CEN
as well as the increased efficiency of the SN after negative mood
induction (compared to positive mood induction) were able to
fully explain the effect of mood induction on reaction times to
negative words in the emotional Stroop task (i.e. increased reac-
tion times after negative compared to positive mood induction;
see also Figure 3).

Discussion

The overall aim of the present study was to test a potential
mediating role of network efficiency in connecting affective
stimulation with subsequent mood-congruent processing of
novel stimuli. For this purpose we investigated mood effects
on network efficiency of the SN, CEN and DMN and reaction
times in response to emotional stimuli (aim 1). Subsequently
we tested whether these changes in networks efficiency were
related to reaction times in response to emotional stimuli (aim
2) and finally whether network efficiency mediated the relation
between mood induction and reaction times in response to
emotional stimuli (aim 3).

As a first main result and in accordance with our hypotheses
and previous results, converging evidence from both the mood
induction manipulation and subjective mood ratings pointed to
a central valence-dependent dynamic of increasing SN efficiency
(Esn) and a decrease in the efficiency of the CEN (Ecgn) with
increasing negative mood. This finding is especially interesting
since the SN and CEN are two closely related intrinsic networks
that interact dynamically to guide interactions with the external
environment. Within this interaction both networks have been
described to take over complementary roles in cognitive control
(see for example Corbetta et al., 2008). While the CEN has been
especially associated with goal-directed processes, and bias-
ing attentional and perceptual processes based on pre-existing
information (Corbetta and Schulman (2002); Dosenbach et al.,
2008), the SN is usually connected to stimulus-driven processes,
detecting salient cues in the environment, interrupting ongoing
activity in the CEN (Corbetta et al., 2008) and coordinating neural
resources in response to such cues (Uddin, 2014; Seeley et al.,
2007).

Interestingly, shifts in the balance of these two networks
have been proposed to be a central feature in the adaptation
to aversive environments. In this context, downregulating the
CEN and upregulating the SN would bias the interaction with
the environment toward a facilitated detection of and response
to potentially threatening stimuli at the cost of pursuing long-
term goals and integrating pre-existing information (Hermans
et al., 2014, see also van Oort et al., 2017). Accordingly shifts in
the efficiency of the SN and CEN could facilitate the processing of
negative information and take over a central role in in enabling
congruency processes connected to negative emotional states.

Indeed, in line with previous results (Gilboa-Schechtman
et al., 2000), we found negative mood (and negative compared
to positive mood induction) to increase the reaction times
in response to negative words in the emotional Stroop task.
Furthermore, both SN and CEN efficiency were related to
reaction times to negative words. While Egsy was positively
associated with increased reaction times to negative words,
increases in Ecgy were connected to reduced reaction times to
negative words.

Finally testing the specific role of those shifts in network
efficiency, we were able to show that both fully mediated the
relationship between mood manipulation and reaction times in
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response to negative words. Accordingly there was a significant
indirect effect from negative mood induction, over increasing
Esy and decreasing Ecy to facilitating the processing of negative
stimuli that could fully explain the direct effect of negative mood
induction on the reaction times of negative words.

The observed effects of shifts in network efficiency were
limited to negative words. Accordingly, in contrast to support-
ing a general hypervigilant state, increased Egy and decreased
Ecen seem to have a valence-specific effect, facilitating the pro-
cessing of negative but not positive words. More in general,
while successfully inducing positive mood, we did not observe a
mood congruency effect on positive words. One possible expla-
nation for these results could be that the fMRI environment
added too much noise to the behavior in the task to detect the
mood-congruency effect on positive words. Indeed these effects
were, in previous studies (see Gilboa-Schechtman et al., 2000),
much smaller compared to the negative congruency effects and
could be more susceptible to effects of a noisy and uncomfort-
able environment (see also van Maanen et al.,, 2016). Another
possible explanation could be that positive mood congruency
effects are more complex than simply the enhancement of
positive information. Indeed there are some indications that
the mood-congruent enhancement of the processing of posi-
tive emotional information might depend on additional affect
dimensions, such as the reward character of the stimuli (Tamir
and Robinson, 2007) or the self-relatedness if the information
(Grol et al., 2012). Furthermore positive affect might be more
generally connected to an increased broadening of attention
as well as increased cognitive flexibility (Vanlessen et al., 2016;
Fredrickson et al., 2001). Consequently not finding any rela-
tionship with positive words has to be interpreted carefully.
Future studies specifically designed to detect effects on the
processing of positive stimuli are needed to further clarify this
relationship.

In contrast to the SN and CEN we did not find any rela-
tion between DMN efficiency and mood induction or subjective
valence ratings. This finding is difficult to interpret given the
inconsistent literature concerning the DMN after aversive/neg-
ative stimulation showing no effect (for example Eryilmaz et al.,
2011), decreased connectivity (for example Harrison et al., 2008)
or increased connectivity (for example Clemens et al.,, 2017)
within the DMN. Possible explanations might be that the DMN
is sensitive to aspects of the specific content of the mood induc-
tion, like self-relevance or social context (for a discussion see van
Oort et al., 2017) or that organizational differences of the DMN
in context of emotion are rather representing trait differences
(for example Perkins et al.,, 2015) that are not captured with
our strictly within-subject design. However, given the important
role of the DMN in affective disorders (see for example Kaiser
et al., 2015) and the possible involvement of the DMN in aberrant
emotional processing (Ho et al., 2015) elucidating the role of the
DMN in emotion and emotional behavior will clearly be another
important future direction.

In conclusion we found that increased efficiency of the SN
and decreased efficiency of CEN after affective stimulation are
linking negative mood induction to subsequent mood-congruent
behavioral changes to negative emotional information. This
demonstrates that transient affect-dependent shifts in network
organization are functional underlying core aspects of the
emotional response. Accordingly our findings are pointing
to transient and sustained shifts in macro-scale neural
networks being an essential part of the emotional response
driving the interaction between affective experience and
environment.
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