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Abstract We developed a detailed, whole-body physio-

logically based pharmacokinetic (PBPK) modeling tool for

calculating the distribution of pharmaceutical agents in the

various tissues and organs of a human or animal as a

function of time. Ordinary differential equations (ODEs)

represent the circulation of body fluids through organs and

tissues at the macroscopic level, and the biological trans-

port mechanisms and biotransformations within cells and

their organelles at the molecular scale. Each major organ in

the body is modeled as composed of one or more tissues.

Tissues are made up of cells and fluid spaces. The model

accounts for the circulation of arterial and venous blood as

well as lymph. Since its development was fueled by the

need to accurately predict the pharmacokinetic properties

of imaging agents, BioDMET is more complex than most

PBPK models. The anatomical details of the model are

important for the imaging simulation endpoints. Model

complexity has also been crucial for quickly adapting

the tool to different problems without the need to generate

a new model for every problem. When simpler models

are preferred, the non-critical compartments can be

dynamically collapsed to reduce unnecessary complexity.

BioDMET has been used for imaging feasibility calculations

in oncology, neurology, cardiology, and diabetes. For this

purpose, the time concentration data generated by the

model is inputted into a physics-based image simulator to

establish imageability criteria. These are then used to

define agent and physiology property ranges required for

successful imaging. BioDMET has lately been adapted to

aid the development of antimicrobial therapeutics. Given a

range of built-in features and its inherent flexibility to

customization, the model can be used to study a variety of

pharmacokinetic and pharmacodynamic problems such as

the effects of inter-individual differences and disease-states

on drug pharmacokinetics and pharmacodynamics, dosing

optimization, and inter-species scaling. While developing a

tool to aid imaging agent and drug development, we aimed

at accelerating the acceptance and broad use of PBPK

modeling by providing a free mechanistic PBPK software

that is user friendly, easy to adapt to a wide range of

problems even by non-programmers, provided with ready-

to-use parameterized models and benchmarking data col-

lected from the peer-reviewed literature.
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Introduction

As David Leahy passionately argues in his 2004 review,

complex engineering tasks these days are unthinkable

without the use of computer-based simulation methods to

design and test every aspect of a complex system before it

is built. Similarly, the use of mathematical models of a

human should be just as a standard and integral part of a

pharmaceutical development process. Trial and error
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approaches are simply not viable because they are ineffi-

cient. Replacing them with rational, streamlined, and

therefore more efficient design processes requires realistic

and validated models [1]. Mechanistic, whole-body phys-

iologically based pharmacokinetic (PBPK) models are the

closest to a virtual human with compartments representing

the organs, tissues, cells and sub-cellular compartments

and with flows between them corresponding to the circu-

lating body fluids.

The pharmaceutical industry has long recognized that

physico-chemical properties determine the pharmacoki-

netics and pharmacodynamics of drugs [2]. Significant

effort has gone into determining the ADME properties of

compounds experimentally, then into developing compu-

tational tools to predict them from chemical structure alone

[3]. This enabled the elimination of compounds with

unfavorable properties, thus decreasing the number of

failures later in the drug development process. The in vitro

generated ADMET properties can be made more predictive

of therapeutic outcome by incorporating them into a system

model to reveal their quantitative contribution and relative

importance in vivo. PBPK models are designed to integrate

information about the pharmaceutical agent with the

physiology properties of the host and predict the distribu-

tion of the compound in organs and tissues over time. At

later stages, they can be used to optimize dosing and

evaluate the performance of the agent in a diverse popu-

lation. The greatest advantage of PBPK models over sim-

pler compartmental PK models is the fact that the

parameters of the former have meaning, they represent

well-defined properties of the system. Because of this, it

becomes possible to identify factors responsible for the

undesired behavior of a compound and change the behavior

by altering specific properties [4].

The environmental health field was an early adopter of

PBPK modeling to assess the risk of exposure to industrial

pollutants and toxins [5, 6]. The pharmaceutical commu-

nity has been slower to embrace the routine use of PBPK

models. This might have been due in part to the complex

nature of these models, which can require significant time

and effort to implement and can be difficult to validate. The

initial lack of software that could easily build and solve

PBPK models likely contributed to the slow adoption of

these methods within the pharmaceutical community,

which instead predominantly turned to simpler modeling

methods and allometric scaling rules to address their

questions [7, 8]. However, several factors are now creating

an environment in which PBPK models can become

powerful, robust tools for the development of pharmaceu-

ticals. First, the pharmaceutical industry is forced to look

for ways to cut costs in the drug discovery and develop-

ment process. The acceptance and broad application of

PBPK models in early drug discovery and other phases of

pharmaceutical development is one way to achieve

improved productivity [1, 4, 9, 10]. Second, the increasing

use of imaging studies and radio-labeled drug analogues

during pharmaceutical development provides an opportu-

nity to sample multiple organ tissues rather than just blood

and urine in a nondestructive manner [11, 12]. This data

can be used to test and validate PBK models. Thirdly,

biological measurements are becoming more quantitative

and there is an ever-increasing depth of knowledge about

pathophysiology, both of which will improve the physiol-

ogy parameters needed to populate the models. Lastly, the

computer technology and infrastructure exists to create a

flexible environment for easy implementation of PBPK

models along with mechanisms for the sharing and con-

tinuous improvement of the tool by a user community.

The increasing interest in PBPK modeling is well

reflected by the growing number of publications with this

topic both for pharmaceutical and environmental toxicol-

ogy applications [9]. A number of informative reviews

have been published on recent developments and applica-

tion of PBPK modeling in the preclinical and clinical

phases of drug development, as well as environmental

toxicology [10, 13–19]. In spite of the increase in the

application of PBPK models, there remains a need for their

critical and rigorous evaluation [20]. This includes

assessing the predictive capacity of PBPK models with test

data and clear model documentation as well as performing

sensitivity, variability, and uncertainty analyses to improve

the credibility and acceptance of PBPK models [5]. Our

work is aimed at addressing these needs in part through its

open framework for communication and sharing of the

PBPK model, parameters, and test data.

The requirement for efficient pharmaceutical develop-

ment exists not only in the drug industry but also in

companies developing imaging agents, which share many

of the same scientific and productivity challenges as

pharmaceutical companies [21, 22]. Imaging agents them-

selves are like drugs in many ways and they are expected to

have similar ADMET profiles for proper solubility, mem-

brane permeability, etc. One important difference is that

imaging agents, in order to produce a sharp image, have to

reach and maintain high enough concentrations in the tis-

sues of interest relative to the surrounding areas within the

narrow time frame available for image acquisition. This

makes pharmacokinetics a critical issue for imaging agents

[23–26]. Another distinctiveness of imaging agent devel-

opment is the need of detailed knowledge and representa-

tion of the anatomical structures to be imaged. These

factors have motivated the development of our detailed,

whole-body PBPK modeling tool.

In this article, we describe the physiology model and the

computer implementation of the PBPK simulator that

forms the core of BioDMET. The main features of the
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graphical user interface (GUI) are presented followed by

the results of testing and validation. Finally, applications of

BioDMET to two main areas are outlined. The tool is

provided with detailed whole-body PBPK models of

human, monkey, guinea pig, rat and mouse with the pos-

sibility of user-implemented adjustments for age, body

weight, gender, and health condition. It also contains

examples of drug/agent models as well as a validation

dataset consisting of calculated biodistribution data of a

number of agents in various tissues and organs compared to

published experimental values. While developing a

detailed PBPK tool to aid imaging agent and drug devel-

opment, we strove to address the perceived gaps in the

existing tools [27–42] and to accelerate the acceptance and

broad use of mechanistic PBPK models by providing (1) a

free, mechanistic PBPK software that can be quickly and

easily adapted to the specifics of a wide range of problems

even by non-programmers, (2) ready-to-use physiological

and anatomical parameters for multiple species, strains,

gender, and age, and (3) easily accessible test data to

benchmark the predictive accuracy and confidence levels

of PBPK models.

Methods

The BioDMET model structure

BioDMET enables the quick generation of complex multi-

compartment pharmacokinetic models that use ODEs to

represent, at the macro scale, the circulation of fluid

through organs and tissues, and, at the molecular scale, the

biological transport mechanisms and biotransformations

within cells and their organelles. This is accomplished by

first defining the BioDMET model structure composed of:

(1) a whole body model that includes all of the fluid spaces

and their associated flows; (2) an element model comprised

of the molecules, receptors, transporters, pathogens, and

their interactions that are explicitly modeled, and finally;

(3) the simulation setup parameters that specify the sam-

pling time points, administration methods and starting

concentrations for all the elements of interest. Once the

complete BioDMET model structure is defined, the soft-

ware tool automatically sets up the required pharmacoki-

netic compartments and the ODEs representing the flows

between compartments. The ODEs are then solved to

generate the concentration over time curves for the relevant

elements in the model.

The whole body model

The whole body or animal model in BioDMET is a col-

lection of fluid spaces and connections between them:

surfaces and pipes with convective flows of blood and

lymph. The model is hierarchical in nature where fluid

spaces are contained within cells and tissues, which are

components of the organ systems. All major organs are

included, each being composed of one or more tissues

(Fig. 1). Although some tissues have unique features, a

generic tissue is composed of a vasculature space, an

interstitial space, and cells (Fig. 2). Within each tissue,

there are fixed tissue-specific and endothelial cells, as well

as mobile blood cells. Multiple different cell types can be

defined within a tissue. For example, the endocrine tissue

of the pancreas (excluding the vasculature) is composed of

*65% insulin secreting beta cells, *17% glucagon

secreting alpha cells, *9% somatostatin secreting delta

cells and 9% pancreatic polypeptide secreting cells [43].

Each cell is further divided into a number of spaces cor-

responding to the cytosol, endosomes, Golgi, and other

organelles. The fluid in each space has its own unique set

of properties including pH, composition (e.g., water, pro-

tein, carbohydrate, lipid, DNA, RNA, mineral, gas), and

the center-to-edge diffusion length characteristic of the

space. While these details add complexity to the model,

they are crucial to answering questions about mechanisms

and feasibility assessment in the earliest stages of molec-

ular imaging R&D.

A space can be connected to one or more other spaces

by pipes and surfaces (Fig. 1b). Pipes correspond to fluid

flow between spaces and are characterized by a flow rate

and the direction of flow. One example of a pipe connec-

tion is between the vasculature space of a tissue (e.g.,

capillary beds) and the vasculature space of the major

artery or vein tissues of the cardiovascular system. Another

example of a pipe connection is the one between the bile

space of the liver and the bile space of the gallbladder that

represents the bile ducts. Surface connections are the

equivalents of membranes, such as the one between a cell’s

cytosol and the surrounding interstitial space. Some cells in

the model are polarized, having two surfaces, which cor-

respond to the basal and the apical plasma membranes.

Examples include the epithelial cells lining the proximal

tubules of the kidney, the hepatocytes of the liver, and the

endothelial cells of the capillaries. The properties of a

surface connection include the surface area, thickness, and

composition. A surface can also have a distribution of

pores that have a given dimension, charge, and fractional

area of the surface. Examples of pores include the glo-

merular pores in the endothelial cells of the kidney.

Another example of a surface with pores is the nuclear

membrane.

The parameters for the whole body model were defined

to facilitate easy scaling of the model’s volumes and flows.

While each tissue has an absolute volume, the cells and

fluid spaces contained within the tissue are defined with a
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volume fraction of their parent location within the parent–

child hierarchal tree. By changing the total volume of the

tissue causes an instantaneous change in the volume of the

vasculature, interstitial space, cells and fluid spaces con-

tained within the tissue. The composition (e.g., volume

fraction water, protein, lipid, etc.) of each of the fluid space

is defined within the model and is used to convert between

volumes and masses for the tissues, cells, and fluids of the

body.

The flow rates between spaces have also been set up to

allow easy scaling of a model. For example, the arterial

blood flow to a tissue is defined in terms of volume of flow

per time per volume of tissue, while the venous and lymph

flows of the tissue are defined relative to the arterial blood

Fig. 1 a The BioDMET whole

body model is a hierarchical

structure of all major organs and

organ systems (green
hexagons), each composed of

one or more tissues (orange
quadrangles). b The tissues are

made of cells (purple octagon)

and spaces (blue rectangle). The

spaces are connected by pipes

(magenta lines) representing

blood or lymph flow and by

surfaces (blue lines). The

arrows on the magenta lines
show the direction of the pipe

flow. A dotted line means that

the space at one end of the

connection is collapsed in the

hierarchical view. When a space

is selected at the GUI

(Interstitial currently), its

connections to the rest of the

system are automatically shown

Fig. 2 Tissue and cell structure

with the types of transport

processes modeled in

BioDMET
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flow. Thus changing the tissue volume triggers the auto-

matic scaling of the tissue’s blood and lymph flow in the

correct proportions. The flow of the chime, bile, pancreatic

juice, or CSF is defined in a similar manner. However, the

software tool allows the user to override any of the default

or scaled parameter values of the whole body model.

The element model

Elements within BioDMET are defined to explicitly model

molecules, receptors, transporters, and even pathogens

within the whole body model (Fig. 3). Each element type

or class has a set of properties to define its behavior. The

agent administered to the animal is perhaps the most

important element of the model. The agent can be com-

posed of one or multiple molecules (e.g., a drug and its

metabolites). BioDMET has been used to study the bio-

distribution of molecules that range in molecular weights

from small molecules (\1 kDa) to medium peptides

(1–60 kDa) to large proteins ([60 kDa) and particles. The

size of the molecule changes its permeability and clearance

characteristics as determined by the physics-based equa-

tions in the model. Other relevant physico-chemical

properties include the molecule’s charges and pH com-

partmental effects (captured by the LogD), which influence

its membrane permeability and tendency to partition into

lipid or aqueous spaces. The plasma protein binding and

liver microsomal clearance rate are additional properties

that are required as input.

Receptors, transporters, and biotransformation reactions

are also part of the element model. They can be included by

specifying enzyme concentrations, sub-cellular locations,

substrates, and kinetic rates. The tool makes it possible to

calculate the influence of the competitive effects of

receptor saturation and molecular transport on a molecule’s

biodistribution. This can be done for both endogenous

substances and metabolites of the parent molecule. The

capability to model multiple metabolites of the parent

molecule has been used to understand the loss in imaging

contrast in specific tissues. It can also be used to model

metabolite-induced toxicity of drugs.

Elements can be set up to interact with each other such

as the binding between a molecule and a receptor. Another

example of an element interaction is the conversion of one

molecule into two other molecules (e.g., cleavage) by a

biotransformation enzyme.

Fig. 3 The components of the

BioDMET Model: Animal,

Elements, Administer, and

Sampling. The element model

defines the molecules, receptors,

transporters, and their

interactions that are explicitly

modeled. The green lines show

the interactions between

elements and their locations

within the animal model. Pink
lines are for the injection

properties. A dotted line means

that the space for one end of the

connection is collapsed in the

hierarchical view. Only the

interactions for the current

selected element (GLP-1 Binder

is currently selected) are shown

at a given time
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Simulation run parameters

Information about the dose, administration method (oral,

intravenous, subcutaneous, or intramuscular), number of

administrations, and sampling time points are captured

under the Administer and Sampling components of the

model (Fig. 3). In addition to the existing standard tissue

spaces, a set of sampling locations are defined by merging

several anatomical spaces and averaging the simulated

element concentrations in them. For example, the sapling

location Brain includes the white matter, the grey matter

and the ventricles. The sampling location Small intestine

includes the duodenum, the two segments of the jejunum

and the three segments of the ileum. User-defined sampling

locations are also enabled.

Initializing the PBPK compartmental model and ODEs

Besides the spaces and elements described above,

BioDMET utilizes the concepts of entity and compartment

in ways that might differ from the traditional PK nomen-

clature. An entity is a discrete unit, which, at least in the-

ory, is distinguishable and measureable. If a molecule and

its receptor are defined elements of the current model, there

are a total of three entities: the unbound molecule, the free

receptor, and the bound molecule-receptor complex. A

compartment is defined as the unique pair of an entity and a

fluid space. In theory, an entity could be present in any of

the fluid spaces defined in the whole body model. Thus if

the BioDMET model has 3 defined entities and 789 fluid

spaces, there could be 2,367 unique compartments. How-

ever, due to various barriers to transport and interactions

between entities, the entity concentration is zero in a large

number of the compartments. For example, if the receptor

of a molecule is defined to be present in the beta cell

membranes of the endocrine pancreatic tissue, that receptor

and the corresponding molecule-receptor complex will

have zero concentrations in all other spaces. At the

beginning of each simulation, the software generates a list

of all possible entities, flow equations, and compartments.

It then determines which compartments could have non-

zero entity concentrations at some time point of interest.

These compartments and their corresponding flow equa-

tions define the full PBPK model for that particular

simulation.

In order for the tool to be non-restrictive in its scope and

ready to use for a variety of projects, the BioDMET model

must be detailed in the compartments that are predefined

with their physiological parameters available in the data-

base (Figs. 1, 2). This richness in details comes at a cost of

computational time when working with hundreds of com-

partments. We have devised a method and algorithm that

allows some compartments to be collapsed and

approximated when they do not significantly impact the

results of the simulation. The collapsing of compartments

is done just prior to submitting the BioDMET PBPK model

to the ODE solver. At the end of the calculation, the solver

results are translated (expanded) back to the rich com-

partment model view. This collapsing process is not visible

to the user although it is possible to customize what

compartments are collapsed at the GUI.

Model equations

Hundreds of differential equations have to be solved to

simulate the biodistribution of a molecule in a BioDMET

whole body model. All of these differential equations are

associated with a limited number of event types such as the

administering of a molecule to a fluid space, binding of the

molecule to a receptor, biotransformation of the molecule

into another form, and transport of the molecule from one

fluid space to another. To provide some illustrative

examples, the differential equations describing several

modes of transport are presented below.

The simplest form of transport is the convective flow of

an entity between two fluid spaces connected by a pipe. An

example is the vasculature space of the main arteries with

the vasculature space of a tissue. Assuming flow occurs

from space 1 to space 2, the change in concentration of an

entity (C1 and C2) per unit time in the two fluid spaces is a

function of the flow rate (J1?2) and the volumes of the

spaces (V1 and V2) as described by Eqs. 1a and 1b.

dC1

dt
¼ � J1!2C1

V1

ð1aÞ

dC2

dt
¼ J1!2C1

V2

ð1bÞ

A more complex form of convective flow occurs through

pores that may limit the flow of an entity based on its size.

For example, the pores found in the kidney glomerular

capillaries act as a filter for the fluid that flows from the

vasculature space through the fenestrated endothelial cells

of the glomeruli and into the lumen space of the renal

tubules. In BioDMET, this type of situation is modeled by

connecting the two fluid spaces, the capillary vasculature

space and the renal tubule lumen space with both a pipe

and a surface connection. The pipe defines the convective

flow from the one space to the other and the surface

connection defines the type, size, and fractional area of the

pores of the fenestrated endothelial cells. Equations 2a–2c

describe this filtered convective flow process. Note that the

total convective flow, J1?2, is multiplied by a summation

term over all pores. The summation term includes the

pore’s fractional surface area, /i, and the reflection

coefficient, ri, of the entity trying to pass through the
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pore. The reflection coefficient is characteristic for each

entity and pore combination, and is mainly dependent

upon the entities’ hydrodynamic radius, Rh, and the pore

radius, rpore (Eq. 2c). This relationship can be used when

there are no charge–charge interactions or they are

negligible [44].

dC1

dt
¼ �

J1!2

Ppores
i¼1 Ui 1� rið Þ

� �
C1

V1

ð2aÞ

dC2

dt
¼

J1!2

Ppores
i¼1 Ui 1� rið Þ

� �
C1

V2

ð2bÞ

k ¼ Rh

rpore

k\1 r ¼ 1�
ð1� kÞ2ð2� ð1� kÞ2Þ 1� k

3

� �

1� k
3
þ 2k2

3

k� 1 r ¼ 1

8
>>><

>>>:

ð2cÞ

A third type of flow is the passive diffusion of an entity from

one fluid space to another by crossing a surface. A classic

example is the passive diffusion of a molecule from the

interstitial space of the tissue into the cytosol of the cell

across its plasma membrane (Eqs. 3a–3f). The concentration

changes in the two neighboring spaces depend on the

permeability rates (P1?2, P2?1), the partition coefficient

(Kp), and the surface area separating the spaces (S12). Note

that for neutral molecules, the permeability rate is the same in

both directions (P1?2 = P2?1). The partition coefficient Kp

(Eq. 3c) is a function of the volume fractions of the aqueous

phase (/aqueous,1 /aqueous,2) and organic phase (/organic,1

/organic,2) of both spaces. The LogD describes how the entity

partitions between an organic and aqueous phase of equal

volume (Eq. 3d). For neutral molecules the LogD is the same

as the LogP. For ionizable molecules, however, the LogD

depends on the pH of the two fluid spaces. The permeability

rate of the entity from the fluid space one to two (P1?2), is a

function of the average diffusion rate out of fluid space one,

P1, across the surface P12, and into fluid space two, P2

(Eq. 3e). The overall permeability rate from space one to two

depends on the average distance of travel, d1, d12, d2 (defined

in the BioDMET whole body model for each space) and the

diffusion coefficients D1, D12, D2 of the entity in the two fluid

spaces and the separating surface. Assuming the surface is a

lipid membrane, the LogD is used to approximate the

probability for a molecule to go from a generally aqueous

environment into one that is almost entirely organic (Eq. 3e).

The diffusion coefficient for each environment is computed

using the Stokes–Einstein equation (Eq. 3f) as a function

of the entities’ hydrodynamic radius (Rh), the viscosity

and the temperature of the fluid (g1, T), and Boltzmann’s

constant (e).

dC1

dt
¼ P2!1S12C2

KpV1

� P1!2S12C1

V1

ð3aÞ

dC2

dt
¼ P1!2S12C1

V2

� P2!1S12C2

KpV2

ð3bÞ

1

Kp
¼ Uaqueous;1 þ 10log DðpH1ÞUorganic;1

Uaqueous;2 þ 10log DðpH2ÞUorganic;2
ð3cÞ

log D ¼ log
Corganic

Caqueous

� �

ð3dÞ

P1!2 ¼
1

1
P1
þ 1

P12
þ 1

P2

� � ¼ 1

d1

D1
þ d12

10log DðpH1ÞD12
þ d2

D2

� � ð3eÞ

D1 ¼ e
T

6pg1Rh
ð3fÞ

Clearance mechanism

Agents are generally eliminated from the body through

biliary and/or renal excretion either directly or after being

metabolized. For renal clearance, the agent’s excretion rate

is dependent upon the rate at which it is passively filtered

through the kidney’s fenestrated glomerular capillaries and

the rates of secretion and reabsorption across the kidney

tubular epithelium. Within BioDMET, the passive filtration

through the fenestrated glomerular capillaries is modeled

as a filtered pipe (Eq. 2). The convective flow of the pipe,

J1?2, is equivalent to the glomerular filtration rate (GFR)

that depends on the blood flow to the kidney (Qkidney) and

the hematocrit (Ht) as described by Eq. 4a. The glomerular

capillaries of the human model have 8.2 nm diameter pores

[45]. Because of the negative charges lining the surfaces of

the pores, agents with various charges will pass through the

pores at different rates for a given hydrodynamic volume.

The function used to compute the agent’s reflection coef-

ficient (Eq. 2c) for neutral agents was empirically derived

based on the effects of size and electrical charge of dextran

on its filterability by the glomerular capillaries [45]. The

plasma protein binding of the agent is taken into consid-

eration when modeling the filtration process. By default,

active secretion in the proximal tubules and reabsorption in

the distal tubules of free agents are not accounted for.

However, the model can be easily customized to include

these processes once the rates are known or can be esti-

mated. Albumin-bound agents are reabsorbed together with

albumin which is filtered through the pores of the glomeruli

and then are partially reabsorbed through the epithelial

cells lining the proximal tubules [46, 47].

For agents/drugs that are metabolized by the liver,

BioDMET models hepatic clearance using in vitro mea-

sured microsomal clearance rates (Clmicrosomal), although
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alternative inputs (parent molecule half life T1/2, liver tissue

clearance rate Clliver, or hepatocyte clearance Clhepatocyte) are

also accepted. The relationships between the microsomal

clearance rate and the other measures of liver clearance are

defined by Eqs. 4b–4d, where Vincubate is the incubation

volume, mmicrosomes and nhepatocyte refer to the amount of

microsomes and the number of hepatocytes per gram of liver

tissue, respectively. The in vivo rate of liver metabolism r is

calculated from the in vitro liver microsomal clearance rate

taking into account the mass of the liver (M), the volume of

the space (V) where the metabolic reactions take place, and

the conversion factor (f = 45 mg microsomal proteins/g of

liver [48]) according to Eq. 4e.

GFR ¼ 0:2 � ð1� HtÞ � Qkidney ð4aÞ

T1=2 ¼
0:693 � Vincubate

Clmicrosomal
ð4bÞ

Clhepatocyte ¼ Clmicrosomal �
mmicrosome

nhepatocyte
ð4cÞ

Clliver ¼ Clmicrosomal � mmicrosome ð4dÞ

r ¼ Clmicrosomal
f �M

V
ð4eÞ

The tool allows the user to select either a first order or a

Michaelis–Menten type reaction for describing liver

metabolism. Since in vitro measured liver microsomal or

hepatocyte clearance rates characterize the overall disap-

pearance of the compound in a liver preparation (including

multiple possible metabolic processes as well as diffusion

through membranes) and not just the rate of the individual

enzymatic reactions inside the liver cells, the place of this

biotransformation in BioDMET is the interstitial space of

the liver.

Model parameters and data sources

To populate the physiology models, parameter values have

been obtained from the published literature on mice, rats,

guinea pigs, monkeys, and humans including some specifics

on strains, age, gender, and body mass index (BMI). The

type of data that has been collected includes: mass/volume

of tissues and size of cells; cardiac output and flow rates of

blood, lymph, bile, chime, urine; surface areas of cellular

membranes including small intestines, proximal tubule

epithelial cells of the kidney and hepatocyte canaliculi of the

liver; water/organic phase content of vascular, interstitial,

and sub-cellular compartments; degree of capillary fenes-

tration for the different organ tissues; distances of travel

within vascular, interstitial, and sub-cellular compartments.

Every parameter defined in a BioDMET model repre-

sents something that can be defined physically and can be

measured independently. For example, each fluid phase has

a defined composition of water, protein, carbohydrate,

lipid, DNA, RNA, mineral, and even air (e.g., alveolus in

lung), allowing the computation of the relative volumes of

the organic and aqueous phases of every space. This, in

turn, is used when computing how a molecule may prefer

one fluid space over another based on the molecules

hydrophobic/hydrophilic characteristics as described by its

LogP/LogD. The alternative approach is to use tissue

partitioning coefficient derived by fitting the model to

experimental in vivo data for each species of interest.

The number and size of clefts and pores between the

endothelial cells are parameters defined for each tissue’s

capillary bed [44, 49–54]. The pores and clefts of the

capillaries have a significant impact on the vascular-inter-

stitial permeability for highly charged or moderately high

molecular weight molecules. The alternative approach

would be to use a tissue permeability coefficients derived

by fitting the model to experimental in vivo data. This

empirical approach becomes more difficult since the per-

meability behavior is dependent upon multiple flow pro-

cesses across or between the endothelial cells of the

capillary wall. Because BioDMET defines the base attri-

butes such a fluid composition, distances between fluid

spaces, pore/cleft surface area and size, more mechanistic

flow equations can be derived. Furthermore the base

attributes can be independently measured and derived and

do not rely on fitting the model to in vivo data.

In addition to the parameters described above, all rele-

vant physico-chemical properties for the agent (molecular

weight, LogP, LogD as a function of pH) are to be specified

by the user when setting up a simulation. The hydrody-

namic radius is calculated based solely on the molecule’s

physico-chemical characteristics. The diffusion coefficient

is determined using the Stokes–Einstein equation in water

and at body temperature. Corrections are then used to

compute a diffusion coefficient for the interstitial fluid and

the membrane. These corrections are estimates based on

fitting to experimental values of permeability for artificial

membranes and isolated perfused tissues [55, 56].

Biochemical properties have to be provided as well,

including enzymes that the molecule is a substrate for and

possible metabolites of the parent compound with their

properties. The ability to track the metabolites besides the

parent compound is especially important for imaging since

the radioactive label usually remains attached to one of

them and will influence the generated image. The term

enzyme in the model is used to describe a protein that can

bind, transport, or catalyze the transformation of the sub-

strate molecule. The kinetic rate parameters for the

enzyme-molecule complex are also expected as part of the

input.
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Computer implementation

The BioDMET software tool is composed of three major

parts (Fig. 4):

1. A PBPK model (BioDMET Model) with a database of

host, agent, and pathogen models that can be extended

as necessary and incorporated by users into their

simulations.

2. A model simulator built around an ODE solver.

3. A GUI used to define, run, and view results of the

PBPK simulator.

The BioDMET database

The BioDMET software is bundled with a set of existing

host, agent, and pathogen models. These models are pre-

built components that can be used to set up a simulation.

They are stored as files in an XML-compliant markup

language, which was chosen in order to facilitate inter-

change of the model data with other systems/applications.

The data contained in the XML model files are read

directly by the software. At minimum, a BioDMET run

requires a host file and an agent file as the input for a

biodistribution calculation. For a pathogen-host simulation,

an additional pathogen model file is required. The agent file

holds all relevant physico-chemical property information

for the exogenous molecule(s) being studied, such as

molecular weight, LogP, and LogD as a function of pH.

This file also contains biochemical properties of the

molecule, if available, including possible metabolites of the

parent and their properties as well as known enzymes that

the molecule is a substrate for. The term enzyme in the

model is used to describe a protein that can bind, transport,

or catalyze the transformation of the substrate molecule.

The kinetic rate parameters for the enzyme-molecule

complex are specified in this file. The host file holds all the

anatomical, physiological, and cellular parameter data for

the animal or human. All of this information is independent

of the molecule whose biodistribution is studied. This host

file can also hold the names, concentration, and sub-cel-

lular locations of the enzymes for binding, transporting, or

catalyzing a biotransformation. The existing host models

reflect the physiological state of the healthy organism.

However, a disease can significantly alter the values of

these parameters, influencing the distribution of exogenous

agents. Therefore, we developed a database of physiology

parameters for the critically ill and implemented the

capability to model several disease states such as severe

burns, multiple organ failure, etc.

PBPK simulator and ODE solver

As described above, the tool uses ODEs to represent at the

macro scale the circulation of fluid through organs and

tissues, and at the molecular scale the biological transport

mechanisms and biotransformations within cells and their

organelles. The BioDMET GUI passes the Simulation

Input Object Instance on the PBPK Model Simulator. At its

heart, the simulator contains an ODE solver.

Fig. 4 Overview of the

software components and the

simulation process
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Prior to running the ODE solver, preprocessing of the

input object structure is performed, including validation of

the input parameters for correctness and completeness. As

the simulation runs, the output data augments the input

object instance structure. This can be thought of as a new

object instance structure, called the Simulation Output

Object Instance (Fig. 4). The simulation itself calculates

concentrations of the agent in each of the sampling loca-

tions and at each of the sampling times defined by the

simulation input parameters. This information is stored

along with the original input structure as the output object

instance. Once the simulation completes, this structure is

passed back to the BioDMET GUI tool.

GUI

One of the major components of the BioDMET application

is the GUI, which can be used to create host, agent, and

pathogen models as well as setup and configure PBPK

simulations. The tool allows users to choose from any of

the host or pathogen models stored in the Model Database,

import them into the tool and modify as needed.

The GUI also provides some basic analysis with means

of graphing simulation results—plots of agent concentra-

tions over time at the various sampling locations in the host

model anatomy. The user can also export the measurement

data to external tools such as Microsoft Excel. Further-

more, the output of the simulation can be saved in XML

form on the user’s file system. This data can be used as

input to other applications for post processing, analysis,

and reporting. Simulation results from previous runs can be

reloaded into the BioDMET GUI tool, modified as needed,

and then rerun for comparative analysis.

There are three main sections to the user interface: the

model tree view—displaying the simulation configuration

information in a hierarchical view, the property window—

which displays property sheets for the currently selected

item(s) in the hierarchy display, and the information win-

dow—which provides access to additional information on

the simulation setup and results (Fig. 5).

Setting up and running a simulation

The website

BioDMET has a web site (https://pdsl.research.ge.com/

BioDMET/) hosted by GE Global Research that allows

easy access to the latest release of the tool, tutorials, doc-

umentation and nonproprietary models, test data, notes and

references (Supplementary Fig. S1). Users can run the

application via a standard web browser over the Internet.

Access to the program is granted after a one-time regis-

tration requiring the user to provide a name, affiliation and

e-mail address. Currently, all user-generated models and

data are stored on the client’s computer disk storage and

NOT on the GE hosting server.

Wizards

Setting up a PBPK simulation with BioDMET involves

multiple steps including constructing the host model hier-

archy, creating the pipe and surface connections between the

spaces in the hierarchy, defining the enzyme and pathogen

types and their concentrations in the appropriate spaces in

the host model, specifying the agents to be administered

along with the method of administration and the amount

being administered, the sampling time points and locations,

as well as defining a pharmacodynamic function with its

necessary parameters. This can be a daunting task. To make

it easier, BioDMET includes a number of pre-defined host/

species, agent, and pathogen models which can be added to

the simulation setup and customized as needed. In addition,

several wizards have been designed to guide the user

through the process of creating a new pathogen model,

setting up a new biodistribution (PK) simulation or a new

pathogen-host (PK-PD) simulation, performing sensitivity

analysis or a critically-ill patient analysis. The wizards allow

a user to define a new simulation more-or-less from scratch

without having to possess a mental map of the simulation

setup and without being aware of the fine details of the

host’s physiological model structure. During this guided

process, the user can import and modify existing host/spe-

cies, agent, and/or pathogen models from the BioDMET

model database. Alternatively, new hosts, agents, and/or

pathogens can also be built. In either case, the wizard guides

the user through the process of defining the key parameters

for the simulation in a step-by-step fashion (Supplementary

Fig. S2). Detailed step-by-step tutorials can be found at the

BioDMET web site under User Guide, which provide

examples for going through the wizards for setting up and

running the different simulation types implemented in

BioDMET. In addition, all functionalities of the software are

described in the user manual accessible on the above-men-

tioned web site.

Create a new pathogen model This wizard does not

actually result in the creation of a new simulation. Rather,

it allows a user to define a new pathogen model and save it

to a file on the file system. The pathogen model file can

subsequently be read in and used to create a new simulation

involving a pathogen-infected host.

New biodistribution simulation and new pathogen-host

simulation These wizards guide the user through the

process of creating a simulation model containing a host

animal and an agent/drug whose distribution through the
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host is to be simulated. In the case of the pathogen-host

simulation, a pathogen is added to the system and a phar-

macodynamic model is selected for computing the changes

in the pathogen load over time.

Sensitivity analysis Disease states are typically charac-

terized by wide inter-patient variability in regard to patient

conditions. Sensitivity analysis implemented in BioDMET

allows the user to estimate the effect of variations in the

model input parameters on the main pharmacokinetic

parameters of the agent of interest. This is achieved by

performing multiple simulations in which one or multiple

input parameters (X-s) are changed and the resulting

variations in the output parameters (Y-s) are monitored.

The program computes a sensitivity coefficient as the ratio

of the change in Y for a given change in X. This infor-

mation can then be used to identify key parameters that

have major influence on the drug pharmacokinetics and

pharmacodynamics. Sensitivity analysis can also provide a

quick estimate of how model predictions may change

across populations and how drug dosage should be adjusted

for achieving the desired effect. The sensitivity analysis

wizard guides the user through the selection of input

parameters to be varied within user-defined ranges, the type

of simulations (varying one or multiple parameters at a

time), the number of Monte Carlo steps, and the output

parameters to be monitored.

Critically ill patient analysis The BioDMET model

parameters were retrieved from the scientific literature and

reflect the physiological state of the healthy organism. To

account for disease-caused alterations of the normal

physiology that can influence the distribution of exogenous

agents, we assembled a database of physiology parameters

for the critically ill based on literature data and imple-

mented the capability to model several pathological states

such as high fever, severe burns, multiple organ failure, etc.

Disease states are typically characterized by wide inter-

patient variability in regard to patient conditions. The

Critically Ill Patient Analysis implemented in BioDMET

allows the user to estimate the effect of variations in the

patient conditions on the main pharmacokinetic parameters

of the agent of interest. This information can then be used

to adjust the drug dosage to achieve the desired effect. The

analysis is analogous to a population study where the

individual variations are simulated by Monte Carlo sam-

pling of host parameter values between disease-specific

limits. These limits are established based on literature

values that are described in the Critically Ill Database

available at the BioDMET website under Downloads.

Simulation output

Once a biodistribution or pathogen-host simulation is

completed, the results are displayed in a dialog window

arranged in a tabular form. Concentration values for the

specified agents are given for each sampling time and

location as a percentage of the injected dose. The data can

be copied to the clipboard and then pasted into a tool such

as MS Excel for performing further analysis. Another way

to examine the results is by displaying the concentration–

time curves in the Information Window of the GUI. The

Fig. 5 The BioDMET GUI
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BioDMET GUI’s plotting capability provides an easy way

to visualize how concentrations of elements of interest

change over time in various tissues and spaces of interest.

If more sophisticated visualization and/or in depth analysis

of the results is needed, the user can export part of or all the

simulation results into a tab-delimited or comma-separated

file that can then be imported into another software, such as

Excel or Origin. The entire model can be saved in an xml

file format defined for the BioDMET application. This file

contains both the setup information and the simulation

results.

In addition to providing the agent biodistribution data,

the following PK parameters are calculated and displayed

at the GUI in the Property Window under the PK Properties

tab after each simulation: maximum concentration (Cmax),

time when the maximum concentration is achieved (tmax),

area under the curve (AUC) calculated using the trapezoid

method from time 0 to the last sampling time point as well

as from time 0 to infinity, mean residence time (MRT), half

life (t1/2), initial concentration (C0), central compartment

volume (Vc), volume of distribution at steady state (Vss),

and clearance (Cl). Except for Cmax, tmax, and C0, the other

PK parameters have been derived using a noncompart-

mental approach [57]. This is based on calculating the

AUC of the concentration versus time plot by numerical

integration using the trapezoidal rule.

When experimental time-concentration data is present in

the model, the above listed PK parameters are derived based

on this data as well and are shown under ‘‘MEASURED

CURVE PARAMETERS’’ for comparison. A note of cau-

tion: even when the experimental data points align closely

with the curve representing the calculated drug concentra-

tions, there could be significant discrepancies between the

two sets of PK parameters. Most likely, this is due to the fact

that experimental data is usually not available for the early

time points right after the administration of the agent when

drug concentrations change rapidly in time.

After setting up a system with the help of one of the

wizards, it is possible to modify the host, pathogen or agent

at the GUI. These modified models can be saved as new

host, pathogen or agent files in xml format for subsequent

simulations.

At the end of each sensitivity analysis or critically ill

patient analysis, a window is shown with a summary of the

analysis results for a quick assessment. For each monitored

output parameter, a bar graph is plotted showing its values

for each set of input parameter values sampled. Plots of the

sensitivity coefficients of each monitored output relative to

the input parameters are also provided after a sensitivity

analysis. These summary plots can be saved into a report

file in pdf format. This summary is in addition to the text

file containing the raw output that is generated for each of

these simulations.

Results of testing and validation

Evaluation of predictive capability

The BioDMET software’s ability to predict drug concen-

trations has been validated using a series of 26 drugs/agents

in 44 individual human and animal models. The calculated

agent concentrations at various time points were compared

to experimentally measured concentrations obtained from

the scientific literature. The literature data search was

performed to cover multiple host species (human, monkey,

guinea pig, rat, mouse) and agent types (drugs, imaging

agents) with a wide range of values of pharmacokinetically

relevant properties such as molecular weights, LogP, and

plasma protein binding (Table 1). Even though BioDMET

has the capability to model multiple modes of adminis-

tration (intravenous, intramuscular, subcutaneous, and

oral), the majority of the experimental data collected was

based on IV administration. A more comprehensive testing

and validation of the other administration methods is the

focus of a continuing effort.

Good correlation was obtained between experimentally

measured and calculated log concentrations of drugs/agents

in plasma (R2 = 0.93) and in various other tissues

(R2 = 0.89, Fig. 6) following IV administration. The stan-

dard deviation of the Log10 (measured/calculated) ratios was

0.39 with a mean value of 0.08 for the plasma, and 0.45 with a

mean value of 0.13 for the tissues. This level of predictive

accuracy is similar to that found in other PBPK models [20].

The individual calculated time-concentration curves com-

pared to the experimental data can be downloaded from the

tool website (the link is provided under Validation).

The tool was able to account for the differences in the

plasma/muscle and plasma/skin concentration ratios mea-

sured for two cephalosporin antibiotics, cefpirome and

cefodizime, in healthy volunteers (Fig. 7). This has been

attributed mainly to the large differences in plasma protein

binding of the two drugs [58]. Similarly, the simulated

effect of varying renal function on the plasma concentra-

tion of iohexol was in good agreement with the experi-

mentally observed trend (Fig. 8). The validation data

(PBPK model parameters, calculated and measured data,

including references) is available at the BioDMET web site

(http://pdsl.research.ge.com/BioDMET/).

Discussion

The development of BioDMET has been driven by the

need to perform feasibility calculations when faced with

complex problems where the interplay of multiple vari-

ables can affect the output in a nonlinear fashion. These

types of calculations can provide a feel for the magnitude
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of the challenges before any experimental work has been

started. They can also highlight the most problematic areas

or the ones where critical data is missing. As more and

more experimental data becomes available, the models can

be refined to provide more accurate predictions and help

explain sometimes unexpected results.

One of the main application areas is assessing the im-

ageability of certain anatomical or disease conditions and

delineating the property space of the imaging agent and of

the target that could produce images of acceptable quality.

The other area is that of drug development. The question

here is whether or not a drug candidate could reach the

target tissue in high enough concentrations long enough to

produce a therapeutic effect while producing minimal

toxicity in tissues that are most susceptible.

Establishing imageability criteria

The system model illustrated in Fig. 9 provides the capa-

bility to calculate the expected in vivo clinical images for a

set of input properties of the biomarker, imaging agent, and

disease state [60]. It is composed of the whole-body PBPK

model BioDMET, whole body anatomical maps, and ana-

lytical and Monte Carlo image simulator codes for positron

emission tomography (PET) and single photon emission

computed tomography (SPECT). The input includes ana-

tomical and physiological information about the host and

the disease state of interest, physico-chemical as well as

biological properties of the agent and its in vivo target.

BioDMET calculates the in vivo concentrations of the

examined imaging agent in all major body tissues over time,

which is used to compute the time-activity curves of a radio-

labeled agent. This is then used as the input, along with

detailed 3D anatomy phantoms of the human or animal sub-

ject, into the physics-based imaging simulator to generate

images showing how the potential imaging agent would work.

The images are processed just like actual measured images,

delineating the regions of interest and quantifying the signal.

The process is run somewhat in reverse during feasi-

bility assessments. Starting with the clinical need for

Table 1 Summary of model validation data sets collected

Drug or agent MW LogP PPB (%) Human Rhesus monkey Guinea pig Rat Mouse

1 99mTc-DTPA 491.4 -6.5 – BioD

2 Acetaminophen 151.2 0.5 20 P P

3 Acyclovir 225.2 -1.0 33 P

4 Amoxicillin 365.4 -4.0 20 P

5 Atorvastatin 558.6 5.4 98 P

6 Azathioprine 166.2 0.9 20 P

7 Caffeine 194.2 -0.5 30 P

8 Cefodizime 584.7 0.2 70 P, U, M, S, B

9 Cefozopran 516.5 -3.0 8 P, U BioD BioD BioD

10 Cefpirome 515.6 -4.1 10 P, M, S, L

11 Diazepam 284.7 3.1 98.5 BioD

12 Fexofenadine 501.7 0.9 65 P

13 Inulin 6179.4 -18.0 – P, U

14 Iohexol 821.1 -4.2 – P (Renal)

15 Iopromide 791.1 -3.0 – P

16 Ketoconazole 531.4 4.2 99 P

17 Mannitol 182.2 -3.7 – P

18 Midazolam 325.8 3.1 97 P P

19 Nateglinide 317.4 4.0 98 P

20 Propranolol 259.3 2.6 90 BioD

21 SU5416 (Semaxanib) 238.3 3.0 – P

22 Theophylline 180.2 -0.8 48 P

23 Troglitazone 441.5 5.5 99 P

24 Velcade 384.2 1.5 83 P

25 Verapamil 454.6 5.0 95 P P

26 Zidovudine (AZT) 267.2 -2.4 31.5 P

Italic boxes correspond to existing experimental data. The definition of letter symbols: BioD full biodistribution in all major organ tissues,

B bone, M muscle, L lung, P plasma, S skin, U urine, Renal renal function data available
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visualizing a specific pathological condition, the properties

of the radio-pharmaceutical and target biomarker are

derived to meet the imaging requirements for resolution,

specificity, and sensitivity given the inherent noise and

limitations of an imaging system and protocol. This is

accomplished by running multiple calculations with clini-

cally relevant disease and healthy physiology parameters,

types and property ranges of the imaging agent and bio-

marker to be evaluated, as well as the scoring criteria for a

good image (e.g., target to background signal at a defined

time post injection of the agent). The software then eval-

uates the performance of different possible combinations of

target biomarker and agent biochemical properties against

the scoring criteria. Target biomarker properties include its

location and concentration levels throughout the body as

well as changes with disease progression. Agent properties

include molecular weight, LogP/LogD, plasma protein

binding, clearance rates, and agent-target binding strength

and rate. Imaging requirements such as imaging time post

injection and degradation of the signal due to scatter and

spillover effects are also considered. In a typical assess-

ment, over 60,000 biodistribution calculations are per-

formed, scored for imaging feasibility, and plotted on

color-coded imageability maps (shown in grayscale in

Fig. 9). These maps are then used to assess the feasibility

of imaging a specific disease for all of the given agent-

target pairs. One example of such a feasibility study was

performed to assess the possibility of detecting lesions in

the brain of patients with multiple sclerosis using PET

imaging [61].

Evaluating drug efficacy and dosing

The main purpose of PBPK modeling is to combine a

complex model of an organism with in vitro measurable

properties of an agent or drug and predict how it will behave

in vivo. This can be taken one step forward by adding

further information to the model about the therapeutic and

toxic properties of the drug: the effective concentration

above which it has measurable therapeutic effects and the

toxic concentration at which various toxic effects become

detectable. The PBPK model can then be used to estimate

the range of doses at which the concentration of the drug in

the target tissue can be kept above the effective concen-

tration while keeping it below the toxic levels in tissues that

are most prone to damage. This could be more reliable and

more specific than the standard in vitro therapeutic index

because it can include individualized information about the

patient population (age, weight, health status) as well as

drug concentrations at target tissues.

Unique features of BioDMET

Setting up a PBPK model and running a simulation used to

be a time-consuming, tedious process that required a large

number of parameters to be specified and code writing for
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Fig. 6 A summary of the

BioDMET-calculated

concentrations versus the in

vivo measured concentrations

for the 26 test compounds in

human, rat and mouse. Each

symbol represents the

concentration of one compound

at one individual time point.

Blue triangles represent

concentrations in the plasma,

red squares represent

concentrations in the various

other tissues (muscle, bone,

lung, brain, etc.). The time

points at which the

measurements were made

ranged from 1 min up to 24 h

post injection. A total of 454

plasma and 258 other tissue

concentrations following IV

administration were included
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solving differential equations. These types of calculations

were accessible typically only to scientists trained in this

field. BioDMET is designed to overcome these challenges

by providing a scientifically rigorous yet easy-to-use tool

with complete, parameterized PBPK models for several

species that can be easily customized without the need for

programming skills.

The models are comprised of spaces that correspond to

real anatomical entities (vasculature, interstitial space,

CSF, urine, lymph, subcellular compartments) and are

grouped naturally by anatomical organs and tissues. There

is no need for artificial compartments that lump together

several distinct tissues or organs in order to explain the

kinetics of the drug. As a consequence, drug concentrations

can be calculated in any of these anatomically relevant

spaces and compared to experimentally measured values to

validate the model. This also enables the calculation of

drug concentration directly at the place of the action for

pharmacodynamic evaluations instead of having to use the

plasma concentration as a proxy.

Open access to all of the physiology model parameters

and rate constants are provided with the human and animal

models. References to the model parameters can be

accessed through the software GUI under the Notes icon or

from the tool documentation provided at the tool’s web site

under User Guide. A set of experimental data collected

from the literature with the corresponding references are

also available via the tools web site under Validation. This

way the users can experiment with the tools and can run

their own testing and validation. Even though the simula-

tions are initiated through a web server, the calculations are

done and the results are kept on the user’s computer. No

data is returned to the server assuring complete data

confidentiality.

Customizing/expanding the model

As more and more experimental data becomes available

about the mechanisms involved in the biodistribution and

action of pharmaceutical agents, the need arises to refine

the existing PBPK models by incorporating the new find-

ings. BioDMET was built keeping in mind the need to

customize the models for a specific problem and incorpo-

rate new knowledge. These modifications can be performed

Fig. 7 Simulated and measured

concentrations of cefpirome and

cefodizime in human plasma,

the interstitial space of muscle,

and skin. The experimental data

is taken from the published

work of Muller et al. [58]
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in an intuitive fashion at the GUI without the need to

change the code. The customized models can be saved for

later use. New spaces can be added or old ones split into

multiple components and the parameters characterizing this

new space can be changed. New connections can be

established between spaces or existing ones can be modi-

fied. This is how a tumor, for example, can be inserted into

a specific location of a tissue. The host physiology can also

be altered to model inter-individual differences or changes

caused by disease states. While many of the model

parameter values can be changed in an individual fashion,

some physiology alterations require a concerted change

across multiple organs and tissues because the organism is

a closed system and the sum of certain quantities is fixed.

For example, tissue inflammation can be modeled by

specifying the volume fraction of the inflamed tissue and

adjusting the blood and lymph flow, the vascular perme-

ability and change in tissue volume due to edema at a

dialog window (Supplementary Fig. S3). After such a

change, the tool will make the necessary adjustments to all

other spaces connected when the biodistribution of the

pharmaceutical is recalculated.

While the pharmacokinetics of some drugs can be

modeled quite accurately by passive diffusion and a simple

Fig. 8 Simulations versus

measurements for iohexol in

human plasma for single

patients with different renal

functions. Experimental data

points were taken from the

published work of Gaspari et al.

[59]. The GFR varies from

healthy function of 115.7 ml/

min/1.73 m2 to renal failure rate

of 8.9 ml/min/1.73 m2

Fig. 9 Computational system

model for assessing imaging

feasibility. The lighter the color
of the box on the imageability

map, the higher the probability

that the corresponding property

combinations lead to successful

imaging
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one-step liver metabolism, others require a complex

interplay of enzymes and transporters. BioDMET allows

adding transporters and enzymes and offers two

alternatives to describe the process: first order or

Michaelis–Menten type equation. The user has to specify

the necessary parameters including the location and con-

centration of the enzyme or transporter, the substrate, the

rate of the process, the origin and destination space, the

creation and destruction rate of the enzyme, etc. Since

the model can track multiple agents and their metabolites,

drug–drug interactions can also be taken into account. More

details on how to implement such changes are described in

the user manual downloadable from the tools’ website.

As new therapeutic platforms appear, there is a need for

PBPK models to handle peptides, proteins, nucleotides and

nanoparticles. It is possible to implement the simulation of

these agents in BioDMET. At this point, however, the user

has to be aware of the mechanistic differences relative to

small molecule drugs that are important for the biodistri-

bution of these molecules, and provide the necessary

parameters characterizing the processes involved, includ-

ing diffusion, transport, metabolism, etc.

Future work is aimed at parameterizing and validating

BioDMET for the various therapeutic platforms, including

the most frequently encountered transporters into the

model, and allowing user-defined equations for describing

enzyme- and transporter-mediated processes.
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