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Abstract.—There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep
evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom:
the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets (∼45,000–400,000 characters in size
with ∼15–100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data
sets (∼15–275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help
stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their “equivalent”
under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that
genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2–10×
in both likelihood and parsimony can in some cases “flip” which phylum is inferred to be the SOM. This typically results
in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater
taxon sampling improves phylogenetic stability, with some of the larger molecular data sets (>200,000 characters and up to
∼100 taxa) showing node stability even with �100× upweighting of morphological data. Accordingly, our analyses have
three strong messages. 1) The assumption that genomic data will automatically “swamp out” morphological data is not
always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even
when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We
here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon
sampling is increased. 3) The patterns of “flipping points” (i.e., the weighting of morphological data it takes to change the
inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way
to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology;
Phylogenomics; Weighting.]

As the first phylogenetic DNA sequence studies became
available in the late 1980’s, integrating the new molecular
data with the existing morphological data sets was
highly debated (Hillis 1987; Kluge 1989). The comparison
of the two types of data was not straightforward
then (Baker et al. 1998; Zrzavý 1998; Lee 2001; Jenner
2003, 2004; Wortley and Scotland 2006) and remains
elusive to the present (Scholtz 2010; Lee and Palci 2015;
Pyron 2015; Wanninger 2015; Goloboff et al. 2019). Early
studies empirically examined the relative contribution
of molecular and morphological data to phylogenetic
inference (Baker et al. 1998; Zrzavý 1998; Wortley and
Scotland 2006; Cotton and Wilkinson 2008; Lee and Palci
2015); all found that morphology had an equal, if not
stronger, impact when the number of characters for the
two kinds of data were within an order of magnitude
of each other. Prior to the phylogenomic revolution,
the number of molecular characters was typically no
more than 10 times the number of morphological
characters. Giribet (2010) suggested that as more and
more genomic level data are available, morphological
data might become less dominant within combined data
sets. And indeed, some systematists have expanded this
thought, and explicitly conjectured that phylogenomic
data will swamp inferences from morphology. This
conjecture has since become a common assumption of

phylogenomics (Lee and Palci 2015; Wanninger 2015).
Most of the time, phylogenomicists simply ignore
morphological characters. While there may be many
reasons for this—including the mere difficulty of
generating morphological data—this can oftentimes be
attributed to the swamping assumption. The purpose of
this article is to assess the interaction of genomic and
morphological information and to test what we shall
call “genomic swamping” in an important phylogenetic
system. To our knowledge, this exploration has not been
accomplished for any large phylogenomic data sets.

There are several ways we conceive of testing this
hypothesis. First, and most intuitive, is to simply
concatenate the existing morphological data with the
largest phylogenomic data sets. This would result
in combining data sets with differing numbers of
taxa. Secondly, to increase comparability, exemplar
approaches can be applied. This means that the larger
matrices are subsampled to create data sets with
consistently limited taxon numbers. Early publications
using single or small numbers of genes came to
conflicting conclusions about exemplar approaches
(Rosenberg and Kumar 2001; Pollock et al. 2002; Zwickl
and Hillis 2002; Rokas and Carroll 2005) and the
more recent phylogenomic literature is also somewhat
equivocal as to the impact of exemplar approaches
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(Nabhan and Sarkar 2012; Pyron 2015; Soares and
Schrago 2015; Streicher et al. 2016; Bleidorn 2017; Shen
et al. 2017; Folk et al. 2018; Tamashiro et al. 2019). The
major problem with the exemplar approach is that it
has the potential to enhance long-branch attraction,
a well-known confounder of phylogenetic inference
(Felsenstein 1978; Bergsten 2005; Philippe et al. 2005).
However, one of the main themes of the more recent
phylogenomic analyses relevant to taxon usage indicates
that data type and data modeling are more important
factors than taxon choice (Reddy et al. 2017; Dornburg
et al. 2019). In addition to increased comparability,
another benefit of the exemplar approach is that it allows
us to quantify the well-known positive effect of improved
taxon sampling—keeping in mind that even the largest
data sets available are far from “complete.” Thus, we
created exemplar data sets with the taxon numbers
consistently limited to 6 and 11 for all data sets (see
Materials and Methods section).

In this communication we use a well-studied, yet
unresolved question in the tree of life to explore these
important issues in phylogenomic analyses. We focus on
the sister group of all other extant Metazoa (SOM), which
has been hotly debated and intensively researched for
well over a century. There are only five major lineages
that could be considered the SOM: Bilateria, Cnidaria,
Ctenophora, Placozoa, or Porifera, allowing for 105
possible bifurcating trees. As pointed out by Schierwater
et al. (2009), a large number of these topologies have
appeared in publications. The hypothesis of Porifera
as the SOM has prevailed since early morphological
studies and into the beginning of the DNA sequence era
(Field et al. 1988; Schram 1991; Backeljau 1993; Zrzavý
1998; Philippe et al. 2009). With the advent of medium-
sized phylogenetic molecular data in the first decade
of the 21st Century, Placozoa gained momentum as
being inferred as the most likely SOM (Dellaporta et al.
2006; Signorovitch et al. 2007). As phylogenomics came
into play in the early 2000s, the hypotheses switched to
primarily Porifera or Ctenophora inferred as the most
probable SOM (Rokas et al. 2003; Rokas and Carroll 2005;
Dunn et al. 2008; Srivastava et al. 2008; Pick et al. 2010;
Nesnidal et al. 2013; Ryan et al. 2013; Moroz et al. 2014;
Whelan et al. 2015; Shen et al. 2017; Laumer et al. 2018).
The reasons for this disparity in hypotheses are surely
varied and include sequence length differences, taxon
sampling, and model application, among others.

Several studies have discussed the ramifications of
both Porifera and Ctenophora inferred as the SOM,
and it is clear that the evolution of some of the
most fundamental morphological traits in animals is at
stake—neural tissue, muscle cells, and mesoderm, to
name a few (see Nielsen 2019 for a recent review). For
instance, if ctenophores are inferred as the SOM, then the
nervous tissue and neural systems most likely evolved
twice, although an equally parsimonious scenario would
involve two independent losses of a nervous system, one
in Porifera and one in Placozoa. If Porifera is inferred as
the SOM, then the neural tissue and the nervous system
almost surely evolved only once. The latter hypothesis

is more intuitive and parsimonious than the former.
However, arguments as to the ease with which neural
tissue and nervous systems can arise (i.e., from the neural
genomic toolbox that the last common ancestor of all
metazoans seems to have possessed) have also been
proffered (Moroz et al. 2006; Moroz 2009, 2015). While
these scenarios, which are based on one of the most
complex and derived characters in animal architecture,
seem to be very attractive, these might not be the most
logical ones to discuss in the context of the first metazoan
animals. The presence of very basic characters, like a
basal membrane or an extracellular matrix, could be
argued to be more relevant in terms of evolution. If such
basic characters were examined, then Placozoa probably
would be inferred as the SOM in most parsimony based
scenarios (See Schierwater et al. 2009).

In the context of likelihood (and Bayesian) analyses,
the choice of the applied models will often play a
major role in methodological discussions (Yang et al.
1994; Lewis 2001a; Fan et al. 2011; Xie et al. 2011;
Brown 2014; Duchêne et al. 2017; Oaks et al. 2019;
Stamatakis 2019). It has recently been argued, though,
that researchers can simply use the most parameter-
rich model, that is, GTR+I+G (Abadi et al. 2019). Either
way, discussions about integrating morphology and
molecules in phylogenetic analysis often times boil down
to character weighting of the two partitions, a subject
that has been (Wheeler 1986; Goloboff 1993; Chippindale
and Wiens 1994) and remains controversial (Goloboff
et al. 2008; Simmons and Goloboff 2013; Mirande
2016; Schierwater et al. 2016; Mirande 2019). The only
approach to “even out” a swamping effect that molecular
characters might have over morphological characters in a
combined analysis is weighting (Giribet 2010). Character
weighting in simultaneous analysis of morphology and
molecules is complicated by the methods that are used
to collect the character information and also by the
differences in the very nature of morphological versus
sequence data.

It appears to us that systematists largely follow
opposing trends: In molecular systematics, the data will
often influence the way that characters are analyzed
(through choosing appropriate models in likelihood
and Bayesian approaches); whereas in morphological
systematics, the method of analysis (parsimony) often
seems to influence the scoring of characters. This
seems to be related to fundamental differences in the
two data types. Morphological characters are based
on a researcher’s qualitative interpretation of complex
phenotypic traits and on a subjective understanding
of the morphology of the organisms being studied
(Farris 1983). Molecular data, on the other hand—
and phylogenomic data in particular—are to a higher
extent a mixture of data with different characteristics:
uninformative and informative sites, variant and
invariant sites, and sites that are consistent and
inconsistent with each other. Morphological data can
also have these mixed features, but are typically highly
curated. Our Tables 1 and 2 exemplify this trend: Even
though the focus of most of the morphological data sets
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TABLE 1. Molecular data sets and individual analyses.

#Taxa #All Ch #PI Ch #PI Ch #PI Ch SOM SOM SOM SOM
Study “Full” “Full” “Full” 11 taxa 6 taxa par6 ML6 par11 ML11 Original

Ch1 77 51,940 35,010 19,655 8681 CT CT CT CT CT
Ch2 77 51,940 23,144 10,871 5058 CT CT CT CT CT
Ch3 77 51,940 23,950 11,303 5228 CT CT CT CT CT
Ch4 77 51,940 26,353 12,935 6822 CT CT CT CT CT
RyE 61 88,384 52,793 31,988 13,168 CT CT CT CT CT
RyG 15 104,840 54,142 54,911 18,215 CT CT CT CT CT
Si1 90 102,464 89,636 39,775 16,776 CT CT CT CT PO
Si2 90 268,032 219,632 95,825 34,477 CT CT CT CT PO
Si3 97 401,632 310,886 144,147 47,803 CT CT CT CT PO
Wh1 70 46,542 36,525 17,247 4122 CT CT CT CT CT
Wh2 70 46,537 28,022 12,743 3615 CT CT CT CT CT
Wh3 70 46,542 30,598 13,661 4112 CT CT CT CT CT
Wh4 70 46,542 28,667 12,914 3626 CT CT CT CT CT

A list of the molecular studies used in the present communication, including data set sizes and phylogenetically informative characters. The
three letter code in the “Study” column is used throughout the article to refer to these studies. Ry prefix = Ryan et al. 2013; RyG = Genomic,
RyE = EST, Si prefix = Simion et al. 2017; Wh prefix = Whelan et al. 2015; Ch prefix = Chang et al. 2015. # Taxa “Full”, # All Ch “full”, # PI Ch
represent the number of taxa in the original analysis and our “full” analyses, the total number of characters in the original analysis across the
entire tree, and number of Phylogenetically Informative (PI) characters for the SOM node, respectively. SOM = sister of all other Metazoa; PO
= Porifera inferred as the SOM; CT = Ctenophora inferred as the SOM. Par = “unweighted” parsimony, par6 and par11 refer to our parsimony
analyses with N =6 and 11; ML = maximum likelihood under WAG model, ML6 and ML11 refer to our likelihood analyses with N =6 and 11.
Original refers to the results reported in the original publications for “full” taxon representation.

TABLE 2. Morphological data sets and individual analyses.

#Taxa All Ch PI Ch PI Ch PI Ch SOM SOM SOM SOM Original Original
Study “Full” “Full” “Full” 11 taxa 6 taxa par6 par11 ML6 ML11 Morpho Com Focus

Sch 9 17 13 17 13 PL PL PL PL PL PL A
Eer 40 138 130 33 21 PO PO PO PO PO PO B
Gle 58 94 94 24 14 PO PO PO PO PO PO C
Zrz 56 276 252 72 20 PO PO PO PO PO PO D
Bru 35 96 50 25 11 PO PO PO PO PO NA D
Bak 38 78 62 16 9 PL PL PL PL PL NA D
Com 11 62 61 61 52 PL PL PO PL NA NA NA
PO1 11 29 29 29 24 PO PO PO PO NA NA NA
PL1 11 27 27 27 22 PL PL PL PL NA NA NA

A list of the morphological studies used in the present communication, including data set sizes and phylogenetically informative characters.
We also include three morphological matrices we constructed as described in the text (Com, PO1, and PL1). Abbreviated names for these data
sets are as follows: Sch = Schierwater et al. (2009); Eer = Peterson and Eernisse (2001); Gle = Glenner et al. (2004); Zrz = Zrzavý (1998); Bru
= Brusca and Brusca (2003); Bak = Backeljau (1993); Com = combined morphological data; PO1 = Porifera synapomorphies; PL1 = Placozoa
synapomorphies; # Taxa “Full”, # All Ch “Full”, # PI Ch represent the number of taxa in the original analysis and our “full” analyses, total
number of characters in original analysis across the entire tree, and number of phylogenetically informative (PI) characters for the SOM node,
respectively. SOM = sister of all other Metazoa; PL = Placozoa inferred as the SOM; PO = Porifera inferred as the SOM. Par = “unweighted”
parsimony, par6 and par11 refer to our parsimony analyses with N =6 and 11; ML = maximum likelihood under Mk model, ML6 and ML11
refer to our likelihood analyses with N =6 and 11. Original Morpho refers to the results reported in the original publications and Original Com
refers to combined molecular and morphological analyses as reported in the original publications. Focus refers to the phylogenetic question
addressed in the original papers, where A = direct test of the SOM, B = overall metazoan analysis compared to 18S rDNA, C = overall metazoan
analysis using Bayesian methods, and D = overall metazoan analysis to understand metazoan groupings. NA indicates that the category is not
applicable to that data set.

we used was not on the SOM question itself, the numbers
of phylogenetically informative characters (those with
at least two different character states on two sides of
the SOM node) are generally very close to the total of
characters in the data sets. On average, the molecular
data sets include higher percentages of uninformative
sites for this very deep evolutionary question than the
morphological matrices (∼30% for molecular and ∼10%
for morphological matrices, see Tables 1 and 2).

Another obvious difference between morphology and
molecular sequence data is that it is easier to visualize
molecular characters as equivalent elements because of

the nature of nucleic acid and amino acid sequences;
one site equals one genetic character. Morphological
traits, on the other hand, differ vastly in how much
genetic information is needed for them to be expressed:
Some morphological characters can be coded for by only
a single locus or a few loci. For example, coat color
in mice (Zahn 2019) and flower color (Bradley et al.
2017) describe very simple genetic architecture with one
single genetic locus each, while other traits depend on
interactions of tens or even hundreds of genes scattered
throughout the genomes of the organisms being studied.
For the example of human height, only 20% of the trait
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is explained by around 700 variants in over 400 loci,
suggesting that even more loci are involved (Marouli
et al. 2017). In a way, this makes weighting a bigger issue
with morphology than with the more uniform molecular
data, and ultimately renders comparisons between the
two challenging. No objective reasoning for weighting
has been given with respect to morphology versus
molecules based on genetic architecture of the traits
used, which is why methods such as implied weighting
have been developed that apply weights a posteriori,
based on features of the output of phylogenetic analysis
(Farris 1969; Goloboff 1993; Goloboff et al. 2008; Goloboff
2014). While it somewhat depends on the taxonomic
scope of a given study, it is safe to say that morphologists
generally prefer complex traits over simple ones like
flower color. Some degree of subjective weighting, then,
has already been applied to the morphological character
partitions.

In order to explore the impact of morphological data
on overall phylogenetic hypotheses for the SOM, we
examine the stability of phylogenomic hypotheses when
combined with morphological data. We use differential
weighting of morphological characters as a means to
explore the morphology/molecular interaction space.
We reason that the impact of morphology is significant
in cases where relatively small weights applied to
morphological characters can alter a phylogenetic
hypothesis. If larger weights are needed to alter a
phylogenetic hypothesis, then we interpret the genomic
swamping phenomenon to be the dominant factor. The
purpose of this study is not to determine what weights to
use in combined analyses. Instead, we assess the relative
influence of the two data types and aim to gain some
perspective on the weighting space.

MATERIALS AND METHODS

Molecular Data Matrices: Table 1 lists the 13 mole-
cular data sets we analyzed and Supplementary File S1
available on Dryad at http://dx.doi.org/10.5061/dryad
.prr4xgxhf contains all the molecular matrices we used.
Table 1 shows the molecular data sets from four of the
largest recent phylogenomic studies that address the
SOM question directly (Ryan et al. 2013; Chang et al.
2015; Whelan et al. 2015; Simion et al. 2017). Each of
these four studies presented multiple data sets for their
analyses. We chose 13 matrices to span the four different
studies, to cover a broad range of taxon numbers (from
15 to 97 for the “full” matrices), and to include a range
of character set sizes (from ∼40k to 400k molecular
characters). Ryan et al. (2013) presented both a whole
genome data set (RyG; 15 taxa, 20% missing data) and a
partial genomic EST data set covering more taxa (RyE;
61 taxa, 65% missing data). Whelan et al. (2015) present
over 20 data sets of which we use one (Wh1), along with
three that were recorded in Feuda et al. (2017: Wh2,
Wh3, and Wh4). All four of these matrices have the

same taxon sampling of 70 taxa, and ca. 46,500 characters
(See Supplementary File S1 available on Dryad). They
differ in the way the amino acid positions were coded,
using three common methods of reducing the amino acid
states based on biochemical properties to optimize data
sets for phylogenetics: the alphabet reduction methods
Dayhoff-6 (Wh2; Dayhoff et al. 1978), S&R-6 (Wh4; Susko
and Roger 2007), and KGB-6 (Wh3; Kosiol et al. 2004).
Chang et al. (2015) also present multiple data sets of
which we use one here (Ch1), as well as three recoded
from Feuda et al. (2017). All four of these data sets
have the same taxon representation (N =77), and the
same number of characters (51,940), but also differ in
the way the amino acids are coded: 20 amino acid code
(Ch1), Dayhoff-6 (Ch2), S&R-6 (Ch3), and KGB-6 (Ch4).
Simion et al. (2017) presented four data sets of which
we use three in this study: Si1, Si2, and Si3. Si3 is the
complete supermatrix of 401,632 amino acid positions for
97 species; Si1 and Si2 are both limited to 90 species to
test the impact of removing poriferan clades. In addition,
Si1 and Si3 include raw amino acid sequences while
Si2 includes the amino acids recoded in the Dayhoff 6-
states alphabet (Dayhoff et al. 1978). See the Readme.txt
in Supplementary File S1 available on Dryad for the links
the matrices were downloaded from.

Exemplar Approach for Phylogenomic Data Sets: The
simplest way to evaluate the interaction between
morphological and phylogenomic characters is
to concatenate the available morphological and
phylogenomic data. The published phylogenomic data
sets tend to include more taxa (usually N >70 with
maximum N =97) than the morphological matrices
(minimum N =9, maximum N =58). We explore the
use of exemplar approaches to increase comparability.
With five relevant ingroup taxa (Bilateria, Cnidaria,
Ctenophora, Porifera, and Placozoa) and an outgroup
(Choanoflagellata), this leads to the simplest exemplar
approach having six taxa. Doubling this number where
possible, we also created 11-taxon data sets with two
representatives each for Porifera, Ctenophora, Cnidaria,
Bilateria, and outgroups (one choanoflagellate and one
fungus), and one placozoan representative (Placozoa
for most published phylogenomic data sets before 2017
has a single representative). We were consistent about
the taxa used; specifically, the six-taxon data sets are
subsets of the 11-taxon data sets, and the 11-taxon data
sets are subsets of the “full” data sets. In this way we
generated 26 exemplar molecular data sets of the 13
from the literature, for a total of 39 molecular data sets
for our analyses (Table 1).

Morphological Data Matrices: Table 2 shows the data
sets from six morphological treatments of metazoan
phylogeny that addressed the SOM question (Backeljau
1993; Zrzavý 1998; Peterson and Eernisse 2001; Brusca
and Brusca 2003; Glenner et al. 2004; Schierwater
et al. 2009—these data sets are reproduced in
Supplementary File S2 available on Dryad). Only one
of the morphological studies focused on addressing the
SOM question directly (Schierwater et al. 2009). The

http://dx.doi.org/10.5061/dryad.prr4xgxhf
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focus of all six morphological data sets is listed in Table 2.
Please note that almost all morphological and molecular
data sets include characters that are not phylogenetically
informative for the SOM node, where none of the five
groups (Placozoa, Porifera, Ctenophora, Cnidaria, and
Bilateria) are distinguishable from the others through
the presence of a different state. Since the data sets
have overlapping character information, we also created
a combined morphological data matrix (Com) with 62
characters, where we removed redundant characters
across the six studies (see collated character list in
Supplementary File S2 available on Dryad). Focusing
on the SOM node only, we then removed one of these
characters that provides no phylogenetic information for
the SOM node, the same way we did with all the data
sets from the literature (see Tables 1 and 2). Some of the
morphological data sets we used contradict each other in
terms of the phylogeny they support. Therefore, we also
wanted to explore the impact of matrices made up of only
those characters that are diagnostic for the alternative
hypotheses that place either Placozoa or Porifera as the
inferred SOM. Of the 61 phylogenetically informative
characters in the Com data matrix there are only two that
unambiguously support the inference of Ctenophora
as the SOM, 27 support the inference of Placozoa as
the SOM and 29 support the inference of Porifera as
the SOM (all with Consistency Indices [CI] of 1.0). We
then used these characters to create PO1 for Porifera
and PL1 for Placozoa (which share 21 characters), yet
did not create a separate dataset for the two characters
that support Ctenophora inferred as the SOM. So,
we restructured the published morphological matrices
in three novel ways: PL1 contains all morphological
characters that support Placozoa as the inferred SOM,
PO1 contains all morphological characters that support
Porifera as the inferred SOM, and Com contains
all nonredundant morphological characters that are
phylogenetically informative for the SOM node in total.
Supplementary File S2 available on Dryad also lists the
morphological characters in these reduced partitions.

Exemplar Approach for Morphological Data Sets: As with
the phylogenomic data, for morphology we created
subdata sets with six taxa: one each for Porifera,
Ctenophora, Cnidaria, Bilateria, and Placozoa, as well
as an outgroup (Choanoflagellata). We also double the
number of ingroup and outgroup representatives to
increase the exemplar approach to 11 taxa with two
representatives each for Porifera, Ctenophora, Cnidaria,
Bilateria, and outgroups (one choanoflagellate and one
fungus); a single representative was used for Placozoa.
We were consistent about the taxa that represent the five
ingroups and the outgroups; specifically, the six-taxon
data sets are subsets of the 11-taxon data sets, and the
11-taxon data sets are subsets of the “full” data sets. In
this way we generated 18 exemplar morphological data
sets from the six in the literature and our three combined
matrices, for a total of 27 morphological data sets for our
analyses (Table 2).

Combined matrices: We analyzed all pairwise
combinations of morphological matrices (Sch, Eer,

Gle, Zrz, Bru, Bak, Com, PO1, and PL1) with molecular
matrices (RyG, RyE, Si1, Si2, Si3, Wh1, Wh2, Wh3, Wh4,
Ch1, Ch2, Ch3, and Ch4) for a total of 117 bipartitioned
matrices. Unsurprisingly, not all species could be
matched exactly across the different data sets from the
literature. In those cases, we matched the taxon name
in the morphology matrices with a representative from
the molecular data sets at the lowest taxonomic rank
possible (see Supplementary File S3 available on Dryad
for details). In order to match the higher taxon numbers
of the “full” molecular partitions, in some cases we had
to replicate morphological character state information
(Supplementary File S3 available on Dryad).

Phylogenetic Analysis: We performed both likelihood
and parsimony analyses for all combinations of
molecular and morphological data sets. PAUP (six and
11 taxa data sets; Swofford 2002) and TNT (“full” data
sets; Goloboff et al. 2008) were used to accomplish the
parsimony runs; IQ-TREE (six- and 11-taxon data sets)
and RAxML (“full” data sets) were used to accomplish
the likelihood runs (Stamatakis 2014; Nguyen et al. 2015).
Parsimony searches were exhaustive for the six-taxon
data sets, branch-and-bound for the 11-taxon data sets,
and heuristic (100 random starting additions and TBR
branch swapping) for the “full” data sets. For likelihood,
we used default tree search settings. Bootstrap support
values were obtained using the default settings of each
program with 100 bootstrap replicates for each analysis.

Character weighting: A critical part of this study
is character weighting of the morphological data.
PAUP, RAxML, and TNT have weighting commands
built-in that we used. For likelihood in IQ-TREE, we
multiplied the morphological characters to achieve the
same result. We initially explored the weighting space
with weights of 1, 2, 4, 8, 16, 32, 64, and 128 in
parsimony for the exemplar data sets. These unreported
results indicated that we can halve the number of
analyses while still covering the weighting space
sufficiently by reducing the weights to the following:
1× (i.e., “unweighted”), 2×, 10×, and 100×. For
instance, for the Sch matrix in likelihood, we assembled
four matrices: 1× = 17 characters (i.e., the original
values), 2× = 34 characters, 10×=170 characters, and
100×= 1,700 characters. These weighted partitions were
then combined with the various molecular partitions
described above. For the molecular data, we applied
the following five weighting matrices: PAM250, WAG,
LGM2, and LGX2; and “unweighted” molecular data in
parsimony. In all parsimony analyses, we thus applied
four morphological weights (1×, 2×, 10×, and 100×) to
each of the nine morphological matrices by 13 molecular
matrices, and used five different molecular weighting
schemes for a total of 2,340 analyses for each of two
different data set sizes (N =6, 11), plus one analysis on
the “full” data sets; this sums up to a grand total of 5,148
parsimony analyses.

In all of the likelihood analyses that included
morphology, the Mk model was applied to the
morphological characters only. The Mk model is
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the default k-state generalization of the Jukes–Cantor
model (Lewis 2001b), as described in the IQ-TREE
documentation (Nguyen et al. 2015). There are
well-known problems and controversies surrounding
likelihood models for morphology, and the Mk model
in particular (Puttick et al. 2017; see Goloboff et al.
2019). Consequently, we chose the Mk model, because
it is the simplest likelihood model for morphology, and
it is implemented in the programs we used for our
likelihood trees, IQ-TREE and RAxML. We applied four
morphological weighting schemes (1×, 2×, 10×, and
100×) for each of the nine morphological matrices by
13 molecular matrices. We also varied the amino acid
model that was used in order to explore the impact of
some of the more popular likelihood models on our
inferences. The models we used are CAT, LG+CAT, WAG,
and C10 for a total of 1872 analyses for each of the
exemplar data sets (N =6 and 11), and an additional 468
analyses using the “full” data sets under the C10 model.
This resulted in a grand total 4212 likelihood analyses.
We also explored the dynamics of rescored matrices
from the Si (Si2), Ch (Ch2, Ch3, Ch4), and Wh (Wh2,
Wh3, Wh4) data sets using Dayhoff-6, S&R-6, and KGB-
6 rescoring approaches under maximum likelihood. For
these rescored matrices, we used the profile mixture
model C10 (Quang et al. 2008), which is not available
for parsimony.

It is important to keep in mind that “unweighted”
does not mean the same thing when applying a different
optimality criterion. “Unweighted” parsimony applies
the same weight to all of the characters. The same is not
true for “unweighted” likelihood, as the calculations that
add up all the site log likelihoods to retrieve the overall
likelihood score are dependent on the model choice.
Therefore, even in “unweighted” likelihood, different
characters contribute to the overall result to varying
degrees. All in all, we carried out 9360 tree search
analyses for this study. These matrices were used as
an attempt to examine as wide a range of weighting
schemes as possible and as comparable as possible across
likelihood and parsimony.

RESULTS

Summary of Morphological and Genomic Analyses from the
Literature: Four published genomic studies that directly
address the SOM question were used in the present
analyses (Table 1). The results obtained in the original
papers are discussed briefly below and summarized in
Tables 1 and 2. Ryan et al. (2013) analyzed both EST and
genomic DNA sequence data sets using likelihood and
inferred Ctenophora as the SOM with high bootstrap
support (>95%) in both analyses. Chang et al. (2015)
obtained Ctenophora as the hypothesized SOM with
full bootstrap and Bayesian posterior support (100%
and pp=1.0). Ctenophora was also obtained as the
hypothesized SOM in Whelan et al. (2015) using the Wh1
matrix listed in the present study with ≥97% bootstrap
and full Bayesian posterior support. Simion et al. (2017)

used several matrices in their analysis of which we use
three here: Si1, Si2, and Si3. These three matrices differ
in taxonomic coverage, in the number of amino acid
positions included in the matrices, and in how the amino
acids were coded. All three matrices as analyzed by
Simion et al. (2017) showed Porifera as the SOM with
full bootstrap support for most likelihood models used in
that paper—the only cases in Table 1 where Ctenophora
is not inferred as the SOM. In their reassessment of Wh1
and Ch1, Feuda et al. (2017) rescored these previously
published data sets to conform to different rescored
amino acid rules (see Materials and Methods section).
This recovered Porifera as the inferred SOM in most cases
reported by Feuda et al. (2017)—we did not reproduce
this result in our analyses of the exemplar matrices (N =6
and 11; see Table 1); however, we used a different model.

For morphology, four of the published data sets
placed Porifera as the inferred SOM (Zrzavý 1998;
Peterson and Eernisse 2001; Brusca and Brusca 2003;
Glenner et al. 2004), while two studies (Backeljau 1993;
Schierwater et al. 2009) posited Placozoa as the inferred
SOM (Table 2). Four of the studies combined molecular
information (always 18S rDNA) with morphology
(Zrzavý 1998; Peterson and Eernisse 2001; Glenner et al.
2004; Schierwater et al. 2009), and all combined matrices
produced the same result as the morphological matrices
from each study (i.e. inference of Porifera as the SOM
for Eer, Gle, and Zrz; and Placozoa as the SOM for
Sch).

Individual Morphological and Phylogenomic Analyses:
Reporting on our individual analyses, all of the
molecular matrices in this study, regardless of the
analysis type, always inferred Ctenophora as the SOM
(Table 1), with high bootstrap proportions (>95%) at
the critical node. This pattern includes the three Si
data sets, which in the original publication (Simion
et al. 2017) resulted in Porifera inferred as the SOM.
The reasons for this could be the difference in taxon
sampling and the models we applied. In contrast, none
of the morphological matrices inferred Ctenophora
as the SOM, regardless of the analysis type. Instead,
21 of 36 individual analyses recovered Porifera, and
15 of 36 inferred Placozoa as the SOM with high
bootstrap proportions of >95% (Table 2). This clear
distinction between molecular and morphological data
sets holds regardless of the number of taxa used in the
analysis (N =6, 11, or “full”). Evidently, there are strong
and contrasting phylogenetic inferences derived from
phylogenomic (Table 1) and morphological (Table 2)
data.

Ratios of Phylogenomic to Morphological Characters:
The ratios of informative molecular to morphological
characters are reported in Supplementary File S4
available on Dryad. Even the smallest molecular data
matrices (Wh2: 3615 informative characters for N=6;
Ch2: 10,871 informative characters for N =11; and Ch2:
23,144 informative characters for N =77/“full”) when
compared to the largest morphological matrices (Com:
52 informative morphological characters for N =6; Zrz:
72 informative characters for N =11; and Zrz: 252

http://dx.doi.org/10.5061/dryad.prr4xgxhf


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:51 13/1/2021 Sysbio-OP-SYSB200040.tex] Page: 366 360–375

366 SYSTEMATIC BIOLOGY VOL. 70

FIGURE 1. Molecular topology stability heat maps for the likelihood analyses using combined exemplar molecular (C10)/morphology (Mk)
data sets for six (a, left) and 11 (b, right) taxa. The stability of the molecular topology is greater when the flip from Ctenophora to another SOM
requires a higher weighting of morphological characters.

informative characters for N =56 / “full”) give ratios of
70:1, 151:1, and 92:1, respectively.

The largest ratios result from combining the largest
molecular matrix (always Si3 with 47,803 informative
molecular characters for N =6, 144,147 informative
characters for N =11, and 310,886 informative characters
for N =97/“full”) with the smallest morphological
matrices (Bak = nine informative morphological
characters for N=6, Bak = 16 informative characters
for N =11, and Sch =13 informative characters for
N =9/“full”) and go up to 5311:1, 9009:1, and 23,914:1,
respectively. In other words, each morphological
character in our analyses is combined with 70 to ∼24,000
molecular characters.

Combined Analyses of Small Exemplar Matrices
(N =6 and 11): The results of the combined
morphological/molecular analyses under likelihood
using C10 are given in Figure 1. Likelihood analyses
using other models (WAG, CAT, LG+CAT, WAG,
and C10) are included in Supplementary Figure S1
available on Dryad. With some likelihood models
and data set combinations, the inferred SOM is
flipped from Ctenophora to Porifera or Placozoa at
the lower morphological character weights applied
in this study. Most matrices flip with morphological
character weights of 10×, while some of the Ch and
Wh matrices flip at morphological weights of 2× for
N =6. For C10, 55.5% of the data set combinations
flip by 10× morphological character weight, and the
majority are flipped by 100× weighting. The exceptions
to this rule are the Si2 and Si3 (and in some cases
RyE and RyG) phylogenomic data sets, which are
mostly immune to flipping with weights up to 100×.

The results of the combined morphological/
molecular analyses using the LGX2 amino acid
weighting matrix under parsimony are shown in
Figure 2. Parsimony analyses using other weighting
matrices (PAM250, LGM2, or WAG) as well as analyses
for “unweighted” molecular characters are included
in Supplementary Figure S2 available on Dryad. For
the LGX2 amino acid weighting matrix, flipping the

inferred SOM from Ctenophora to Placozoa or Porifera
in all data set combinations is accomplished with
morphological weights less than 100×, and the grand
majority are flipped with weights less than 10×. In
general, then, it appears that Ctenophora is less stable
as the inferred SOM using parsimony than likelihood,
except when the PAM250 scoring matrix is used in
parsimony (see Supplementary Fig. S2 available on
Dryad). For instance, the Ch matrices get flipped to
Porifera (or Placozoa in some cases) when combined
with most morphological matrices under comparably
low weighting (equal weight or 2× weighting). But
the two larger of the three Si matrices only flip at 10×
weighting or 100× weighting.

“Full” Data Matrices: The larger matrices (“full” taxon
representation) in general show a greater topological
stability than the exemplar data sets, and are only
impacted by adding morphology between 10× and
100× character weighting under both parsimony and
likelihood, in most cases. There are some exceptions,
though, especially under parsimony. Figure 3 compares
the results for the “full” matrices using likelihood
(model = C10) and parsimony (amino acid weighting
matrix = LGX2 scoring matrix). For both parsimony
and likelihood, about 35% of the “full” matrices flip at
morphological weights of 10× or less (81 of 234), and 82%
flip at morphological weights of 100× or less (191 of 234;
Fig. 3). Specifically, the Si2 and Si3 matrices, as well as
the Si1, RyG, and RyE matrices in singular cases, do not
flip until between 10× and 100× morphological weights,
or more. However, Si1 flips when only 1× weighting is
applied to any morphological matrix with the “full” data
sets, and the combined morphological matrix flips all
of the Ch, Wh, and Ry molecular matrices regardless
of optimality criterion. Overall in our “full” analyses,
those molecular data sets with the highest degree of
taxon sampling among them are more resistant to being
flipped through the influence of adding morphological
characters.

Combined Morphological Matrix: There are no reasons
obvious for us to prefer any of the morphological
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FIGURE 2. Molecular topology stability heat maps for the parsimony analyses using combined exemplar molecular (LGX2)/morphology (no
transformation) data sets for six (a, left) and 11 (b, right) taxa. The stability of the molecular topology is greater when the flip from Ctenophora
to another SOM requires a higher weighting of morphological characters.

FIGURE 3. Molecular topology stability heat maps comparing the weights at which the flip from Ctenophora to another SOM occurs for the
“full” taxa data sets for the C10 model with Mk for morphology (a, left, likelihood) and the LGX2 transformation matrix with no transformation
for morphology (b, right, parsimony). The stability of the molecular topology is greater when the flip requires a higher weighting of morphological
characters.

characters used in one study over those of another. The
individual studies from the literature more often show
Porifera as the inferred SOM, but when we combine the
morphological influence of all these studies, we infer
Placozoa as the SOM in all cases except for the likelihood
analysis of the six-taxon data set (see the Com results
in Table 2). Our combined matrix of 61 phylogenetically
informative characters changes the inference for all
molecular matrices in almost all analyses with weighting
below 100 (Fig. 4).

DISCUSSION

Overview: This study gives an idea of how strong
and how consistent the influence from genome-scale
molecular and morphological data can be when
combined. Our results suggest several important ideas
about phylogenetic analysis of difficult to resolve nodes
like the SOM node. First, morphological characters
indeed can have an important role in influencing

phylogenomic data sets, because, contrary to the
prevailing genomic swamping assumption, they
are not always readily overcome by genomic data
for the SOM node. Second, the standard support
measures for maximum parsimony, maximum
likelihood, and Bayesian phylogenetic methods
do not allow a satisfactory interpretation of the
stability of phylogenomic inferences—simple addition
of morphological data can “destabilize” inferred
topologies with maximum support values, at least
after upweighting. Third, taxon sampling is important
in phylogenetic studies as our comparisons of N =6,
11, and “full” matrices show. The more taxa in an
analysis, the harder it is for morphological data to flip
the molecular hypotheses. In this context, our data
can also be seen as a quantification of how strongly
the choices of optimality criterion, molecular model,
and weighting scheme will influence the topological
stability of molecular data sets when combined with
morphology—or vice versa. Our results suggest that
combined analyses may be highly sensible. Morphology
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FIGURE 4. Molecular topology stability heat maps comparing the weights at which the flip from Ctenophora to another SOM occurs when
combined with our three curated morphological matrices Com (our combined matrix), PL1 containing only characters that support Placozoa as
the SOM, and PO1 containing only characters that support Porifera as the SOM (see Materials and Methods section). Shown are our analyses
for six taxa (a), 11 taxa (b), and “full” taxa (c), each for likelihood using the C10 model on the left, and for parsimony using the LGX2 amino acid
transformation matrix on the right. The stability of the molecular topology is greater when the flip requires a higher weighting of morphological
characters.

can be added to molecular data quite easily with
both likelihood and parsimony criteria and can have
a huge impact even under low weighting schemes,
which suggests that it should not be left out without
consideration. Rather, we encourage phylogeneticists
to study morphology in order to go beyond molecular
sequence data but also novel morphological evidence.

Weighting Morphological and Phylogenomic Data:
Weighting characters a priori is usually subjective.
Indeed, many of the morphological characters in this
study had been curated by the morphologists and
exclude characters they may not see as homologous, so
some degree of subjective weighting had already been
applied to these partitions before our current analyses.
We do not aim to lay claim to an objective weighting
scheme in the present study. Instead, our study is the
first exploration of the weighting space for the SOM
question, and our results of when the inferred SOM
“flips” from one taxon to another show informative
patterns across the different data sets. Our analyses
thus allow a new way of comparing the topological
stability of these data sets: The “flipping” patterns show
clear differences to the distribution of character ratios
between morphological and molecular data, in both
the “full” and exemplar analyses (Compare Figs. 1–3
with Supplementary File S4 available on Dyrad)—this
means that the number of characters and the number of
taxa are not all that define the topological stability. We
are therefore tempted to interpret that those molecular
data sets that are more resistant to flipping have fewer
incongruencies than those that flip more readily—and,
thinking in the other direction, those morphological
data sets that flip the same molecular data set with
minimal weight appear to be the most congruent.

Almost all of the molecular matrices—exemplar
and “full”—can be flipped with morphological
weighting between 1× and 100×, under parsimony and
likelihood. In some of our analyses, simple addition of

“unweighted” morphology flips the inferred SOM from
Ctenophora to Porifera or Placozoa. Some data sets,
such as the Ch and Wh data sets, are particularly easy
to flip. Others, such as the Si1, Si2, and Si3 data sets
are more difficult to flip, but nevertheless they can be
with 10× weighting of some morphological matrices.
In general, the molecular topologies are more stable
under likelihood, but can sometimes also be flipped
with less than 10× weighting of morphology on the
exemplar data sets (N =6 and 11) and between 1× and
100× weighting in the “full” data sets.

Ratios of Phylogenetically Informative Characters: We here
aim to contextualize the weighting we carried out by
comparing the ratios of molecular to morphological
characters in our analyses, which seem to provide
both a sense of the magnitude of the range in
weighting schemes we apply here and an idea of how
strong the influence of adding morphological characters
might be. The ratios of phylogenetically informative
molecular to morphological characters range from 70:1
to 23,914:1 (Supplementary File S4 available on Dryad).
That is, each morphological character is outnumbered
between 70 and 24,000 times by molecular characters
in the combined analyses. This suggests that weighting
morphological characters by 10×, for example, may
not be a drastic weighting scheme, particularly when
considering the evolutionary significance and genetic
complexity of morphological features. Even when
the number of phylogenetically informative molecular
characters is up to four orders of magnitude greater
than that of morphological characters, we still see a
flip to what the morphological data suggests after
relatively little weighting. For example, Si3 has over 9000
molecular characters for each morphological character
in Bak, yet weighting the latter 10×−100× will flip the
topology in the exemplar parsimony analyses. Another
example: Si1 has around 7000 molecular characters for
each morphological one in Sch, but adding it with equal
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weighting (1×) flips the topology in the “full” parsimony
analysis. In fact, almost all matrices flip at or below 10×
for the exemplar parsimony approaches (Fig. 2).

In light of these results, we can update Giribet’s
(2010) observation that the contribution of morphology
can be strong when the ratio of morphological
characters to molecular characters is within an order
of magnitude: Morphological characters can retain
strong phylogenetic influence in studies with molecular
character numbers of even up to four orders of
magnitude greater. Unlike the assertion of Giribet
(2010), we only look at a single unstable node,
though, and more stable molecular relationships still
may swamp out conflicting morphologically supported
relationships. However, most of the “important” open
phylogenetic questions are unsolved because of node
instability. Comparable additions of morphological data
to phylogenomic assessments may prove similarly useful
for other disputed relationships, such as those within the
deuterostomes and the Trochozoa.

When thinking about the ratios presented here, it
is also worth mentioning that recent methodological
developments are enabling morphologists to assess
many more characters than more traditional studies
could (Heiss et al. 2013; Tessler et al. 2016; Heiss et al. 2018;
Catalano et al. 2019). This implies that the morphological
data sets used here may leave out characters that new
methods could possibly retrieve in future publications.
A subset of these could be phylogenetically informative
regarding the SOM question and may thus lower
the ratios in the future. Still, it appears certain that
next generation sequencing will continue to provide
molecular character numbers on a scale unreachable
by even the most elaborate quantitative morphological
methods.

It is also important to consider that the variability
of morphological characters can be quite different
from that of molecular characters. Morphologists have
long discussed the differences between characters, for
example, when dental characteristics inform a different
tree topology than nondental morphology, which some
researchers have attributed to selection pressures acting
somewhat independently on the different 3D body parts
(Gaubert et al. 2005; Kivell et al. 2013; Mounce et al.
2016). The way that we often think about a sequence of
molecular characters, on the other hand, is arguably 1D.
This makes them easy to work with computationally, and
it suggests an equivalency. Yet, there are issues around
variability that are unique to molecular characters.
Different parts of the same sequence can evolve at diverse
rates, and mutational saturation effects can cloud the
search for true signal (Brown et al. 1979; Wilke et al.
2009). High among-site variation of substitution rates
can similarly lead to a lower effective evolutionary signal
in a given sequence (Gu et al. 1995; Sullivan et al. 1995;
Hong-Wen and Yun-Xin 2000; Buckley et al. 2001).

When we reflect on the underlying reasons for
molecular variability, where different functional parts
(genes) are subject to quite different evolutionary

pressures, we find that this somewhat mirrors the
case of morphology. In the end, the patterns of
molecular variability emerge from selection working
on morphological phenotypes, and accordingly
morphology influences molecules and vice versa
(Zhang and Yang 2015; Echave et al. 2016). All this
illustrates that to some extent, the ratios depend on
what data sets one uses, and are not without bias.
This being said, we find it significant that when a
few dozen morphological characters are outnumbered
by orders of magnitude, they can often flip even the
most comprehensive genomic topologies in the current
literature.

The Influence of Taxon Number and Optimality Criterion
on Topological Stability: There is a strong impact of taxon
sampling on these analyses, as the molecular inference
of Ctenophora as SOM is more stable in the “full”
matrices relative to the smaller exemplar matrices, and
in the molecular data sets with the most taxa (the Si
matrices). This corroborates the notion that greater taxon
sampling will improve the topological stability of a
phylogeny. It is important to note in this context that
even the “full” matrices that we could access from the
published literature addressing the SOM question by
no means resemble a “complete” taxon sampling. For
example, if these studies had included the million or
more arthropod species rather than one, the numbers
of phylogenetically informative characters might differ
from what we find and report here.

Figure 4 shows the stability of tree topologies when
the underlying molecular data sets are combined with
our curated morphological matrices Com, PO1, and PL1.
When these highly consistent morphological character
matrices (PL1 and PO1) are combined with molecular
data, most of the molecular matrices are flipped between
1× and 10× weighting, whether parsimony or likelihood
is used with the exemplar data sets, and in half of the
“full” analyses. The results of our concatenation study
show just how heavily the inferred answer to the SOM
question depends on the optimality criterion applied,
and on the level of taxon sampling. We interpret this
to mean that we will need to improve taxon sampling
further for both molecular and morphological characters
in order to arrive at a more stable inference.

What is the SOM? The original studies using the
Ryan et al. (2013), Chang et al. (2015), and Whelan
et al. (2015) matrices hypothesized Ctenophora as the
SOM. Feuda et al. (2017) and Simion et al. (2017)
point out that if improved models of compositional
and among-site heterogeneity are incorporated into the
analysis of these data, then Porifera is inferred as the
SOM instead. Specifically, they show that amino acid
recoding (addressing compositional heterogeneity) and
a specific model accommodating site-specific amino
acid preferences (CAT-GTR+G) resulted in rejection of
Ctenophora as the inferred SOM. We show here for small
exemplar data sets (N =6 and 11) that the Whelan et al.
(2015), Ryan et al. (2013), and Chang et al. (2015) data sets
can all similarly be flipped to infer Porifera or Placozoa
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FIGURE 5. The inferred SOM when flipped by combined parsimony analysis using the LGX2 amino acid transformation matrix and weighting
morphology by 1×,2×,10×, or 100×. White indicates that no flip occurred (as in the Si2 and Si3 combined matrices) or that the flip was to
Bilateria (as in the Ch4 matrix). Results for the exemplar taxon sets are shown in a (N =6) and b (N =11), and the results for the “full” taxon data
set are shown in c.

as the SOM by simply adding weighted morphological
data—frequently with less than 10× morphological
weight to molecular weight in both parsimony and
likelihood analyses.

For parsimony, we note that a very simple
transformation matrix (PAM250) does not flip
Ctenophora from being inferred as the SOM very
easily, but increasingly complex transformation
matrices (WAG, LGM2, and LGX2), facilitate flipping
to the morphological inference (Supplementary Fig.
2 available on Dryad). Interestingly, the molecular
topological stability decreases when applying the
simpler transformation matrices (PAM250 and WAG)
when compared to “unweighted” parsimony (i.e.,
without accommodating for substitution saturation and
rate heterogeneity). The more elaborate transformation
matrices LGM2 and LGX2, on the other hand, lead to
increased topological stability for the inference from
molecular data. In general, the topological stability
of the genomic data sets supporting Ctenophora is
greater under likelihood than with parsimony for both
exemplar data sets and the “full” data sets.

We thus report that the addition of morphological
characters to phylogenomic data under certain
weighting schemes infers Porifera as the SOM, shifting
away from the recent preference for Ctenophora as
the inferred SOM (Ryan et al. 2013; Chang et al. 2015;
Whelan et al. 2015). Figure 5 shows the taxon inferred
as the SOM in the LGX2 scoring matrix parsimony
analyses. Under this weighting scheme, the SOM flips to
Porifera in 217 out of 351, or 62%, of analyses (from 58%
for N =“full” to 82% for N =6; Fig. 5). Approximately
27% of the analyses flipped to Placozoa as the inferred
SOM (94 out of 351 analyses; most notably in the
Bak, PL1, and Sch combinations with phylogenomic
matrices). The rest either flipped to Bilateria, or did not
flip away from Ctenophora even after 100× weighting
of morphology. It should be noted that the different
data sets are not fully independent, but share varying
numbers of characters. Accordingly, the percentages of
analyses that flip should be taken with a grain of salt.

We are not aware of any way to test if the
morphological data available for the SOM question

carries “true” signal, or rather indifferent or even
actively misleading noise. If we were to assume that
the morphological traits in the data sets we used
mostly carry high-quality phylogenetic signal, then we
could consider them arbiters of the long standing SOM
question. Then we might conclude that the addition
of morphology pushes Ctenophora out of the inferred
SOM position in the vast majority of weighting and
modeling schemes applied to the matrices in this study,
and mostly inserts Porifera (in ∼62% of our analyses),
or sometimes Placozoa (in ∼27% of our analyses). If
we assumed that the morphological influence mostly
represents misleading noise, then our results would
simply show that the molecular influence is surprisingly
weak. Either way, these results are a reason to be cautious
when solely relying on molecular data to answer the
SOM question. Accordingly, until a proper weighting
scheme is developed, more data are collected, and more
refined analyses are done, this phylogenetic question
remains unresolved.

Are Morphological Characters Worth Adding to Phylo-
genomic Data Sets? Conflicting inferences from different
data types always have and will be an inevitability
in phylogenetic analysis. Early conflicting systems in
phylogenetics did not only include morphological versus
molecular data, but for the most part conflict was drawn
out of comparing different kinds of morphological
data such as soft tissues versus fossilizable structures
(Mounce et al. 2016). Indeed, the nature of phylogenetic
analysis is that any individual character can be
in conflict with any other character. Morphologists
have given much thought to the problems involving
phylogenetic data sets. Jenner (2003, 2004) suggested
that morphological data sets needed to be expanded
for questions involving Metazoa. His focus was on
morphological characters as arbiters of phylogenetic
accuracy, and he argued more or less for a separation of
molecular and morphological data, and a larger focus on
morphology for testing hypotheses about phylogenetic
relationships.

More recently, Scholtz (2010) suggested that “if
morphological and molecular results clash, there is
no logical necessity to dismiss morphological data”,
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an idea that has been around since Kluge (1989)
made his “total evidence” argument and Nixon and
Carpenter (1996) expanded the idea into “simultaneous
analysis”. However, this suggestion has been countered
by Wanninger (2015) and Lee and Palci (2015) who state
that the role of morphology in modern systematics,
according to the former, is “to understand how
phenotypic diversity evolved” and, according to the
latter, is important in “time-scaling phylogenies.” Both
of these publications imply that while morphological
characters are important, they are somewhat irrelevant
to the actual construction of phylogenetic trees for extant
taxa. Their reasoning is based on the idea that the
plentitude of phylogenomic molecular characters simply
swamp the morphology, which we show here is not
the case for at least one node of importance and could
similarly prove not to be the case for other nodes that
have weak support from molecular data. This leaves
only one sound reason for excluding morphology from
phylogenetics: If it could somehow be proven that the
influence from morphology is in fact misleading from
the true signal in a specific case. Testing this is typically
impossible, as in the case of the SOM question, so why
not include as much data as possible?

Our observation also means that “molecular
morphology” (Rokas and Holland 2000; Ender and
Schierwater 2003; Maeso et al. 2013) might be combinable
with sequence data to sort out the inconsistencies in
molecular data, as well. Molecular morphology
characters include 3D stem and loop folding structures
(Ender and Schierwater 2003; Edger et al. 2014; Desalle
et al. 2017), near intron pairs (NIPs—Krauss et al. 2008),
and overall chromosome or genome structure (Maeso
et al. 2013; Eitel et al. 2018), among others.

Measures of Support and Flipping Hypotheses: Our
results suggest that Bayesian, likelihood, and parsimony
support measures often fail to adequately assess
topological stability, even of phylogenies based on the
largest current data sets. The Wh, Ch, Si, and Ry data sets
all show high node support (>95% bootstrap percentage
and 1.0 Bayesian posterior probability) in their original
publications and in our reanalyses for the SOM node. Yet,
the addition of a small set of morphological characters
(either equally or lightly up-weighted) can change the
inferred SOM for many of these data sets. The suggestion
that measures of support or stability based on bootstrap
and Bayesian posteriors in phylogenomic data sets may
be misleading has led to the suggestion that other
support analyses are needed. Siddall (2010) developed
the partition bootstrap method, and Narechania et al.
(2012) presented the random concatenation approach
(RADICAL), among others. These methods attempt to
take into consideration the interaction of partitions in
large molecular data sets and can be performed under
parsimony and likelihood.

We note that the results of our weighting space
analysis, the patterns of “flipping points,” carry a novel
type of information about the phylogenetic stability of
matrices. First, they show that the larger molecular data

sets (both in number of taxa and informative characters)
have greater topological stability. Second, when seen
in combination with the ratios of phylogenetically
informative characters (Supplementary File S4 available
on Dryad), they allow a new way of identifying which
data sets are more heavily influenced by the other
datatype, suggesting a higher degree of incongruencies
in the data. At the same time, this can allow us to
identify the most stable morphological data sets. Third,
we further imagine this to be a new way to assess
the comparability of new data sets, free from some of
the shortcomings of traditional support measures (e.g.,
bootstraps). Ultimately, a weighting space assessment
could be developed into an interesting sensitivity
analysis tool.

CONCLUSION

A lot is to be learned from quantifying the influence
of different data types where they lead to conflicting
hypotheses instead of a priori dismissing one of the data
types. We here show the usefulness of exploring the
weighting space for combined analyses of molecular and
morphological data and suggest that this should become
a more widely used procedure for testing the robustness
of phylogenetic trees.

Exploring how one’s data set behaves in the weighting
space compared to other data sets from the literature can
provide a good measure of congruency and topological
stability. Also performing differential weighting analysis
to a lesser extent than this study may provide
valuable information. Indeed, the solution to the SOM
problem may not only lie in finding the model that
best accommodates the different types of molecular
heterogeneity (Feuda et al. 2017; Simion et al. 2017),
but also in incorporating morphological data—the
phylogenetic signal it contains may in turn help sort out
the phylogenetic signal from the molecular data.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.prr4xgxhf.

FUNDING

US Department of Energy BER Award DE-SC0014377.
The Korein Family Foundation Lewis and Dorothy
Cullman Program in Molecular Systematics.

ACKNOWLEDGMENTS

We thank the US Department of Energy BER Award
DE-SC0014377 for helping to fund part of this work. We
also thank the Korein Family Foundation and the Lewis
and Dorothy Cullman Program in Molecular Systematics
at the AMNH.

http://dx.doi.org/10.5061/dryad.prr4xgxhf


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:51 13/1/2021 Sysbio-OP-SYSB200040.tex] Page: 372 360–375

372 SYSTEMATIC BIOLOGY VOL. 70

REFERENCES

Abadi S., Azouri D., Pupko T., Mayrose I. 2019. Model selection may not
be a mandatory step for phylogeny reconstruction. Nat. Commun.
10(1). doi:10.1038/s41467-019-08822-w.

Backeljau T. 1993. Cladistic analysis of metazoan relationships: a
reappraisal. Cladistics 9(2):167–181. doi: 10.1006/clad.1993.1010.

Baker R.H., Yu X., DeSalle R. 1998. Assessing the relative contribution
of molecular and morphological characters in simultaneous analysis
trees. Mol. Phylogenet. Evol. 9(3):427–436.

Bergsten J. 2005. A review of long-branch attraction. Cladistics
21(2):163–193. doi: 10.1111/j.1096-0031.2005.00059.x

Bleidorn C. 2017. Sources of error and incongruence in phylogenomic
analyses. Phylogenomics 173–193. doi:10.1007/978-3-319-54064-1_9.

Bradley D., Xu P., Mohorianu I.-I., Whibley A., Field D., Tavares
H., Couchman M., Copsey L., Carpenter R., Li M., Li Q., Xue Y.,
Dalmay T., Coen E. 2017. Evolution of flower color pattern through
selection on regulatory small RNAs. Science. 358(6365):925–928.

Brown J.M. 2014. Detection of implausible phylogenetic inferences
using posterior predictive assessment of model fit. Syst Biol.
63(3):334–348.

Brown W.M., George M. Jr, Wilson A.C. 1979. Rapid evolution of animal
mitochondrial DNA. Proc Natl Acad Sci USA 76(4):1967–1971.

Brusca R.C., Brusca G.J. 2003. Invertebrates. 2nd ed. Sunderland
(Massachusetts): Sinauer Associates.

Buckley T.R., Simon C., Chambers G.K. 2001. Exploring among-
site rate variation models in a maximum likelihood framework
using empirical data: effects of model assumptions on estimates
of topology, branch lengths, and bootstrap support. Syst. Biol.
50(1):67–86. doi: 10.1080/10635150116786.

Catalano S.A., Segura V., Candioti F.V. 2019. PASOS: a method for the
phylogenetic analysis of shape ontogenies. Cladistics 35:671–687

Chang E.S., Neuhof M., Rubinstein N.D., Diamant A., Philippe
H., Huchon D., Cartwright P. 2015. Genomic insights into the
evolutionary origin of Myxozoa within Cnidaria. Proc. Natl. Acad.
Sci. USA 112(48):14912–14917.

Chippindale P.T., Wiens J.J. 1994. Weighting, partitioning, and
combining characters in phylogenetic analysis. Syst. Biol.
43(2):278–287. doi: 10.1093/sysbio/43.2.278.

Cotton J.A., Wilkinson M. 2008. Quantifying the potential utility of
phylogenetic characters. Taxon 57(1):131–136.

Dayhoff M.O., Schwartz R.M., Orcutt B.C. 1978. A model of
evolutionary change in proteins. In: Dayhoff MO, editor. Atlas
of protein sequence and structure. Washington (DC): National
Biomedical Research Foundation. p. 345–352.

Dellaporta S.L., Xu A., Sagasser S., Jakob W., Moreno M.A., Buss L.W.,
Schierwater B. 2006. Mitochondrial genome of Trichoplax adhaerens
supports Placozoa as the basal lower metazoan phylum. Proc. Natl.
Acad. Sci. USA 103(23):8751–8756.

Desalle R., Schierwater B., Hadrys H. 2017. MtDNA: the small
workhorse of evolutionary studies. Front. Biosci. 22:873–887.

Dornburg A., Su Z., Townsend J.P. 2019. Optimal rates for phylogenetic
inference and experimental design in the era of genome-scale data
sets. Syst. Biol. 68(1):145–156.

Duchêne D.A., Duchêne S., Ho S.Y.W. 2017. New statistical criteria
detect phylogenetic bias caused by compositional heterogeneity.
Mol. Biol. Evol. 34(6):1529–1534.

Dunn C.W., Hejnol A., Matus D.Q., Pang K., Browne W.E., Smith
S.A., Seaver E., Rouse G.W., Obst M., Edgecombe G.D., Sørensen
M.V., Haddock S.H., Schmidt-Rhaesa A., Okusu A., Kristensen
R.M., Wheeler W.C., Martindale M.Q., Giribet G. 2008. Broad
phylogenomic sampling improves resolution of the animal tree of
life. Nature 452(7188):745–749.

Echave J., Spielman S.J., Wilke C.O. 2016. Causes of evolutionary rate
variation among protein sites. Nat. Rev. Genet. 17(2):109–121.

Edger P.P., Tang M., Bird K.A., Mayfield D.R., Conant G., Mummenhoff
K., Koch M.A., Pires J.C. 2014. Secondary structure analyses of the
nuclear rRNA internal transcribed spacers and assessment of its
phylogenetic utility across the Brassicaceae (mustards). PLoS One
9(7):e101341.

Eitel M., Francis W.R., Varoqueaux F., Daraspe J., Osigus H.-J., Krebs
S., Vargas S., Blum H., Williams G.A., Schierwater B., Wörheide G.

2018. Comparative genomics and the nature of placozoan species.
PLoS Biol. 16(7):e2005359.

Ender A., Schierwater B. 2003. Placozoa are not derived cnidarians:
evidence from molecular morphology. Mol. Biol. Evol.
20(1):130–134.

Engelhardt D., Shakhnovich E.I. 2019. Mutation rate variability as a
driving force in adaptive evolution. Phys. Rev. E. 99(2-1):022424.

Fan Y., Wu R., Chen M.-H., Kuo L., Lewis P.O. 2011. Choosing
among partition models in Bayesian phylogenetics. Mol. Biol. Evol.
28(1):523–532.

Farris J.S. 1969. A Successive approximations approach to character
weighting. Syst. Zool. 18(4):374. doi:10.2307/2412182Farris J.S. 1983.
The logical basis of phylogenetic analysis. Adv. Cladistics 2:7–36.

Felsenstein J. 1978. Cases in which parsimony or compatibility
methods will be positively misleading. Syst. Zool. 27(4):401. doi:
10.2307/2412923.

Feuda R., Dohrmann M., Pett W., Philippe H., Rota-Stabelli O.,
Lartillot N., Wörheide G., Pisani D. 2017. Improved modeling of
compositional heterogeneity supports sponges as sister to all other
animals. Curr. Biol. 27(24):3864–3870.e4.

Field K.G., Olsen G.J., Lane D.J., Giovannoni S.J., Ghiselin M.T., Raff
E.C., Pace N.R., Raff R.A. 1988. Molecular phylogeny of the animal
kingdom. Science 239(4841 Pt 1):748–753.

Folk R.A., Sun M., Soltis P.S., Smith S.A., Soltis D.E., Guralnick R.P.
2018. Challenges of comprehensive taxon sampling in comparative
biology: wrestling with rosids. Am. J. Bot. 105(3):433–445.

Gaubert P., Chris Wozencraft W., Cordeiro-Estrela P., Veron G.. 2005.
Mosaics of convergences and noise in morphological phylogenies:
what’s in a viverrid-like carnivoran? Syst. Biol. 54(6):865–894.
doi:10.1080/10635150500232769.

Giribet G. 2010. A new dimension in combining data? The use of
morphology and phylogenomic data in metazoan systematics. Acta
Zool. 91(1):11–19. doi: 10.1111/j.1463-6395.2009.00420.x.

Glenner H., Hansen A.J., Sørensen M.V., Ronquist F., Huelsenbeck J.P.,
Willerslev E. 2004. Bayesian inference of the metazoan phylogeny;
a combined molecular and morphological approach. Curr. Biol.
14(18):1644–1649.

Goloboff P. 1993. Estimating character weights during tree search.
Cladistics 9(1):83–91. doi:10.1006/clad.1993.1003.

Goloboff P.A. 2014. Extended implied weighting. Cladistics
30(3):260–272. doi: 10.1111/cla.12047.

Goloboff P.A., Carpenter J.M., Salvador Arias J., Esquivel D.R.M.
2008. Weighting against homoplasy improves phylogenetic
analysis of morphological data sets. Cladistics 24(5):758–773. doi:
10.1111/j.1096-0031.2008.00209.x.

Goloboff P.A., Farris J.S., Nixon K.C. 2008. TNT, a free
program for phylogenetic analysis. Cladistics 24(5):774–786.
doi:10.1111/j.1096-0031.2008.00217.x.

Goloboff P.A., Pittman M., Pol D., Xu X. 2019. Morphological data sets
fit a common mechanism much more poorly than DNA sequences
and call Into question the Mkv model. Syst. Biol. 68(3):494–504.

Gu X., Fu Y.X., Li W.H. 1995. Maximum likelihood estimation of the
heterogeneity of substitution rate among nucleotide sites. Mol.
Biol. Evol. 12(4):546–557.

Heiss A.A., Kolisko M., Ekelund F., Brown M.W., Roger A.J., Simpson
A.G.B. 2018. Combined morphological and phylogenomic re-
examination of malawimonads, a critical taxon for inferring the
evolutionary history of eukaryotes. R. Soc. Open Sci. 5(4):171707.
doi:10.1098/rsos.171707.

Heiss A.A., Walker G., Simpson A.G.B. 2013. The microtubular
cytoskeleton of the apusomonad Thecamonas, a sister
lineage to the opisthokonts. Protist 164(5):598–621.
doi:10.1016/j.protis.2013.05.005.

Hillis D. 1987. Molecular versus morphological approaches
to systematics. Annu. Rev. Ecol. Syst. 18(1):23–42.
doi:10.1146/annurev.ecolsys.18.1.23.

Hong-Wen D., Yun-Xin F. 2000. Counting mutations by parsimony
and estimation of mutation rate variation across nucleotide
sites—a simulation study. Math. Comput. Model. 32(1-2):83–95.
doi:10.1016/s0895-7177(00)00121-7.

Jenner R.A. 2003. Unleashing the force of cladistics? Metazoan
phylogenetics and hypothesis testing. Integr. Comp. Biol.
43(1):207–218.



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:51 13/1/2021 Sysbio-OP-SYSB200040.tex] Page: 373 360–375

2021 NEUMANN ET AL.—MORPHOLOGY CAN IMPACT EARLY ANIMAL PHYLOGENOMICS 373

Jenner, R.A. 2004. The scientific status of metazoan cladistics: why
current research practice must change. Zool. Scr. 33(4):293–310.
doi:10.1111/j.0300-3256.2004.00153.x.

Kivell T.L., Barros A.P., Smaers J.B. 2013. Different evolutionary
pathways underlie the morphology of wrist bones in hominoids.
BMC Evol. Biol. 13:229.

Kluge A.G. 1989. A concern for evidence and a phylogenetic hypothesis
of relationships among Epicrates (Boidae, Serpentes). Syst. Zool.
38(1):7. doi:10.2307/2992432.

Kosiol C., Goldman N., Buttimore N.H. 2004. A new criterion and
method for amino acid classification. J. Theor. Biol. 228(1):97–106.
doi:10.1016/j.jtbi.2003.12.010.

Krauss V., Thümmler C., Georgi F., Lehmann J., Stadler P.F.,
Eisenhardt C. 2008. Near intron positions are reliable phylogenetic
markers: an application to holometabolous insects. Mol. Biol. Evol.
25(5):821–830.

Laumer C.E., Gruber-Vodicka H., Hadfield M.G., Pearse V.B., Riesgo
A., Marioni J.C., Giribet G. 2018. Support for a clade of Placozoa
and Cnidaria in genes with minimal compositional bias. eLife
7:e36278. doi:10.7554/elife.36278.

Lee M.S.Y. 2001. Uninformative characters and apparent conflict
between molecules and morphology. Mol. Biol. Evol. 18(4):676–680.
doi:10.1093/oxfordjournals.molbev.a003848.

Lee M.S.Y., Palci A. 2015. Morphological phylogenetics in the genomic
age. Curr. Biol. 25(19):R922–R929. doi:10.1016/j.cub.2015.07.009.

Lewis P.O. 2001a. Phylogenetic systematics turns over a new leaf.
Trends Ecol. Evol. 16(1):30–37. doi:10.1016/s0169-5347(00)02025-5.

Lewis P.O. 2001b. A likelihood approach to estimating phylogeny from
discrete morphological character data. Syst. Biol. 50(6):913–925.
doi:10.1080/106351501753462876.

Maeso I., Irimia M., Tena J.J., Casares F., Gómez-Skarmeta J.L. 2013.
Deep conservation of cis-regulatory elements in metazoans. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 368(1632):20130020.

Marouli E., Graff M., Medina-Gomez C., Lo K.S., Wood A.R., Kjaer
T.R., Fine R.S., Lu Y., Schurmann C., Highland H.M., Rüeger S.,
Thorleifsson G., Justice A.E., Lamparter D., Stirrups K.E., Turcot V.,
Young K.L., Winkler T.W., Esko T., Karaderi T., Locke A.E., Masca
N.G., Ng M.C., Mudgal P., Rivas M.A., Vedantam S., Mahajan A.,
Guo X., Abecasis G., Aben K.K., Adair L.S., Alam D.S., Albrecht
E., Allin K.H., Allison M., Amouyel P., Appel E.V., Arveiler D.,
Asselbergs F.W., Auer P.L., Balkau B., Banas B., Bang L.E., Benn M.,
Bergmann S., Bielak L.F., Blüher M., Boeing H., Boerwinkle E., Böger
C.A., Bonnycastle L.L., Bork-Jensen J., Bots M.L., Bottinger E.P.,
Bowden D.W., Brandslund I., Breen G., Brilliant M.H., Broer L., Burt
A.A., Butterworth A.S., Carey D.J., Caulfield M.J., Chambers J.C.,
Chasman D.I., Chen Y.I., Chowdhury R., Christensen C., Chu A.Y.,
Cocca M., Collins F.S., Cook J.P., Corley J., Galbany J.C., Cox A.J.,
Cuellar-Partida G., Danesh J., Davies G., de Bakker P.I., de Borst G.J.,
de Denus S., de Groot M.C., de Mutsert R., Deary I.J., Dedoussis G.,
Demerath E.W., den Hollander A.I., Dennis J.G., Di Angelantonio E.,
Drenos F., Du M., Dunning A.M., Easton D.F., Ebeling T., Edwards
T.L., Ellinor P.T., Elliott P., Evangelou E., Farmaki A.E., Faul J.D.,
Feitosa M.F., Feng S., Ferrannini E., Ferrario M.M., Ferrieres J.,
Florez J.C., Ford I., Fornage M., Franks P.W., Frikke-Schmidt R.,
Galesloot T.E., Gan W., Gandin I., Gasparini P., Giedraitis V., Giri
A., Girotto G., Gordon S.D., Gordon-Larsen P., Gorski M., Grarup
N., Grove M.L., Gudnason V., Gustafsson S., Hansen T., Harris K.M.,
Harris T.B., Hattersley A.T., Hayward C., He L., Heid I.M., Heikkilä
K., Helgeland Ø., Hernesniemi J., Hewitt A.W., Hocking L.J.,
Hollensted M., Holmen O.L., Hovingh G.K., Howson J.M., Hoyng
C.B., Huang P.L., Hveem K., Ikram M.A., Ingelsson E., Jackson A.U.,
Jansson J.H., Jarvik G.P., Jensen G.B., Jhun M.A., Jia Y., Jiang X.,
Johansson S., Jørgensen M.E., Jørgensen T., Jousilahti P., Jukema
J.W., Kahali B., Kahn R.S., Kähönen M., Kamstrup P.R., Kanoni S.,
Kaprio J., Karaleftheri M., Kardia S.L., Karpe F., Kee F., Keeman R.,
Kiemeney L.A., Kitajima H., Kluivers K.B., Kocher T., Komulainen
P., Kontto J., Kooner J.S., Kooperberg C., Kovacs P., Kriebel J.,
Kuivaniemi H., Kúry S., Kuusisto J., La Bianca M., Laakso M., Lakka
T.A., Lange E.M., Lange L.A., Langefeld C.D., Langenberg C., Larson
E.B., Lee I.T., LehtimÃ¤ki T., Lewis C.E., Li H., Li J., Li-Gao R., Lin
H., Lin L.A., Lin X., Lind L., Lindström J., Linneberg A., Liu Y., Liu
Y., Lophatananon A., Luan J., Lubitz S.A., Lyytikäinen L.P., Mackey

D.A., Madden P.A., Manning A.K., Männistö S., Marenne G., Marten
J., Martin N.G., Mazul A.L., Meidtner K., Metspalu A., Mitchell
P., Mohlke K.L., Mook-Kanamori D.O., Morgan A., Morris A.D.,
Morris A.P., Müller-Nurasyid M., Munroe P.B., Nalls M.A., Nauck
M., Nelson C.P., Neville M., Nielsen S.F., Nikus K., Njølstad P.R.,
Nordestgaard B.G., Ntalla I., O’Connel J.R., Oksa H., Loohuis L.M.,
Ophoff R.A., Owen K.R., Packard C.J., Padmanabhan S., Palmer
C.N., Pasterkamp G., Patel A.P., Pattie A., Pedersen O., Peissig P.L.,
Peloso G.M., Pennell C.E., Perola M., Perry J.A., Perry J.R., Person
T.N., Pirie A., Polasek O., Posthuma D., Raitakari O.T., Rasheed
A., Rauramaa R., Reilly D.F., Reiner A.P., Renström F., Ridker P.M.,
Rioux J.D., Robertson N., Robino A., Rolandsson O., Rudan I., Ruth
K.S., Saleheen D., Salomaa V., Samani N.J., Sandow K., Sapkota Y.,
Sattar N., Schmidt M.K., Schreiner P.J., Schulze M.B., Scott R.A.,
Segura-Lepe M.P., Shah S., Sim X., Sivapalaratnam S., Small K.S.,
Smith A.V., Smith J.A., Southam L., Spector T.D., Speliotes E.K., Starr
J.M., Steinthorsdottir V., Stringham H.M., Stumvoll M., Surendran
P., ’t Hart L.M., Tansey K.E., Tardif J.C., Taylor K.D., Teumer A.,
Thompson D.J., Thorsteinsdottir U., Thuesen B.H., Tönjes A., Tromp
G., Trompet S., Tsafantakis E., Tuomilehto J., Tybjaerg-Hansen A.,
Tyrer J.P., Uher R., Uitterlinden A.G., Ulivi S., van der Laan S.W., Van
Der Leij A.R., van Duijn C.M., van Schoor N.M., van Setten J., Varbo
A., Varga T.V., Varma R., Edwards D.R., Vermeulen S.H., Vestergaard
H., Vitart V., Vogt T.F., Vozzi D., Walker M., Wang F., Wang C.A.,
Wang S., Wang Y., Wareham N.J., Warren H.R., Wessel J., Willems
S.M., Wilson J.G., Witte D.R., Woods M.O., Wu Y., Yaghootkar H.,
Yao J., Yao P., Yerges-Armstrong L.M., Young R., Zeggini E., Zhan
X., Zhang W., Zhao J.H., Zhao W., Zhao W., Zheng H., Zhou W.;
EPIC-InterAct Consortium; CHD Exome+ Consortium; ExomeBP
Consortium; T2D-Genes Consortium; GoT2D Genes Consortium;
Global Lipids Genetics Consortium; ReproGen Consortium;
MAGIC Investigators, Rotter J.I., Boehnke M., Kathiresan S.,
McCarthy M.I., Willer C.J., Stefansson K., Borecki I.B., Liu D.J.,
North K.E., Heard-Costa N.L., Pers T.H., Lindgren C.M., Oxvig C.,
Kutalik Z., Rivadeneira F., Loos R.J., Frayling T.M., Hirschhorn J.N.,
Deloukas P., Lettre G. 2017. Rare and low-frequency coding variants
alter human adult height. Nature 542(7640):186–190.

Mirande J.M. 2019. Morphology, molecules and the phylogeny of
Characidae (Teleostei, Characiformes). Cladistics 35(3):282–300.
doi:10.1111/cla.12345.

Mirande M. 2016. Combined phylogeny of ray-finned fishes
(Actinopterygii) and the use of morphological characters in
large-scale analyses. Cladistics 33:333–350. doi:10.1111/cla.12171.

Moroz L.L. 2009. On the independent origins of complex brains and
neurons. Brain Behav. Evol. 74(3):177–190. doi:10.1159/000258665.

Moroz L.L. 2015. Convergent evolution of neural systems in
ctenophores. J. Exp. Biol. 218(Pt 4):598–611.

Moroz L.L., Edwards J.R., Puthanveettil S.V., Kohn A.B., Ha T.,
Heyland A., Knudsen B., Sahni A., Yu F., Liu L., Jezzini S., Lovell P.,
Iannucculli W., Chen M., Nguyen T., Sheng H., Shaw R., Kalachikov
S., Panchin Y.V., Farmerie W., Russo J.J., Ju J., Kandel E.R. 2006.
Neuronal transcriptome of Aplysia: neuronal compartments and
circuitry. Cell 127(7):1453–1467. doi:10.1016/j.cell.2006.09.052.

Moroz L.L., Kocot K.M., Citarella M.R., Dosung S., Norekian T.P.,
Povolotskaya I.S., Grigorenko A.P., Dailey C., Berezikov E., Buckley
K.M., Ptitsyn A., Reshetov D., Mukherjee K., Moroz T.P., Bobkova
Y., Yu F., Kapitonov V.V., Jurka J., Bobkov Y.V., Swore J.J., Girardo
D.O., Fodor A., Gusev F., Sanford R., Bruders R., Kittler E., Mills
C.E., Rast J.P., Derelle R., Solovyev V.V., Kondrashov F.A., Swalla
B.J., Sweedler J.V., Rogaev E.I., Halanych K.M., Kohn A.B. 2014.
The ctenophore genome and the evolutionary origins of neural
systems. Nature 510(7503):109–114.

Mounce R.C.P., Sansom R., Wills M.A. 2016. Sampling diverse
characters improves phylogenies: craniodental and postcranial
characters of vertebrates often imply different trees. Evolution
70(3):666–686. doi:10.1111/evo.12884.

Nabhan A.R., Sarkar I.N. 2012. The impact of taxon sampling on
phylogenetic inference: a review of two decades of controversy.
Brief. Bioinform. 13(1):122–134.

Narechania A., Baker R.H., Sit R., Kolokotronis S.-O., DeSalle R., Planet
P.J. 2012. Random addition concatenation analysis: a novel approach
to the exploration of phylogenomic signal reveals strong agreement



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:51 13/1/2021 Sysbio-OP-SYSB200040.tex] Page: 374 360–375

374 SYSTEMATIC BIOLOGY VOL. 70

between core and shell genomic partitions in the cyanobacteria.
Genome Biol. Evol. 4(1):30–43. doi:10.1093/gbe/evr121.

Nesnidal M.P., Helmkampf M., Bruchhaus I., El-Matbouli M.,
Hausdorf B. 2013. Agent of whirling disease meets orphan worm:
phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS
One 8(1):e54576.

Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015.
IQ-TREE: a fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1):268–274.
doi:10.1093/molbev/msu300.

Nielsen C. 2019. Early animal evolution: a morphologist’s view. R. Soc.
Open Sci. 6(7):190638. doi:10.1098/rsos.190638.

Nixon K.C., Carpenter J.M. 1996. On simultaneous analysis. Cladistics
12(3):221–241. doi:10.1111/j.1096-0031.1996.tb00010.x.

Oaks J.R., Cobb K.A., Minin V.N., Leaché A.D. 2019. Marginal
likelihoods in phylogenetics: a review of methods and applications.
Syst. Biol. 68(5):681–697. doi:10.1093/sysbio/syz003.

Peterson K.J., Eernisse D.J. 2001. Animal phylogeny and the ancestry
of bilaterians: inferences from morphology and 18S rDNA gene
sequences. Evol. Dev. 3(3):170–205.

Philippe H., Derelle R., Lopez P., Pick K., Borchiellini C., Boury-
Esnault N., Vacelet J., Renard E., Houliston E., Quéinnec E.,
Da Silva C., Wincker P., Le Guyader H., Leys S., Jackson D.J.,
Schreiber F., Erpenbeck D., Morgenstern B., Wörheide G., Manuel
M. 2009. Phylogenomics revives traditional views on deep animal
relationships. Curr. Biol. 19(8):706–712.

Philippe H., Zhou Y., Brinkmann H., Rodrigue N., Delsuc F. 2005.
Heterotachy and long-branch attraction in phylogenetics. BMC
Evol. Biol. 5:50.

Pick K.S., Philippe H., Schreiber F., Erpenbeck D., Jackson D.J., Wrede
P., Wiens M., Alié A., Morgenstern B., Manuel M., Wörheide G.
2010. Improved phylogenomic taxon sampling noticeably affects
nonbilaterian relationships. Mol. Biol. Evol. 27(9):1983–1987.

Pollock D.D., Zwickl D.J., McGuire J.A., Hillis D.M. 2002. Increased
taxon sampling is advantageous for phylogenetic inference. Syst.
Biol. 51(4):664–671. doi:10.1080/10635150290102357.

Puttick M.N., O’Reilly J.E., Tanner A.R., Fleming J.F., Clark J.,
Holloway L., Lozano-Fernandez J., Parry L.A., Tarver J.E., Pisani
D., Donoghue P.C. 2017. Uncertain-tree: discriminating among
competing approaches to the phylogenetic analysis of phenotype
data. Proc. Biol. Sci. 284(1846). doi:10.1098/rspb.2016.2290.

Pyron R.A. 2015. Post-molecular systematics and the
future of phylogenetics. Trends Ecol. Evol. 30(7):384–389.
doi:10.1016/j.tree.2015.04.016.

Quang L.S., Gascuel O., Lartillot N. 2008. Empirical profile
mixture models for phylogenetic reconstruction. Bioinformatics
24(20):2317–2323. doi:10.1093/bioinformatics/btn445.

Reddy S., Kimball R.T., Pandey A., Hosner P.A., Braun M.J., Hackett
S.J., Han K.L., Harshman J., Huddleston C.J., Kingston S., Marks
B.D., Miglia K.J., Moore W.S., Sheldon F.H., Witt C.C., Yuri T.,
Braun E.L. 2017. Why do phylogenomic data sets yield conflicting
trees? Data type influences the avian tree of life more than taxon
sampling. Syst. Biol. 66(5):857–879.

Rokas A., Carroll S.B. 2005. More genes or more taxa? The
relative contribution of gene number and taxon number
to phylogenetic accuracy. Mol. Biol. Evol. 22(5):1337–1344.
doi:10.1093/molbev/msi121.

Rokas A., Holland P.W. 2000. Rare genomic changes as a tool for
phylogenetics. Trends Ecol. Evol. 15(11):454–459.

Rokas A., Williams B.L., King N., Carroll S.B. 2003. Genome-scale
approaches to resolving incongruence in molecular phylogenies.
Nature 425(6960):798–804.

Rosenberg M.S., Kumar S. 2001. Incomplete taxon sampling is not
a problem for phylogenetic inference. Proc. Natl. Acad. Sci.
98(19):10751–10756. doi:10.1073/pnas.191248498.

Ryan J.F., Pang K., Schnitzler C.E., Nguyen A.D., Moreland R.T.,
Simmons D.K., Koch B.J., Francis W.R., Havlak P.; NISC
Comparative Sequencing Program, Smith S.A., Putnam N.H.,
Haddock S.H., Dunn C.W., Wolfsberg T.G., Mullikin J.C., Martindale
M.Q., Baxevanis A.D. 2013. The genome of the ctenophore
Mnemiopsis leidyi and its implications for cell type evolution.
Science 342(6164):1242592–1242592. doi:10.1126/science.1242592.

Schierwater B., Eitel M., Jakob W., Osigus H.-J., Hadrys H.,
Dellaporta S.L., Kolokotronis S.-O., DeSalle R. 2009. Concatenated
analysis sheds light on early metazoan evolution and fuels a
modern “urmetazoon” hypothesis. PLoS Biol. 7(1):e1000020.
doi:10.1371/journal.pbio.1000020.

Schierwater B., Holland P.W.H., Miller D.J., Stadler P.F., Wiegmann
B.M., Wörheide G., Wray G.A., DeSalle R. 2016. Never ending
analysis of a century old evolutionary debate: “Unringing” the
urmetazoon bell. Front. Ecol. Evol. 4. doi:10.3389/fevo.2016.00005.

Scholtz G. 2010. Deconstructing morphology. Acta Zool. 91(1):44–63.
doi:10.1111/j.1463-6395.2009.00424.x.

Schram F.R. 1991. Cladistic analysis of metazoan phyla and the
placement of fossil problematica. In: Simonett AM, Conway Morris
S, editors. The early evolution of metazoa and the significance of
problematic taxa. Cambridge: Cambridge University Press. p. 35–46.

Shen X.-X., Hittinger C.T., Rokas A. 2017. Contentious relationships
in phylogenomic studies can be driven by a handful of genes. Nat.
Ecol. Evol. 1(5):126.

Siddall M.E. 2010. Unringing a bell: metazoan phylogenomics
and the partition bootstrap. Cladistics 26:444–452. doi:10.1111/
j.1096-0031.2009.00295.x.

Signorovitch A.Y., Buss L.W., Dellaporta S.L. 2007. Comparative
genomics of large mitochondria in placozoans. PLoS Genet.
3(1):e13.

Simion P., Philippe H., Baurain D., Jager M., Richter D.J., Di
Franco A., Roure B., Satoh N., Quéinnec É., Ereskovsky A.,
Lapébie P., Corre E., Delsuc F., King N., Wörheide G., Manuel
M. 2017. A large and consistent phylogenomic dataset supports
sponges as the sister group to all other animals. Curr. Biol.
27(7):958–967.

Simmons M.P., Goloboff P.A. 2013. An artifact caused by
undersampling optimal trees in supermatrix analyses of locally
sampled characters. Mol. Phylogenet. Evol. 69(1):265–275.

Soares A.E.R., Schrago C.G. 2015. The influence of taxon sampling
on Bayesian divergence time inference under scenarios of
rate heterogeneity among lineages. J. Theor. Biol. 364:31–39.
doi:10.1016/j.jtbi.2014.09.004.

Srivastava M., Begovic E., Chapman J., Putnam N.H., Hellsten U.,
Kawashima T., Kuo A., Mitros T., Salamov A., Carpenter M.L.,
Signorovitch A.Y., Moreno M.A., Kamm K., Grimwood J., Schmutz
J., Shapiro H., Grigoriev I.V., Buss L.W., Schierwater B., Dellaporta
S.L., Rokhsar D.S. 2008. The Trichoplax genome and the nature of
placozoans. Nature 454(7207):955–960.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic
analysis and post-analysis of large phylogenies. Bioinformatics
30(9):1312–1313. doi:10.1093/bioinformatics/btu033.

Stamatakis A. 2019. A review of approaches for optimizing
phylogenetic likelihood calculations. In: Warnow T, editor.
Bioinformatics and Phylogenetics. Computational Biology, Vol. 29.
Cham: Springer.

Streicher J.W., Schulte J.A. 2nd, Wiens J.J. 2016. How should
genes and taxa be sampled for phylogenomic analyses with
missing data? An empirical study in iguanian lizards. Syst. Biol.
65(1):128–145.

Sullivan J., Holsinger K., Simon C. 1995. Among-site rate variation
and phylogenetic analysis of 12S rRNA in sigmodontine rodents.
Mol. Biol. Evol. 12(6):988–1001.

Susko E., Roger A.J. 2007. On reduced amino acid alphabets for
phylogenetic inference. Mol. Biol. Evol. 24(9):2139–2150.

Swofford D.L. 2002. PAUP*. Phylogenetic analysis using parsimony
(*and other methods). Version 4. Sunderland, MA: Sinauer
Associates (Version 4).

Tamashiro R.A., White N.D., Braun M.J., Faircloth B.C., Braun E.L.,
Kimball R.T. 2019. What are the roles of taxon sampling and model
fit in tests of cyto-nuclear discordance using avian mitogenomic
data? Mol. Phylogenet. Evol. 130:132–142.

Tessler M., Barrio A., Borda E., Rood-Goldman R., Hill M., Siddall M.E.
2016. Description of a soft-bodied invertebrate with microcomputed
tomography and revision of the genus Chtonobdella (Hirudinea:
Haemadipsidae). Zool. Scr. 45(5):552–565. doi:10.1111/zsc.12165.

Wanninger A. 2015. Morphology is dead - long live morphology!
Integrating MorphoEvoDevo into molecular EvoDevo and
phylogenomics. Front. Ecol. Evol. 3. doi:10.3389/fevo.2015.00054.

Wheeler Q.D. 1986. Character weighting and cladistic analysis. Syst.
Zool. 35(1):102. doi:10.2307/2413294.



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:51 13/1/2021 Sysbio-OP-SYSB200040.tex] Page: 375 360–375

2021 NEUMANN ET AL.—MORPHOLOGY CAN IMPACT EARLY ANIMAL PHYLOGENOMICS 375

Whelan N.V., Kocot K.M., Moroz L.L., Halanych K.M. 2015. Error,
signal, and the placement of Ctenophora sister to all other animals.
Proc. Natl. Acad. Sci. USA 112(18):5773–5778.

Wilke T., Schultheiß R., Albrecht C. 2009. As time goes by: a simple
fool’s guide to molecular clock approaches in invertebrates*. Am.
Malacol. Bull. 27(1-2):25–45. doi:10.4003/006.027.0203.

Wortley A.H., Scotland R.W. 2006. The effect of combining molecular
and morphological data in published phylogenetic analyses. Syst.
Biol. 55(4):677–685. doi:10.1080/10635150600899798.

Xie W., Lewis P.O., Fan Y., Kuo L., Chen M.-H. 2011. Improving
marginal likelihood estimation for Bayesian phylogenetic model
selection. Syst. Biol. 60(2):150–160.

Yang Z., Goldman N., Friday A. 1994. Comparison of models for
nucleotide substitution used in maximum-likelihood phylogenetic
estimation. Mol. Biol. Evol. 11(2):316–324.

Zahn L.M. 2019. How natural selection affects mouse coat color.
Science 363(6426):494.9–495. doi:10.1126/science.363.6426.494-i.

Zhang J., Yang J.-R. 2015. Determinants of the rate of protein sequence
evolution. Nat. Rev. Genet. 16(7):409–420.

Zrzavý J. 1998. Phylogeny of the Metazoa based on morphological
and 18S ribosomal DNA evidence. Cladistics 14(3):249–285.
doi:10.1006/clad.1998.0070.

Zwickl D.J., Hillis D.M. 2002. Increased taxon sampling greatly
reduces phylogenetic error. Syst. Biol. 51(4):588–598.


	Morphological Characters Can Strongly Influence Early Animal Relationships Inferred from Phylogenomic Data Sets

