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To analyze gene expression data with sophisticated grouping structures and to extract hidden patterns from such data, feature
selection is of critical importance. It is well known that genes do not function in isolation but rather work together within various
metabolic, regulatory, and signaling pathways. If the biological knowledge contained within these pathways is taken into account,
the resulting method is a pathway-based algorithm. Studies have demonstrated that a pathway-based method usually outperforms
its gene-based counterpart in which no biological knowledge is considered. In this article, a pathway-based feature selection is
firstly divided into three major categories, namely, pathway-level selection, bilevel selection, and pathway-guided gene selection.
With bilevel selection methods being regarded as a special case of pathway-guided gene selection process, we discuss pathway-
guided gene selection methods in detail and the importance of penalization in such methods. Last, we point out the potential
utilizations of pathway-guided gene selection in one active research avenue, namely, to analyze longitudinal gene expression data.
We believe this article provides valuable insights for computational biologists and biostatisticians so that they can make biology
more computable.

1. Introduction

Data obtained from the high-throughput technologies such
as microarrays or RNA-sequencing (RNA-seq) is a recur-
ring theme in many fields such as computational biology
and bioinformatics. Given these advanced technologies are
expensive, the number of observations/subjects is usually
small, i.e., on the scales of several to hundreds. Another
special characteristic of the high-throughput technologies is
that they can measure thousands of variables/features simul-
taneously. As far as the statistical modeling is considered, a
classic regression model becomes nonidentifiable when all
measured variables are used as predictors for such a data set;
let alone onemay also be interested in exploring the nonlinear
association at higher orders or the interactions among these
variables. To deal with the data in which the number of
variables is extremely larger than the number of samples, the
implementation of a feature selection process that identifies
a subset of genes with the optimal predictive performance [1]
is in demand.

Feature selection has outstanding merits. Especially, the
resulting subset of genes speeds up the learning process,
improves predictive accuracy, and leads to a better biological
implication. The classic feature selection, we call it “gene-
based feature selection” to avoid ambiguity in this article,
is stratified into three subtypes, say, filter, embedded, and
wrappermethods [1, 2].These three categories have their own
unique characteristics. For instance, a filter method usually
screens individual features one by one according to their
relevancy level with the outcome of interest [1]. The feature
selection of an embedded method is usually realized by using
a penalized regression model such as the Least Absolute
Shrinkage and Selection Operator (LASSO) model [3]. Such
a method can simultaneously select relevant features and
estimate those coefficients (the effect size of those features)
in the final model; in addition to that it consumes less
computing time than a wrapper method.

Nevertheless, the gene subset/list selected by a gene-based
feature selection algorithm has several drawbacks. First,
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Figure 1: Major ramifications of pathway-based feature selection methods.

the predictive performance on new independent samples is
unsatisfactory; the overfitting phenomenon is always appar-
ent. Second, the gene lists trained from different data sets
barely overlap. Reproducibility or stability of the final models
(with different data, the samemethod gives different gene lists
with few or no overlaps) is low, leading to a generalization of
the resulting gene list impossible. Last, most of thesemethods
use the difference of gene expression level between different
phenotypes as a critical criterion to select the genes associated
with the outcome. However, differentially expressed genes
(DEGs) are not necessarily to be true driver genes. Ignoring
biological information may result in a meaningless biological
implication for the resultant gene list.

Furthermore, it is well known that genes do not func-
tion in isolation but rather work together within various
metabolic, regulatory, and signaling pathways. The interde-
pendencies among genes are often represented as a collection
of pathways/gene sets in which potential coregulated or
coexpressed genes are grouped together. In this review,
the terms “pathway”, “network”, and “gene set” have same
implication/meaning and are exchangeable to one another.

The biological information contained within pathways
can be utilized to impose additional constraints on the
prediction tasks, forcing training methods to select more
scientifically meaningful genes rather than those statistically
significant genes (such as genes more differentially expressed
between two phenotypes). A feature selection process that
incorporates pathway knowledge by one means or another is
referred to as pathway-based feature selection herein, which
has currently grown into a hot topic in computational biology
and bioinformatics.

So far, to the best of our knowledge, no survey on
pathway-based feature selection methods in the literature has
been given yet. The objective of this article is to provide a
selective review on such methods.

2. Pathway-Based Feature Selection Methods

Based on to what a feature refers, pathway-based feature
selection methods may be classified into three categories;

see Figure 1. The first category contains pathway analysis
methods such as [4, 5] in which a feature corresponds to a
pathway, with the objectives of selecting the whole pathways
associated with the phenotypes of interest. Since the methods
in this category have been reviewed by many researchers
previously and several well-known algorithms have been
compared exclusively using simulations and real-world data
[6–15] and our attention is mainly focused on the selection of
individual genes related to the phenotypes of interest, we skip
this topic in the article.

The second category considers a bilevel selection pro-
cess, which identifies not only relevant pathways but also
important genes that contribute critically to the significance
of identified relevant pathways.The bilevel selection methods
can be further divided into three major categories, forward
selection, backward selection, and simultaneous selection
[16]. In a forward selection process such as [10], the selection
of relevant gene sets is carried out firstly and then followed
by the selection of relevant individual genes. In contrast, the
selection steps in a backward selection process such as [17]
take the reversed order. Last, a simultaneous selection process
such as [18] performs the selection of significant gene sets and
the selection of important genes at the same time, as its name
implies. The simultaneous selections of gene sets and genes
are usually accomplished with the aids of a penalized model
where a penalty term imposing some restrictions on the 𝛽
coefficients that represent the association magnitude with the
outcome is added to the objective function.

In the last category, a feature corresponds to an individual
gene. The methods of this type incorporate the pathway
knowledge as a priori to facilitate the selection of relevant
genes, aiming to improve the resulting gene list’s predictive
ability and/or reproducibility. Although we had intended to
reserve the syntax of “pathway-based feature selection” for
this specific subfield, we frame a specific term “a pathway-
guided gene selection” for it instead to avoid confusions.
Given our attention is focused on the methods capable of
selecting important individual genes [16], the bilevel selection
algorithms, e.g., [10, 19], may be loosely classified into the
pathway-guided gene selection category.
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3. Pathway-Guided Gene Selection Methods

3.1. �ree Major Categories. In our previous study [20],
we stratified a pathway-guided gene selection method
into three classes on the basis of which piece of path-
way information was incorporated and how such infor-
mation was incorporated, namely, weighting, stepwise for-
ward, and penalty. In the following subsections, a detailed
description of and discussion on these three categories are
given.

3.2. Stepwise Forward. Thestepwise forwardmethods usually
rank all genes according to a specific discriminative score.
Then the methods start from the most significant gene and
evaluate the performance of the resulting gene subset based
on some predetermined metric. The step iterates until no
further gain upon this performance statistic can be obtained.
A bilevel selection method, the significance analysis of
microarray gene set reduction (SAMGSR) algorithm [10], can
be put into this category.Thismethod consists of two steps. Its
first step is essentially an extension of the significance analysis
of microarray (SAM) method [21] to all genes inside a gene
set, and a new statistic called SAMGS [4] which is the square
sum of SAM statistics for all genes inside a specific gene set is
generated. The significance level of a gene set is determined
using permutation tests. Obviously, this step carries out the
selection of significant pathways firstly so that the SAMGSR
method belongs to the forward bilevel selection category. In
the second step, a subset of important genes is extracted from
each significant pathway identified by the first step on the
basis on the magnitudes of individual genes’ SAM statistics.
The realization of this extraction is by the means of stepwise
forward. Specifically, the genes inside each significant path-
way are ordered decreasingly based on the magnitude of their
SAM statistics. Then the reduction step gradually partitions
the entire gene set into two subsets: the reduced subset that
includes the first k genes and the residual subset including the
remaining genes for k = 1,. . ., |j|, where |j| is the size of gene
set j. At each partition, the significance level of the reduced
subset is evaluated using the p-value of SAMGS statistic for its
corresponding residual subset. The iteration stops until this
p-value is larger than a predetermined threshold for the first
time.

Another typical example of a stepwise forward method is
the algorithm proposed by Chuang et al. [22]. This method
starts from a seed gene and identifies a gene list by gradually
adding the neighboring gene that provides the highestmutual
information between the average of expression values for all
included genes and the outcome. In this example, network
topology information that records how genes are connected
instead of the groupingmembership information is taken into
consideration.

Two big drawbacks of a stepwise forward method are as
follows: (1) the methods may fail to identify those ‘driving’
genes with subtle changes because the inclusion of a gene
depends largely on its expression values or expression differ-
ences among different phenotypes; (2) the selection process
of important genes is usually separated from the final model
construction.

3.3. Weighting. The weighting methods construct a pathway
knowledge-based weight that reflects how important a gene
is inside the gene-to-gene interaction network for each gene
and then balance between the weight and its gene expression
values to determine the significance level of the specific gene.
For example, the reweighted recursive feature elimination
(RRFE) method [23] uses the GeneRank algorithm [24] to
alter the ranking criterion of the support vector machine
recursive feature elimination (SVM-RFE) algorithm, and
then identifies a subset with the best discriminative power.
More specifically, the resulting GeneRanks are used as
weights and combined with the coefficients of SVM to
increase the chance of a gene with more directly connected
neighbors being selected.

In the RRFE method, the weights are combined with
the statistics (i.e., the coefficients in a SVM model). An
alternative strategy of weighting is to combine the weights
directly with gene expression values to generate weighted
gene expression values and then implement a gene-based
feature selection method such as LASSO to identify relevant
genes. An example of this category is [25], in which the
weighted expression profiles were used to classify two major
subtypes of non-small-cell lung cancer.Overall, theweighting
methods are the least implemented in the literature, com-
pared to the methods in other two categories. This may be
due to that the constructed weights are subject to biases and
errors, which might lead to inferiority of the resulting gene
lists.

3.4. Penalty. In a penalty model, an extra penalty term that
records pathway information is combined with an objective
function such as the log likelihood function to generate the
final objective function.The identification of relevant genes is
realized by the means of finding the best subset of genes that
optimize this function. To name several penalty methods,
Zhu et al. [26] combined the network-constrained penalty
term given by [27] with a SVM model and proposed the
network-based SVM method to discriminate two different
phenotypes. Similarly, Chen et al. [28] also combined the
network-constrained penalty term with a SVM model and
proposed the netSVM method for the purpose of classifi-
cation. More recently, Sokolov et al. [29] generalized the
elastic net penalty term to incorporate pathway knowledge
and then combined the proposed penalty term with an
objective function to select relevant genes. The proposed
term is referred to as the generalized elastic net (gelnet)
function, and it includes the elastic net as a special case. The
big disadvantage of a penalty method is that its computing
burden is moderate or even heavy. Three separate figures
(Figures 2–4) were made to elucidate these three major
types of pathway-guided gene selection methods in detail.
A review of typical examples in each category is given in
Table 1.

3.5. Penalty Function. Given the fact that penalization plays
a critical role in both the pathway-guided gene selection
and in bilevel selection methods, we discuss the com-
monly used penalty terms in both methods in the following
sections.
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Figure 2: Graphical illustration of the stepwise forward methods.

3.5.1. Network-Constrained Penalty. For a penalty method,
one well-known network-constrained penalty term was pro-
posed by [27]. It is notated as

∑
𝑢∼V
( 𝛽𝑢√𝑑𝑢 −

𝛽V√𝑑V)
2𝑤 (𝑢, V) (1)

Here w(u,v) denotes the weight of edge (u, v). It usually takes
the value of 1 if gene u and gene v are connected, 0 otherwise.
The degree of gene u (denoted as du) is the sum of edge
weights over all vertices connected with u, i.e., ∑𝑢∼V 𝑤(𝑢, V).
This term introduces a smooth solution of 𝛽 coefficients
(which represent the association magnitudes and directions
of genes with the outcome) on the network via penalizing
the weighted sum of squares of the scaled difference of the
coefficients between connected genes. Li & Li [27] specifically
stated that scaling the 𝛽 coefficients using their respective
degrees of freedom on the network “allows the genes with
more connections to have larger coefficients so that small
changes of expressions of such genes can lead to large
changes in the response”. Several studies had adopted and
imposed this penalty term on different objective functions.
For instance, Chen et al. [28] had imposed this constraint
on a support vector machine (SVM) model and developed a
new approach called the network-constrained support vector
machine (netSVM) method. For a more detailed description
on the penalty functions at the pathway level, the work by Pan
et al. [30] and Table 2 are referred.

3.5.2. General Penalty Framework for a Bilevel Selection
Method. For a bilevel selection process, Breheny & Huang

[31] presented a general framework of the penalty functions
used, which is

𝑓𝑜(
𝐾𝑗∑
𝑘=1

𝑓𝐼 (𝛽𝑗,𝑘)) (2)

where the subscript j, k represents gene k (k=1,2,. . .Kj,
where Kj is the size of gene set j) inside group j (j=1,2,. . .J,
where J is the number of gene sets under consideration). In
this formula, an outer penalty function fo, e.g., the bridge
penalty, is applied to a sum of inner penalties fI, e.g., the
LASSO. The outer penalty regularizes the coefficients of all
genes within the specific get sets while the inner penalty
function penalizes on the coefficients before individual genes.
Table 3 summarizes those penalty terms commonly used in a
simultaneous bilevel selection process.

After searching in the literature, it is found that pathway-
guided gene selection methods have been widely applied in
cancer studies. Specifically, a pathway-guided gene selection
algorithm may cast some insight on identifying diagnostic
gene signatures capable of distinguishing cancer patients
from normal controls; different subtypes of a specific cancer;
or histologic stages, or identifying prognostic signatures that
predict the survival time of cancer patients. By searching
in the PubMed using the keywords of feature selection,
pathway/network, gene expression, and cancer and then
inspecting their relevance, we found roughly 40 articles
which utilize pathway-guided gene selection algorithms to
study a variety of cancers. Figure 5 provides the statistics
of these articles by stratifying them according to the cancer
types under study. From this figure, it is observed that the
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Figure 3: Graphical illustration of the weighting methods.

most frequently studied cancer types are breast cancer, e.g.,
the studies by [23, 26, 28, 29, 32–35] and lung cancer, e.g., the
studies by [16, 20, 33, 36–40].

Among these studies, the penalty method is the most
prevalent method, being followed by the stepwise forward
method. This observation provides evidence to support our
statement that the strategy of a penalized regression model
to select relevant genes has gained increasing attention
and the weighting methods have been underutilized com-
pared to the other two categories. Given there are several
public repositories such as The Cancer Genome of Atlas
(TCGA: https://portal.gdc.cancer.gov/), the Gene Expression
Omnibus (GEO: https://www.ncbi.nlm.nih.gov/), and Array
Express [41], we believe more investigation will boom to
utilize pathway-guided gene selectionmethods to study other
cancer types and other complex diseases.

4. Pathway Information

4.1. Topology or Grouping Information. As we mentioned
in the early section, different algorithms may account for
different pathway knowledge. For examples, some algorithms
consider pathway topology information (e.g., which genes
are connected to which genes) whereas some ignore it.
In the methods that omit topology information, genes are
grouped into many gene sets and only the groupmembership

of genes is considered. From the perspective of weighting,
the methods using grouping information weigh every gene
inside a specific pathway equally while the first type of
methods may prioritize the genes with high connectivity
level. Based on whether topology information is considered,
a pathway-guided gene selection method can be divided into
either a functional score based method or a topology-based
method. In a functional score based method such as [10, 18],
only the grouping membership of genes is considered to
generate an evaluation score, with an implicit assumption
that all genes inside a specific pathway coregulate/cofunction
together. In contrast, in a topology-basedmethod such as [28]
more structured pathway knowledge rather than grouping
information is considered.

4.2. Data-Driven versus Canonical Pathways. Several studies,
e.g., [42, 43], have concluded that pathway-guided gene selec-
tion does not outperform classic gene-based feature selection
methods in terms of predictive accuracy. This inferiority may
be explained by the fact that the pathway knowledge retrieved
from those canonical pathway databases/knowledge-bases
such as the Kyoto Encyclopedia of Gene and Genomes
(KEGG) [44], Gene Ontology (GO) [45], and Reactome
[46] conveys no or limited meaningful information for a
specific dataset or condition/disease. In contrast, the path-
ways constructed in a “data-driven” way may be more

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
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Figure 5: Statistics for pathway-guided gene selection methods in cancer studies. A literature search was conducted in the PubMed using
keywords of feature selection, gene expression, pathway/network, and cancer. The number of relevant articles stratified by the cancer types
under study is given on the top of those bars.

informative for the diseases under investigation and thus be
preferred over the canonical pathways. Here, “data-driven”
means that specific data of a specific condition/disease are
used to build up pathways [47, 48]. The construction for
those data-driven pathways is usually accomplished with the
aids of a coexpression module detection technique, e.g., the
Weighted Gene Coexpression Network Analysis (WGCNA)
[49] and Algorithm for the Reconstruction of Accurate Cel-
lular Network (ARACNE) [50]. Also, there exist some elegant
algorithms, e.g., [51, 52], that are able to figure out grouping
structures and carry out feature selection simultaneously. No
matter which strategy it takes, in the “data-driven” pathway
construction pathway structure is inferred from data.

On the other hand, data-driven pathways provide no
information about causality given they cannot determine
genes’ positions in the whole network and thus cannot
distinguish the regulatory/upstream genes apart from the
regulated/downstream genes [61]. In addition, different form
the static representations of the biological pathways, say,
protein-to-protein interaction, metabolic networks, or sig-
naling networks curated in those canonical databases, these
data-driven pathways vary from data to data and thus may
be subject to random noises and difficult to be interpretable
from a biological point of view [62]. Finally, the resulting
models by using data-driven pathways may be subject to
overfitting since the build-up of coexpression/coregulation
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Table 1: A selective review of pathway-guided gene selection algorithms.

Reference Brief description of the proposed method and its characteristics Category

Zhu et al. [26]

The proposed network-based SVMmethod combines the
network-constrained penalty (see equation (1)) with a SVMmodel to

carry out feature selection and classification.
It makes SVM models capable of carrying out feature selection; the
network-constrained penalty gives heavier weights to genes with

more direct neighbors (thus increases the chance of such genes being
selected) and encourages a grouping effect. But the method only deals

with binary classification and considers immediate neighbors.

Penalty

Chen et al. [28]

The netSVMmethod also combines the network-constrained penalty
(see equation (1)) with a SVM model.

Its advantages and disadvantages are similar to the network-based
SVMmethod by Zhu et al [26] (see above)

Penalty

Sokolov et al.
[29]

The generalized elastic net penalty function is given and combined
with an objective function to select important genes. This is named as

the GELnet method.
The authors claimed that this penalty function includes many

well-known penalty terms and the method is so flexible that it can
deal with many outcome types. There is an independent R package

(i.e., gelnet) to implement this method, but now this package can only
conduct binary classification.

Penalty

Zhang et al. [53]

The Net-Cox method adds a network-constrained penalty term to the
corresponding partial likelihood function of a Cox model, aiming to

select important prognostic genes
The Matlab codes are available online, making the implementation of

this method easy. This method only considers direct neighbors.

Penalty

Bandyopadhyay
et al. [32]

After ranking genes in a pathway according to their marginal
classification power, the proposed BPFS method starts from the gene

with the largest power and then adds genes
The authors claimed that this method goes beyond the immediate
neighbors and considers redundant gene elimination. Also, missing
genes in the pathway databases are mapped to the network using a

probabilistic technique. However, the method is hard to comprehend,
and no codes are available.

Stepwise forward

Lee et al. [33]

In each pathway, the method reorders genes according to their
t-scores, and then the subset of genes whose combined expression has

optimal discriminative power called CORGs is identified.
Only the membership of genes is considered. The method is simple

and easy to implement.

Stepwise forward

Razi et al. [34]

The proposed NBCGmethod starts with a seed gene and traverses the
network to find the optimal subset on the basis of Shapley value.

The method uses the concept of Shapley value to take into account the
collective power of the resulting gene subset. The choice of a seed
gene may result in excluding a gene subset with subtle individual

effects but significant concordant effect.

Stepwise forward

Wu et al. [54]

The shortest path method (with well-known genes related to the
disease under study, i.e., gastric cancer as seeds) is used to mine

candidate genes and the combination of random forest +incremental
feature selection is used to obtain the optimal subset.

The proposed method considers topology information of a network.
The use of a wrapper method (RF+IFS) and permutation tests may

slow the method down.

Stepwise forward1

Tian et al. [20]

The weighted-SAMGSR method extends the SAMGSR algorithm by
weighing SAMGS statistics according to genes’ connectivity levels in

the network.
The method considers both the membership information and the
connectivity level, and can handle two-class and multiple-class
classification.The R-codes are available in the supplementary

material. Computing time is a big concern since permutation tests are
needed to calculate p-values of test statistics.

A hybrid of
weighting and

stepwise forward
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Table 1: Continued.

Reference Brief description of the proposed method and its characteristics Category

Johannes et al.
[23]

The RRFE method uses the GeneRank algorithm to alter the ranking
criterion of the SVM-RFE algorithm and selects a subset with the best

discriminative power.
Weighing the coefficients of SVMmodels with their GeneRanks to
increase the probability of a gene with more connected genes being
selected, an independent R package (i.e., pathClass) is provided to

implement this method. The method only considers how many direct
neighbors a gene has and ignores topology information completely.

Weighting

Chan et al. [39]

The wgSVM-SCADmethod weighs the expression values of genes in
a pathway according to their t-values and then uses a penalized SVM

model (with SCAD penalty) to identify relevant genes.
The proposed method only considers membership information and
the weights are only based on the relevance score (i.e., t-values)

instead of pathway information.

Weighting

Tian et al. [16]

Using sign averages of all genes inside a gene set to represent
corresponding gene set, the proposed methods (i.e., one forward
bi-level selection method and one backward bi-level selection

method) filter out insignificant gene sets and insignificant genes in a
specific order.

The sign average metric provides a better representation of a gene set
than mean, median and the first PC. The proposed methods only

consider membership information.

Bi-level selection

Lim andWong
[19]

In both FSNet and PFSNet methods, a fuzzy value is assigned to each
gene for each sample and then majority voting is used to determine

important genes.
The codes are available online. The proposed methods only consider

the gene grouping membership information.

Bi-level selection

Note: Bilevel selection algorithms are regarded as a special case of pathway-guided gene selection algorithms.
1Can be loosely categorized into the indicated category (e.g., stepwise forward).

modules and the selection of relevant features are usually
carried out on the same dataset.

Therefore, a through evaluation on which pathways are
used during data analysis is highly desirable, in order tomax-
imize the information extraction and to infer true biological
meaning.

5. Potential Research Area

So far, the feature selection algorithms we have talked are
mainly for cross-sectional data in which data were collected
at a single time point. The number of feature selection
algorithms for longitudinal data in which the subjects were
followed up across time and the corresponding data were
collected at different time points is not comparable to that
of cross-selection data. To name several, the EDGE method
[63, 64], the Generalized Estimating Equation- (GEE-) based
screening procedure by [65], the penalized-GEE method
[66], and the Penalized-GEE with Grid Search (PGS)method
by [67] are included in this small-sized list of longitudinal
feature selection algorithms.

As far as the pathway-based feature selection algorithms
are considered, to the best of our knowledge, one of our exten-
sions to the SAMGSR method [10], the two-level SAMGSR
method, is the only approach that incorporates pathway
information to specifically deal with longitudinal data [68].
In the two-level SAMGSR method, the reduction step of

the SAMGSR algorithm [10] is applied twice hierarchically.
Specifically, the selected gene sets are further reduced to
their respective important components, i.e., genes, and then
the important time points in selected genes are identified
subsequently. Nevertheless, the two-level SAMGSR only
considers the grouping membership information. The results
of several real-world applications where the diseases under
investigation include non-small-cell lung cancer, multiple
sclerosis, and traumatic injury [36, 68, 69] have suggested
the performance improvement for a pathway-guided method
only considering the grouping information over a conven-
tional method may be trivial. In contrast, when a pathway-
based method accounts for extra pathway knowledge such
as the connectivity information among genes and regulation
direction recording which genes regulate which genes, its
performance might be promoted dramatically.

One major finding of our previous studies [68, 70] is that
the gene expression profiles across different time points may
be regarded as a gene set and then some suitable pathway
analysis methods may be adopted to select relevant genes
for longitudinal data. In the light of this, summary scores
at the pathway level such as means, medians [71], the first
principal components (PCs) [72], and the sign averages [17,
73] which average out the signed expression values, with
signs indicating the association directions between genes
and outcome, or more statistically complicated ones like
the pathway deregulation scores (PDS) [74], may be chosen
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Table 3: Penalty terms used in the bilevel selection methods.

Methods Mathematical notation Characteristics

Group LASSO
[58]

General form𝑓𝑜(∑𝐾𝑗𝑘=1 𝑓𝐼(|𝛽𝑗,𝑘|))
See equation (2) for what fo, fI and 𝛽j,k

represent
Outer bridge penalty + inner ridge

penalty

It cannot identify the important genes within the selected gene
sets and thus is actually incapable of bilevel selection and also
heavily shrinks large coefficients (leading to estimate biases for

large coefficients)

Group bridge [59] Outer bridge penalty+ inner LASSO
penalty

It can provide sparse solutions at both pathway and gene levels,
but it is associated with big empirical difficulties since the bridge

penalty is not everywhere differentiable.
Group MCP [31] Outer MCP penalty+ inner MCP penalty Allow coefficients to grow large and groups to remain sparse.

Group exponential
LASSO [18]

Outer exponential penalty + inner
LASSO penalty

A decay parameter controls the degree to which gene selection
is coupled together within gene sets and has several advantages
over the other composite penalty term such as group bridge.

Sparse group
LASSO [60]

𝜆1∑
𝑗

∑
𝑘

𝛽𝑗,𝑘 + 𝜆2 𝐽∑
𝑗=1

𝛽𝑗2
taking the additive format

Convex and thus highly likely to get the global minimum, but
extra care is needed since the group coordinate descent

algorithms cannot be applied.
Note: the general formatting for group LASSO, group bridge, and groupMCPwas given by Breheny &Huang [31]. It is too general to guarantee all combinations
of outer and inner penalties produce sensible models. Thus the second general form was proposed by Huang et al. [59] to address this issue specifically.

to generate pseudo genes as representatives for respective
pathways, and then a longitudinal feature selection process
has been downgraded to a classic feature selection process.

Furthermore, one may be also interested in finding
those monotonically changed genes as the disease progresses,
which may be regarded as a special case of the feature
selection for longitudinal data. The word “monotonic” means
descending or ascending change patterns across time or
stages/grades. To the best of our knowledge, no pathway-
based algorithms have been proposed to tackle this specific
topic. Therefore, more investigation is warranted to explore
if a pathway-guided method is superior to a conventional
method such as [75] in selecting monotonic genes. In sum-
mary, pathway-guided gene selection may play more roles on
identifying potential biomarkers for longitudinal omics data.

6. Conclusions

In this article, we present a review on pathway-based feature
selection algorithms. First, based on to what a feature corre-
sponds, pathway-based feature selection methods are classi-
fied into three categories, pathway-level selection methods,
bilevel selectionmethods, and pathway-guided gene selection
methods. By focusing on the selection of individual genes
where pathway information is incorporated as a prior to guide
feature selection, pathway-guided gene selection methods
were reviewed and discussed in detail. Additionally, given the
importance of penalization in the process of feature selection,
the commonly used penalty functions in a pathway-guided
gene selection method were reviewed. Last, we point out
one potential research area in which pathway-guided gene
selection deserves more attention, namely, longitudinal gene
expression data analysis.

We believe this review provides valuable insights for
computational biologists/biostatisticians and stimulates them
to develop more elegant pathway-guided gene selection
algorithms. The development and wide application of such
algorithms to reveal underlying pattern, elucidate the etiology

and progression of complex diseases, and guide more “per-
sonalized” treatment strategies will contribute substantially
to make biology more computable.

Conflicts of Interest

No conflicts of interest have been declared.

Authors’ Contributions

Suyan Tian and Chi Wang designed the study. Suyan Tian,
Chi Wang, and Bing Wang wrote the paper. Suyan Tian
and Chi Wang participated in the critical reviewing of the
manuscript. All authors reviewed and approved the final
manuscript.

Acknowledgments

This study was supported by a fund (no. 31401123) from the
Natural Science Foundation of China.

References

[1] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
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of pathway knowledge into a reweighted recursive feature
elimination approach for risk stratification of cancer patients,”
Bioinformatics, vol. 26, no. 17, pp. 2136–2144, 2010.

[24] J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert,
“GeneRank: Using search engine technology for the analysis
of microarray experiments,” BMC Bioinformatics, vol. 6, p. 233,
2005.

[25] A. Zhang and S. Tian, “Classification of early-stage non–small
cell lung cancer by weighing gene expression profiles with
connectivity information,”Biometrical Journal, vol. 60, no. 3, pp.
537–546, 2018.

[26] Y. Zhu, X. Shen, and W. Pan, “Network-based support vector
machine for classification of microarray samples,” BMC Bioin-
formatics, vol. 10, Suppl I, p. S21, 2009.

[27] C. Li and H. Li, “Network-constrained regularization and
variable selection for analysis of genomic data,” Bioinformatics,
vol. 24, no. 9, pp. 1175–1182, 2008.

[28] L. Chen, J. Xuan, R. B. Riggins, R. Clarke, and Y. Wang,
“Identifying cancer biomarkers by network-constrained sup-
port vector machines,” BMC Systems Biology, vol. 5, p. 161, 2011.

[29] A. Sokolov, D. E. Carlin, E. O. Paull, R. Baertsch, and J. M.
Stuart, “Pathway-based genomics prediction using generalized
elastic net,” PLoS Computational Biology, vol. 12, no. 3, pp. 1–23,
2016.

[30] W. Pan, B. Xie, and X. Shen, “Incorporating predictor network
in penalized regression with application to microarray data,”
Biometrics, vol. 66, no. 2, pp. 474–484, 2010.

[31] P. Breheny and J. Huang, “Penalized methods for bi-level
variable selection,” Statistics and Its Interface, vol. 2, no. 3, pp.
369–380, 2010.

[32] N. Bandyopadhyay, T. Kahveci, S. Goodison, Y. Sun, and S.
Ranka, “Pathway-based feature selection algorithm for cancer
microarray data,” Advances in Bioinformatics, vol. 2009, Article
ID 532989, 16 pages, 2009.

[33] E. Lee,H.-Y. Chuang, J.-W.Kim, T. Ideker, andD. Lee, “Inferring
pathway activity toward precise disease classification,” PLoS
Computational Biology, vol. 4, Article ID e1000217, 2008.

[34] A. Razi, F. Afghah, S. Singh, and V. Varadan, “Network-based
enriched gene subnetwork identification?: a game-theoretic
approach,” Biomedical Engineering and Computational Biology,
vol. 7, pp. 1–14, 2016.

[35] Q. Zhang, J. Li, D. Wang, and Y. Wang, “Finding disagreement
pathway signatures and constructing an ensemble model for
cancer classification,” Scientific Reports, pp. 1–11, 2017.

[36] L. Zhang, L. Wang, B. Du, T. Wang, P. Tian, and S. Tian,
“Classification of non-small cell lung cancer using significance
analysis of microarray-gene set reduction algorithm,” BioMed
Research International, vol. 2016, Article ID 2491671, 8 pages,
2016.

[37] N. Doungpan, W. Engchuan, J. H. Chan, and A. Meechai,
“GSNFS: Gene subnetwork biomarker identification of lung
cancer expression data,” BMC Medical Genomics, vol. 9, 2016.

[38] W. Engchuan, A. Meechai, S. Tongsima, N. Doungpan, and
J. H. Chan, “Gene-set activity toolbox (GAT): a platform for
microarray-based cancer diagnosis using an integrative gene-
set analysis approach,” Journal of Bioinformatics and Computa-
tional Biology, Article ID 1650015, 2016.

[39] W. H. Chan, M. S. Mohamad, S. Deris et al., “Identification of
informative genes and pathways using an improved penalized
support vector machine with a weighting scheme,” Computers
in Biology and Medicine, vol. 77, pp. 102–115, 2016.

[40] C. Li, X. Li, andY.Miao, “SubpathwayMiner: a software package
for flexible identification of pathways,” Nucleic Acids Research,
vol. 37, 2009.



12 BioMed Research International

[41] H. Parkinson, U. Sarkans, N. Kolesnikov et al., “Arrayex-
press update-An archive of microarray and high-throughput
sequencing-based functional genomics experiments,” Nucleic
Acids Research, vol. 39, no. 1, pp. D1002–D1004, 2011.
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