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Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by
symptoms that impact both motor and non-motor domains. Outside of motor
impairments, PD patients are at risk for impulse control disorders (ICDs), which
include excessively disabling impulsive and compulsive behaviors. ICD symptoms in
PD (PD + ICD) can be broadly conceptualized as a synergistic interaction between
dopamine agonist therapy and the many molecular and circuit-level changes intrinsic
to PD. Aside from discontinuing dopamine agonist treatment, there remains a lack of
consensus on how to best address ICD symptoms in PD. In this review, we explore
recent advances in the molecular and neuroanatomical mechanisms underlying ICD
symptoms in PD by summarizing a rapidly accumulating body of clinical and preclinical
studies, with a special focus on the utility of rodent models in gaining new insights into
the neurochemical basis of PD + ICD. We also discuss the relevance of these findings
to the broader problem of impulsive and compulsive behaviors that impact a range of
neuropsychiatric syndromes.

Keywords: impulse control disorders, rodent models, dopamine agonist, non-motor symptoms, Parkinson’s
disease

INTRODUCTION

Parkinson’s disease (PD) affects more than 10 million people worldwide (Dorsey et al., 2018;
Rocca, 2018). Motor symptoms of PD are best appreciated as a cardinal “triad” of tremor, rigidity,
and bradykinesia and can include akinesia and postural instability in late stages (Jankovic, 2008).
Additionally, a non-motor prodromal phase, which includes changes in sleep, mood, olfactory,
and autonomic function, may precede motor symptoms by up to a decade (Chaudhuri et al.,
2006; Ishihara and Brayne, 2006; Masala et al., 2018). Unfortunately, non-motor symptoms often
persist during the motor phase of PD, compounding overall disability and augmenting the need for
institutionalization. This review focuses on one particular constellation of non-motor symptoms
termed “impulse control disorders” (ICDs) and highlights recent studies that provide important
updates on pathophysiology.

The pathological hallmark of PD is depigmentation, cell loss, and gliosis within the substantia
nigra (SN) (Dauer and Przedborski, 2003), which is comprised of dopaminergic neurons that
project to the striatum to form the nigrostriatal dopamine pathway, crucial for the stimulation
of voluntary movement (Haber, 2014). Lewy bodies, neurotoxic structures composed mainly
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of abnormally phosphorylated and aggregated alpha-synuclein,
are thought to propagate nigral degeneration (Kouli et al.,
2018) and subsequently extend beyond nigral circuits. In fact,
the rostro-caudal extent of alpha-synuclein accumulation has
been extensively explored as a potential etiology for non-motor
symptoms that affect multiple neural systems, including rapid
eye movement sleep behavior disorder (pontine and medullary
nuclei), constipation (autonomic enteric neurons), and cognitive
impairment (frontal and other cortical regions) (Adler and Beach,
2016; Atik et al., 2016).

Impulse control and related behaviors (ICRBs) are
characterized by the inability to assert self-control in emotions
and behaviors, which can lead to compulsive and/or impulsive
actions that harm oneself or others (American Psychiatric
Association, 2013). Compulsivity includes repetitive and
consciously unwanted (ego-dystonic) behaviors that subjects
describe as being necessary to perform (Berlin and Hollander,
2014). Impulsivity is the reduction or absence of forethought
or planning before making decisions and can be divided into
motor and decision impulsivity (Winstanley, 2011). Common
ICDs experienced by PD patients include pathological gambling,
binge eating, hypersexuality, and compulsive buying. ICD
development in PD patients (PD + ICD) is commonly observed
as an iatrogenic side effect of dopamine agonists (DAAs), a type
of dopamine replacement therapy (DRT), and symptoms usually
improve with reduction of DAA treatment (You et al., 2018;
Kelly et al., 2020). In the following sections, we critically examine
preclinical and clinical data that explore the neuroanatomical
and molecular bases for this pathophysiological synergy.
Importantly, we conclude by highlighting the significance of
the rodent model in pushing this research niche forward and
discussing broader implications for the more general problem of
ICRBs that are a feature of several neuropsychiatric syndromes.
Articles reviewed in this manuscript were identified through
a PubMed search utilizing keyword combinations including
“Parkinson’s disease,” “impulse control disorders,” “rat or mouse,”
and “animal model.”

Mechanisms Underlying PD + ICD:
Human Studies
About 14–40% of PD patients experience symptoms of
ICDs (Erga et al., 2017; Baig et al., 2019). Risk factors for
PD + ICD include duration and dose of DAA treatment,
male gender, comorbid apathy, anxiety, and depression
(Weintraub et al., 2010a, 2013). DAA treatment, in particular,
is strongly associated with a significantly increased risk of
developing ICDs (Bódi et al., 2009; Garcia-Ruiz et al., 2014).
Further, various psychological factors such as increased stress,
greater illness identity, and negative coping strategies have
also been found to predict PD + ICD (Garlovsky et al.,
2016). ICD symptoms in newly diagnosed drug-naïve PD
patients actually seem to be comparable to that of the general
population, around 20% (Antonini et al., 2011; Weintraub
et al., 2013). However, recent research has suggested a
difference in the nature of ICRBs among these populations,
whereby delay discounting (with preference for smaller

and more immediate rewards over larger but more delayed
rewards) and deficits in reflection impulsivity (ability to
collect sufficient information prior to decision-making) better
predict ICDs in the PD and general populations, respectively
(Izzo et al., 2020).

Alterations in dopamine receptor signaling are a central
property of PD + ICD. D1-like receptors (D1R), which include
D1 and D5, are coupled to excitatory cyclic AMP (cAMP)
signaling, and are broadly implicated in reward-based learning
(Nakanishi et al., 2014). D2-like receptors (D2R), which include
D2, D3, and D4, are coupled to cAMP inhibition and play a
prominent role in avoidance learning (Draoui et al., 2020). DAAs
such as pramipexole, ropinirole, rotigotine, and apomorphine
are much more selective for D2R than D1R (Millan et al.,
2002). Positron emission tomography (PET) approaches have
indicated decreased D2R binding (Steeves et al., 2009; Stark
et al., 2018) and relatively unchanged D1R binding in the ventral
striatum in PD + ICD (Payer et al., 2015) compared with PD
patients without ICDs (PD-ICD). These findings suggest that
ICD symptoms may reflect DAA-mediated D2R overstimulation
preventing punishment learning wherein adverse consequences
of actions are ignored when making decisions, while the effects
of D1R-mediated direct pathway and positive reinforcement
learning are intact.

The density of dopamine transporters (DAT), responsible for
the reuptake of dopamine from the synaptic cleft, may also play
a key role. Single photon emission computed tomography (Cilia
et al., 2010; Voon et al., 2014; Navalpotro-Gomez et al., 2019)
and PET (Lee et al., 2014) investigations have demonstrated
reduced striatal DAT binding in PD + ICD compared to PD-
ICD. Furthermore, two studies have shown that decreased DAT
availability precedes ICD development following DRTs and that
the severity of ICDs experienced is inversely correlated with DAT
density (Vriend et al., 2014; Smith et al., 2016), highlighting the
potential use of baseline DAT density as a marker of future ICD
risk in PD patients.

In studies of network-level dysfunction, resting-state
functional magnetic resonance imaging (fMRI) approaches in
medicated PD + ICD patients have indicated reduced cortico-
striatal connectivity (Carriere et al., 2015; Ruitenberg et al.,
2018) between the cingulate cortex and the nucleus accumbens
(Hammes et al., 2019) and dorsal striatum (Cilia et al., 2011;
Tessitore et al., 2017a). fMRI studies in which medicated subjects
performed tasks to measure impulsivity have also observed
lower activation in the prefrontal cortex (PFC) and striatum
during these tasks in PD + ICD (Filip et al., 2018). Interestingly,
several studies have identified more diffuse alterations in
neural networks in newly diagnosed, drug-naïve PD patients
who later developed ICDs or exhibited greater impulsivity
compared to PD-ICD patients and healthy controls. This
includes disruptions to numerous white matter tracts (Mojtahed
Zadeh et al., 2018); decreased activation of various mesolimbic
and mesocortical areas (van der Vegt et al., 2013; Vriend et al.,
2015); and changes in connectivity in the default-mode, central
executive, and salience networks (Tessitore et al., 2017b) in
PD + ICD, indicating more widespread network-level correlates
of predisposition to PD + ICD.
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Finally, genetic association studies have demonstrated that the
heritability of PD + ICD is around 57% (Kraemmer et al., 2016).
Polymorphisms in genes encoding dopamine receptors (Lee et al.,
2009; Zainal Abidin et al., 2015; Krishnamoorthy et al., 2016;
Erga et al., 2018; McDonell et al., 2018; Redenšek et al., 2020),
dopamine transporters (Cilia et al., 2016; Cormier-Dequaire et al.,
2018; Redenšek et al., 2019, 2020), and proteins involved in
dopamine metabolism (Ziegler et al., 2014; Kraemmer et al., 2016;
Jesús et al., 2020) have been linked to increased PD + ICD risk.
Interestingly, genetic modifiers of ICD risk appear to extend
beyond the dopamine axis, including genes involved in glutamate
(Lee et al., 2009; Zainal Abidin et al., 2015), serotonin, and (Lee
et al., 2012; Cilia et al., 2016; Kraemmer et al., 2016) opioid
(Kraemmer et al., 2016; Cormier-Dequaire et al., 2018; Erga et al.,
2018) signaling, and other signal transduction genes (Hoenicka
et al., 2015; Prud’hon et al., 2020) in PD + ICD. These data,
summarized in Figure 1, illustrate a complex genetic landscape

of ICD risk and implicate a range of non-dopaminergic systems
that may be harnessed for treatment.

Mechanisms Underlying PD + ICD:
Rodent Studies
The psychopharmacological profile of D2R agonists in healthy
rodents is complex: D2R agonists increase food consumption
(Martin-Iverson and Dourish, 1988) and overall wakefulness
(Qu et al., 2010) but tend to decrease locomotor activity (Li
et al., 2010). The rewarding or aversive properties of DAAs
in healthy rodents can be assessed through conditioned place
preference/aversion assays (CPP/CPA) wherein injection with a
DAA is repeatedly coupled with one chamber, while the control
stimulus (saline injection) is paired with another chamber.
On test day, the subject can freely explore all chambers. D1R
agonists induce significant CPA, while D2R agonists enhance

FIGURE 1 | Genetic landscape of PD + ICD risk. Genetic polymorphisms found to be associated with increased and/or decreased risk for ICD development in PD
patients are indicated. Adapted from “Synaptic Cleft” by BioRender.com (2020). Retrieved from https://app.biorender.com/biorender-templates.
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CPP, illustrating the predominant role of D2Rs in the reinforcing
properties of DAAs (Zengin-Toktas et al., 2013). While some
studies have reported that D2R agonist-mediated reinforcement
is similar in both sham and PD-induced rats (Engeln et al., 2013;
Zengin-Toktas et al., 2013), other studies have observed that
lower doses of DAAs are sufficient to induce CPP in PD-induced
rats compared with sham controls (Riddle et al., 2012; Loiodice
et al., 2017). Since striatonigral degeneration itself results in a
reduction in striatal dopamine levels, the subthreshold effects
of DAAs may be related to baseline underactivation of D2Rs
(Gallo, 2019). Further studies are clearly required to clarify the
upstream mediators and downstream outcomes of D2R agonists
in PD-like circuits.

A variety of tasks have been developed to measure impulsivity
in rodents through quantitative assessments of the speed and
accuracy of decision-making (Figure 2). For instance, in the 5-
choice serial reaction time task (5-CSRTT) subjects are placed

in an operant chamber with five apertures and a food reward
tray and trained to receive a reward when they correctly nose-
poke under the illuminated aperture in a timely fashion. Here
motor impulsivity and compulsivity are reflected in the frequency
of premature and perseverative responses, respectively (Higgins
and Silenieks, 2017). In one study, PD-induced rats displayed
a significant increase in premature response rate immediately
following lesioning of the SN pars compacta, and DAA treatment
further exacerbated this effect (Jiménez-Urbieta et al., 2019).
Protocols that incorporate differential reinforcement of low rate
of responding (DRL) and fixed consecutive number (FCN)
schedules can also assess rodent motor impulsivity. In DRL,
subjects must wait for a predetermined amount of time before
responding to get a reward. In FCN, subjects must maintain
their response at one station for a fixed number of times before
responding at a second station to get a reward. One study
incorporating DRL and FCN protocols found that nigrostriatal

FIGURE 2 | Rodent assays to measure impulsivity. While there are a number of variants for each protocol, the figure depicts the basic details of each. Lightbulbs are
cue lights, circular lights are house lights, filled-in rectangles are pressable levers, and transparent squares are apertures for nose pokes. (A) Motor impulsivity can be
measured through the 5-CSRTT (Higgins and Silenieks, 2017) as well as the DRL and FCN schedules (Engeln et al., 2016). (B) Decision impulsivity can be measured
through the DDT (Tedford et al., 2015), PDT (Rokosik and Napier, 2012), and RGT (Tremblay et al., 2019). VDS can measure both motor and decision impulsivity
(Jiménez-Urbieta et al., 2020). Created with BioRender.com.
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lesioning was sufficient to cause an increase in both types of
motor impulsivity. DAA treatment exacerbated this phenotype,
such that following treatment, rats that exhibited the highest rates
of impulsivity were lesioned and also displayed high levels of
pre-lesion impulsivity (Engeln et al., 2016).

Genetic models of PD have received some emphasis. Mice
with a deletion in SNCA (encoding alpha-synuclein) displayed
decreased motor impulsivity compared with wild-type mice
(Peña-Oliver et al., 2012). In a follow-up study, it was determined
that while SNCA deletion decreases motor impulsivity, it does
not affect risky decision-making, measured using the rodent
gambling task (RGT), described at the end of this section (Peña-
Oliver et al., 2014). The involvement of other neurotransmitter
systems in impulsivity has also been revealed through rodent
studies. When mice with striatal and PFC lesions performed
the 3-CSRTT, a variant of the 5-CSRTT with fewer choices,
the amounts of striatal dopamine and norepinephrine were
lower and prefrontal serotonin was the same for lesioned
mice compared to wild-type mice. However, the ratio of 5-
hydroxyindoleacetic acid (a serotonin metabolite) to serotonin
was significantly decreased in the PFC of lesioned mice
and strongly correlated with increased premature responses,
suggesting a mediating role for these neurotransmitters in
PD + ICD (Maiti et al., 2016).

In the delay discounting task (DDT) subjects initially prefer
the large reinforcer, but as the delay to this reinforcer increases,
preference for the smaller and rapid reward grows. This shift in
preference is significantly enhanced in treatment-naïve rats with
dopaminergic lesions of the dorsolateral striatum (Tedford et al.,
2015). However, another DDT study found that lesioning of the
dorsal striatum alone did not exacerbate impulsivity (Magnard
et al., 2018). The probability discounting (PDT), variable delay-
to-signal (VDS) and gambling tasks are also used to assess risky
decision-making. In PDT, rodents are presented with choices
with two possible outcomes- a small but certain reward or a
larger but uncertain reward. As trials progress, the likelihood
of receiving the larger reward decreases. Here impulsivity is
choosing the larger reward, regardless of whether there is a
high or low probability of attaining the reward. Using PDT,
pramipexole increased preference for the large reinforcer by
approximately 30–45% even at the greatest uncertainty levels
in PD-induced rats (Rokosik and Napier, 2012). Even when
the expected value of both options remains the same, such as
when the uncertain outcome is twice the size as the guaranteed
reward but only delivered on 50% of trials, chronic ropinirole
administration increased choice for the large-but-uncertain
outcome (Tremblay et al., 2017; Russell et al., 2020). The size of
the effect was comparable in lesioned and non-lesioned rats.

In the VDS task, a visual stimulus signals the start of a time
period during which a nose-poke response is rewarded after a
variable delay period (Carvalho et al., 2017). Premature responses
during the delay period reflect impulsivity, while perseverative
responses after a correct response reflect compulsivity. Using
VDS, low pramipexole doses (0.25 mg/kg) increased premature
responses (motor impulsivity) and higher pramipexole doses
(3 mg/kg) additionally precipitated delay intolerance (decision
impulsivity). Moreover, “pre-existing” measures of impulsivity

and those measured after lesioning of the dorsolateral striatum
were both positively associated with impulsivity following DAA
administration (Jiménez-Urbieta et al., 2020). Finally, in the
RGT, subjects are generally given choices with varying amounts
of rewards that are paired with a certain amount of penalty,
such that larger rewards are paired with larger penalties and
therefore result in fewer rewards during the course of a session
(de Visser et al., 2011). An RGT study showed that chronic
ropinirole significantly increased premature responses but did
not alter preference for uncertain outcomes when the DAA
was given following task acquisition (Tremblay et al., 2019). In
the rodent slot machine task (rSMT) subjects respond to three
flashing lights that are analogous to the three wheels of a slot
machine. If all three lights are set to “on,” the subject needs
to respond on the left-hand lever to collect its food reward.
On any other trial type, the subject should start a new trial,
equivalent to “rolling again,” or incur a time-out penalty. Using
rSMT, subjects performed nearly twice the number of trials, and
were less sensitive to loss events within the task following chronic
ropinirole administration (Cocker et al., 2017, 2019).

Treatments for PD + ICD
Currently, the most common method to manage PD + ICD
is withdrawing DAA treatment following ICRB manifestation.
However, this management option has many caveats, including
the possibility of dopamine agonist withdrawal syndrome
(exacerbation of motor and certain psychiatric symptoms
following DAA withdrawal), ICD onset due to other treatments,
and behavioral relapse of ICRBs even following DAA elimination
(Kelly et al., 2020). A number of pharmacologically distinct
psychotropic agents have been examined as interventions,
but consensus treatment recommendations are still absent
as these studies have typically employed small sample sizes.
Positive results have been observed with naltrexone, an opioid
antagonist (Bosco et al., 2012; Verholleman et al., 2020);
citalopram, a selective serotonin reuptake inhibitor (SSRI) (Ye
et al., 2014); atomoxetine, a selective norepinephrine reuptake
inhibitor (Kehagia et al., 2014; Rae et al., 2016); valproate, an
anticonvulsant mood stabilizer (Hicks et al., 2011); clozapine, an
atypical antipsychotic (Rotondo et al., 2010); and amantadine,
a weak N-methyl-D-aspartate (NMDA) receptor antagonist
(Thomas et al., 2010). However, naltrexone (Papay et al., 2014),
various SSRIs (Bosco et al., 2012; Jeon and Bortolato, 2020),
amantadine (Thomas et al., 2010; Weintraub et al., 2010b),
and several atypical antipsychotics and glutamatergic modulators
(Jeon and Bortolato, 2020) have also been reported to have
no or negative impact on PD + ICD. In rodent PD models,
positive effects have been observed with agonists of G protein-
coupled receptor 52 (Russell et al., 2020); propranolol, a β-
adrenoceptor antagonist (Cocker et al., 2019); and mirtazapine,
an atypical antidepressant (Holtz et al., 2016). Whether non-
pharmacological interventions such as deep brain stimulation
(DBS) ameliorates or worsens ICRBs in PD patients is still
debated. While most human studies indicated that DBS improves
PD + ICD, some have reported the development of short-
term de novo ICDs following DBS (Amami et al., 2015;
Rossi et al., 2017; Kim et al., 2018; Lo Buono et al., 2020;

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 654238

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-654238 March 8, 2021 Time: 17:11 # 6

Augustine et al. Parkinson’s Disease and Impulse Control

Santin et al., 2020). In rodents, decreased risk-taking and loss-
chasing was reported following lesioning to the subthalamic
nucleus (STN), possibly pinpointing this region as a target for
DBS and other treatments for PD + ICD (Breysse et al., 2020).
While DBS to the STN reduced risky decision-making in rodents
with high levels of pre-existing impulsivity (Adams et al., 2017),
in PD-induced rodents, DBS to the STN (Anderson et al., 2020)
and globus pallidus internus increased impulsivity (Summerson
et al., 2014). As a field, these data point to the need for
more comprehensive therapeutics that simultaneously alleviate
psychiatric and motor symptoms in patients with PD + ICD.

CONCLUSION

Understanding PD + ICD pathophysiology remains a work
in progress. While the role of DAAs is generally accepted,
the specific molecular interactions that precipitate ICRBs are
largely unknown. Human studies have looked into alterations
in dopamine receptor subtype expression, dopamine transporter
expression, neural networks, and genetic polymorphisms that
may predispose PD patients to ICD development, building
a complex working model of PD + ICD etiology. Rodent
models of PD are essential to test these specific hypotheses,
and we are blessed to have access to a rich complement of
preclinical protocols (Figure 2) to quantitatively dissect and
distinguish features of ICRBs in rodents. These models and

assays also provide a substrate to investigate pharmacological
and non-pharmacological treatments that ameliorate ICRBs and
should be complemented with simultaneous assays of PD motor
dysfunction. Not surprisingly, many ICD risk-altering genetic
variants (Figure 1) have been linked to other neuropsychiatric
syndromes marked by impulsivity and compulsivity, including
substance dependence, pathological gambling, and attention-
deficit/hyperactivity disorder (Hollander and Rosen, 2000).
Thus, cellular and neuroanatomical insights gathered from
the study of ICDs in PD patients may have broad relevance
beyond PD alone.
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